78
Views
32
CrossRef citations to date
0
Altmetric
Review

Neuropathology and treatment of Alzheimer disease: did we lose the forest for the trees?

, , , , &
Pages 473-485 | Published online: 09 Jan 2014

References

  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol.60(8), 1119–1122 (2003).
  • Ernst RL, Hay JW. The US economic and social costs of Alzheimer’s disease revisited. Am. J. Public Health84(8), 1261–1264 (1994).
  • Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Amyloid-β vaccination: testing the amyloid hypothesis?: heads we win, tails you lose! Am. J. Pathol.169(3), 738–739 (2006).
  • Perry G, Nunomura A, Raina AK, Smith MA. Amyloid-β junkies. Lancet355(9205), 757 (2000).
  • Smith MA, Atwood CS, Joseph JA, Perry G. Predicting the failure of amyloid-β vaccine. Lancet359(9320), 1864–1865 (2002).
  • Castellani RJ, Lee HG, Zhu X et al. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathol. (Berl.)111(6), 503–509 (2006).
  • Lee HG, Zhu X, Petersen RB, Perry G, Smith MA. Amyloids, aggregates and neuronal inclusions: good or bad news for neurons? Currr. Med. Chem. – Immun. Endoc. Metab. Agents3, 293–298 (2003).
  • Joseph J, Shukitt-Hale B, Denisova NA et al. Copernicus revisited: amyloid β in Alzheimer’s disease. Neurobiol. Aging22(1), 131–146 (2001).
  • Perry G, Avila J, Kinoshita J, Smith MA. Alzheimer’s Disease: A Century of Scientific and Clinical Research. IOS Press, Amsterdam, The Netherlands (2006).
  • Selkoe DJ, Abraham CR, Podlisny MB, Duffy LK. Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer’s disease. J. Neurochem.46(6), 1820–1834 (1986).
  • Masters CL, Simms G, Weinman NA et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA82(12), 4245–4249 (1985).
  • Grundke-Iqbal I, Iqbal K, Quinlan M et al. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem.261(13), 6084–6089 (1986).
  • Wood JG, Mirra SS, Pollock NJ, Binder LI. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc. Natl Acad. Sci. USA83(11), 4040–4043 (1986).
  • Mirra SS, Heyman A, McKeel D et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology41(4), 479–486 (1991).
  • Khachaturian ZS. Diagnosis of Alzheimer’s disease. Arch. Neurol.42(11), 1097–1105 (1985).
  • Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol. Aging18(4 Suppl.), S1–S2 (1997).
  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.)82(4), 239–259 (1991).
  • Perry G, Raina AK, Cohen ML, Smith MA. When hypotheses dominate. The Scientist18, 6 (2004).
  • Bennett DA, Schneider JA, Arvanitakis Z et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology66(12), 1837–1844 (2006).
  • Tiraboschi P, Sabbagh MN, Hansen LA et al. Alzheimer disease without neocortical neurofibrillary tangles: “a second look”. Neurology62(7), 1141–1147 (2004).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297(5580), 353–356 (2002).
  • Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science256(5054), 184–185 (1992).
  • Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Amyloid β: the alternate hypothesis. Curr. Alzheimer Res.3(1), 75–80 (2006).
  • Kumar-Singh S, Theuns J, Van Broeck B et al. Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased Aβ42 and decreased Aβ40. Hum. Mutat.27(7), 686–695 (2006).
  • Bentahir M, Nyabi O, Verhamme J et al. Presenilin clinical mutations can affect γ-secretase activity by different mechanisms. J. Neurochem.96(3), 732–742 (2006).
  • Kimberly WT, Zheng JB, Guenette SY, Selkoe DJ. The intracellular domain of the β-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem.276(43), 40288–40292 (2001).
  • Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL. Evidence that β-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science248(4954), 492–495 (1990).
  • Shoji M, Golde TE, Ghiso J et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science258(5079), 126–129 (1992).
  • Haass C, Schlossmacher MG, Hung AY et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature359(6393), 322–325 (1992).
  • Sinha S, Lieberburg I. Cellular mechanisms of β-amyloid production and secretion. Proc. Natl Acad. Sci. USA96(20), 11049–11053 (1999).
  • Gruninger-Leitch F, Schlatter D, Kung E, Nelbock P, Dobeli H. Substrate and inhibitor profile of BACE (β-secretase) and comparison with other mammalian aspartic proteases. J. Biol. Chem.277(7), 4687–4693 (2002).
  • Scheuner D, Eckman C, Jensen M et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med.2(8), 864–870 (1996).
  • De Strooper B, Saftig P, Craessaerts K et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature391(6665), 387–390 (1998).
  • Wolfe MS, Xia W, Moore CL et al. Peptidomimetic probes and molecular modeling suggest that Alzheimer’s γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry (Mosc.)38(15), 4720–4727 (1999).
  • Goutte C, Tsunozaki M, Hale VA, Priess JR. APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc. Natl Acad. Sci. USA99(2), 775–779 (2002).
  • Francis R, McGrath G, Zhang J et al. aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell.3(1), 85–97 (2002).
  • Becher B, Prat A, Antel JP. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia29(4), 293–304 (2000).
  • Monsonego A, Zota V, Karni A et al. Increased T cell reactivity to amyloid β protein in older humans and patients with Alzheimer disease. J. Clin. Invest.112(3), 415–422 (2003).
  • Schenk D, Barbour R, Dunn W et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature400(6740), 173–177 (1999).
  • Morgan D, Diamond DM, Gottschall PE et al. A β peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature408(6815), 982–985 (2000).
  • Janus C, Pearson J, McLaurin J et al. A β peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature408(6815), 979–982 (2000).
  • Bard F, Cannon C, Barbour R et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med.6(8), 916–919 (2000).
  • Nicoll JA, Wilkinson D, Holmes C et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat. Med.9(4), 448–452 (2003).
  • Mucke L, Masliah E, Yu GQ et al. High-level neuronal expression of aβ 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci.20(11), 4050–4058 (2000).
  • Dodart JC, Bales KR, Gannon KS et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat. Neurosci.5(5), 452–457 (2002).
  • Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science298(5594), 789–791 (2002).
  • Patton RL, Kalback WM, Esh CL et al. Amyloid-β peptide remnants in AN-1792-immunized Alzheimer’s disease patients: a biochemical analysis. Am. J. Pathol.169(3), 1048–1063 (2006).
  • Klein WL, Krafft GA, Finch CE. Targeting small Aβ oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci.24(4), 219–224 (2001).
  • Chromy BA, Nowak RJ, Lambert MP et al. Self-assembly of Aβ(1-42) into globular neurotoxins. Biochemistry (Mosc.)42(44), 12749–12760 (2003).
  • Bitan G, Lomakin A, Teplow DB. Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J. Biol. Chem.276(37), 35176–35184 (2001).
  • Younkin SG. The role of A β 42 in Alzheimer’s disease. J. Physiol. Paris92(3–4), 289–292 (1998).
  • Rottkamp CA, Atwood CS, Joseph JA et al. The state versus amyloid-β: the trial of the most wanted criminal in Alzheimer disease. Peptides23(7), 1333–1341 (2002).
  • Smith MA, Joseph JA, Perry G. Arson. Tracking the culprit in Alzheimer’s disease. Ann. NY Acad. Sci.924, 35–38 (2000).
  • Smith MA, Casadesus G, Joseph JA, Perry G. Amyloid-β and tau serve antioxidant functions in the aging and Alzheimer brain. Free Radic. Biol. Med.33(9), 1194–1199 (2002).
  • Perry G, Castellani RJ, Hirai K, Smith MA. Reactive oxygen species mediate cellular damage in Alzheimer disease. J. Alzheimers Dis.1(1), 45–55 (1998).
  • Reiman EM, Caselli RJ, Yun LS et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε 4 allele for apolipoprotein E. N. Engl. J. Med.334(12), 752–758 (1996).
  • Hirai K, Aliev G, Nunomura A et al. Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci.21(9), 3017–3023 (2001).
  • Smith CD, Carney JM, Tatsumo T et al. Protein oxidation in aging brain. Ann. NY Acad. Sci.663, 110–119 (1992).
  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochim. Biophys. Acta1502(1), 139–144 (2000).
  • Smith MA, Drew KL, Nunomura A et al. Amyloid-β, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs? Neurochem. Int.40(6), 527–531 (2002).
  • Yates CM, Butterworth J, Tennant MC, Gordon A. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J. Neurochem.55(5), 1624–1630 (1990).
  • Mastrogiacomo F, Bergeron C, Kish SJ. Brain α-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. J. Neurochem.61(6), 2007–2014 (1993).
  • Simonian NA, Hyman BT. Functional alterations in Alzheimer’s disease: selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation. J. Neuropathol. Exp. Neurol.53(5), 508–512 (1994).
  • Perry G, Sayre LM, Atwood CS et al. The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs16(5), 339–352 (2002).
  • Smith MA, Harris PL, Sayre LM, Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA94(18), 9866–9868 (1997).
  • Sayre LM, Perry G, Harris PL et al.In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J. Neurochem.74(1), 270–279 (2000).
  • Honda K, Smith MA, Zhu X et al. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron. J. Biol. Chem.280(22), 20978–20986 (2005).
  • Bush AI, Multhaup G, Moir RD et al. A novel zinc(II) binding site modulates the function of the β A4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem.268(22), 16109–16112 (1993).
  • Bush AI, Pettingell WH, Multhaup G et al. Rapid induction of Alzheimer A β amyloid formation by zinc. Science265(5177), 1464–1467 (1994).
  • Multhaup G, Bush AI, Pollwein P, Masters CL. Interaction between the zinc (II) and the heparin binding site of the Alzheimer’s disease β A4 amyloid precursor protein (APP). FEBS Lett.355(2), 151–154 (1994).
  • Huang X, Atwood CS, Moir RD et al. Zinc-induced Alzheimer’s Aβ1-40 aggregation is mediated by conformational factors. J. Biol. Chem.272(42), 26464–26470 (1997).
  • Cuajungco MP, Faget KY, Huang X, Tanzi RE, Bush AI. Metal chelation as a potential therapy for Alzheimer’s disease. Ann. NY Acad. Sci.920, 292–304 (2000).
  • Liu G, Garrett MR, Men P et al. Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochim. Biophys. Acta1741(3), 246–252 (2005).
  • Panayi AE, Spyrou NM, Iversen BS, White MA, Part P. Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J. Neurol. Sci.195(1), 1–10 (2002).
  • Bondy SC, Guo-Ross SX, Truong AT. Promotion of transition metal-induced reactive oxygen species formation by β-amyloid. Brain Res.799(1), 91–96 (1998).
  • Huang X, Atwood CS, Hartshorn MA et al. The A β peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry (Mosc.)38(24), 7609–7616 (1999).
  • Burton GW, Joyce A, Ingold KU. First proof that vitamin E is major lipid-soluble, chain-breaking antioxidant in human blood plasma. Lancet2(8293), 327 (1982).
  • Jama JW, Launer LJ, Witteman JC et al. Dietary antioxidants and cognitive function in a population-based sample of older persons. The Rotterdam Study. Am. J. Epidemiol.144(3), 275–280 (1996).
  • Perrig WJ, Perrig P, Stahelin HB. The relation between antioxidants and memory performance in the old and very old. J. Am. Geriatr. Soc.45(6), 718–724 (1997).
  • Zandi PP, Anthony JC, Khachaturian AS et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch. Neurol.61(1), 82–88 (2004).
  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol.57(10), 1439–1443 (2000).
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet356(9242), 1627–1631 (2000).
  • Simons M, Keller P, De Strooper B et al. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl Acad. Sci. USA95(11), 6460–6464 (1998).
  • Li L, Cao D, Kim H, Lester R, Fukuchi K. Simvastatin enhances learning and memory independent of amyloid load in mice. Ann. Neurol.60(6), 729–739 (2006).
  • McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology47(2), 425–432 (1996).
  • in t’ Veld BA, Ruitenberg A, Hofman A et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N. Engl. J. Med.345(21), 1515–1521 (2001).
  • Cagnin A, Brooks DJ, Kennedy AM et al.In vivo measurement of activated microglia in dementia. Lancet358(9280), 461–467 (2001).
  • Nandoe RD, Scheltens P, Eikelenboom P. Head trauma and Alzheimer’s disease. J. Alzheimers Dis.4(4), 303–308 (2002).
  • Rogers J, Cooper NR, Webster S et al. Complement activation by β-amyloid in Alzheimer disease. Proc. Natl Acad. Sci. USA89(21), 10016–10020 (1992).
  • Griffin WS, Stanley LC, Ling C et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl Acad. Sci. USA86(19), 7611–7615 (1989).
  • Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia7(1), 75–83 (1993).
  • Akiyama H, Barger S, Barnum S et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging21(3), 383–421 (2000).
  • Breitner JC, Gau BA, Welsh KA et al. Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology44(2), 227–232 (1994).
  • Breitner JC, Welsh KA, Helms MJ et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol. Aging16(4), 523–530 (1995).
  • Anthony JC, Breitner JC, Zandi PP et al. Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology54(11), 2066–2071 (2000).
  • The Canadian Study of Health and Aging: risk factors for Alzheimer’s disease in Canada. Neurology44(11), 2073–2080 (1994).
  • Beard CM, Waring SC, O’Brien PC, Kurland LT, Kokmen E. Nonsteroidal anti-inflammatory drug use and Alzheimer’s disease: a case-control study in Rochester, Minnesota, 1980 through 1984. Mayo Clin. Proc.73(10), 951–955 (1998).
  • Launer L. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimer’s disease: dissecting the epidemiological evidence. Drugs63(8), 731–739 (2003).
  • Jorm AF, Jolley D. The incidence of dementia: a meta-analysis. Neurology51(3), 728–733 (1998).
  • Tang MX, Jacobs D, Stern Y et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet348(9025), 429–432 (1996).
  • Manly JJ, Merchant CA, Jacobs DM et al. Endogenous estrogen levels and Alzheimer’s disease among postmenopausal women. Neurology54(4), 833–837 (2000).
  • Shumaker SA, Legault C, Rapp SR et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA289(20), 2651–2662 (2003).
  • Zhu X, Raina AK, Smith MA. Cell cycle events in neurons. Proliferation or death? Am. J. Pathol.155(2), 327–329 (1999).
  • Raina AK, Zhu X, Rottkamp CA et al. Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J. Neurosci. Res.61(2), 128–133 (2000).
  • Raina AK, Zhu X, Smith MA. Alzheimer’s disease and the cell cycle. Acta Neurobiol. Exp. (Wars.)64(1), 107–112 (2004).
  • Casadesus G, Zhu X, Atwood CS et al. Beyond estrogen: targeting gonadotropin hormones in the treatment of Alzheimer’s disease. Curr. Drug Targets3(4), 281–285 (2004).
  • Webber KM, Casadesus G, Marlatt MW et al. Estrogen bows to a new master: the role of gonadotropins in Alzheimer pathogenesis. Ann. NY Acad. Sci.1052, 201–209 (2005).
  • Kopke E, Tung YC, Shaikh S et al. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J. Biol. Chem.268(32), 24374–24384 (1993).
  • Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med.2(7), 783–787 (1996).
  • Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl Acad. Sci. USA94(1), 298–303 (1997).
  • Iqbal K, Alonso AD, Gondal JA et al. Mechanism of neurofibrillary degeneration and pharmacologic therapeutic approach. J. Neural Transm. Suppl.59, 213–222 (2000).
  • Gong CX, Shaikh S, Wang JZ et al. Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J. Neurochem.65(2), 732–738 (1995).
  • Wang JZ, Grundke-Iqbal I, Iqbal K. Restoration of biological activity of Alzheimer abnormally phosphorylated tau by dephosphorylation with protein phosphatase-2A, -2B and -1. Brain Res. Mol. Brain Res.38(2), 200–208 (1996).
  • Oliver CJ, Shenolikar S. Physiologic importance of protein phosphatase inhibitors. Front. Biosci.3, D961–D972 (1998).
  • Gong CX, Singh TJ, Grundke-Iqbal I, Iqbal K. Phosphoprotein phosphatase activities in Alzheimer disease brain. J. Neurochem.61(3), 921–927 (1993).
  • Iqbal K, Alonso Adel C, El-Akkad E et al. Alzheimer neurofibrillary degeneration: therapeutic targets and high-throughput assays. J. Mol. Neurosci.20(3), 425–429 (2003).
  • Cash AD, Aliev G, Siedlak SL et al. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am. J. Pathol.162(5), 1623–1627 (2003).
  • Nunomura A, Perry G, Aliev G et al. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol.60(8), 759–767 (2001).
  • Nunomura A, Perry G, Pappolla MA et al. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci.19(6), 1959–1964 (1999).
  • Terry RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol.30(4), 572–580 (1991).
  • Wenk GL, Danysz W, Roice DD. The effects of mitochondrial failure upon cholinergic toxicity in the nucleus basalis. Neuroreport7(9), 1453–1456 (1996).
  • Zajaczkowski W, Quack G, Danysz W. Infusion of (+)-MK-801 and memantine – contrasting effects on radial maze learning in rats with entorhinal cortex lesion. Eur. J. Pharmacol.296(3), 239–246 (1996).
  • Zajaczkowski W, Frankiewicz T, Parsons CG, Danysz W. Uncompetitive NMDA receptor antagonists attenuate NMDA-induced impairment of passive avoidance learning and LTP. Neuropharmacology36(7), 961–971 (1997).
  • Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging16(3), 271–278; discussion 278–284 (1995).
  • Bussiere T, Giannakopoulos P, Bouras C et al. Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9. J. Comp. Neurol.463(3), 281–302 (2003).
  • Bouvier M, Szatkowski M, Amato A, Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature360(6403), 471–474 (1992).
  • Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic cleft. Science258(5087), 1498–1501 (1992).
  • Danbolt NC. Glutamate uptake. Prog. Neurobiol.65(1), 1–105 (2001).
  • Koh JY, Choi DW. Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death. Brain Res.548(1–2), 318–321 (1991).
  • Castegna A, Aksenov M, Aksenova M et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase l-1. Free Radic. Biol. Med.33(4), 562–571 (2002).
  • Hensley K, Hall N, Subramaniam R et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem.65(5), 2146–2156 (1995).
  • Kornhuber J, Bormann J, Retz W, Hubers M, Riederer P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur. J. Pharmacol.166(3), 589–590 (1989).
  • Parsons CG, Gruner R, Rozental J, Millar J, Lodge D. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology32(12), 1337–1350 (1993).
  • Misztal M, Frankiewicz T, Parsons CG, Danysz W. Learning deficits induced by chronic intraventricular infusion of quinolinic acid – protection by MK-801 and memantine. Eur. J. Pharmacol.296(1), 1–8 (1996).
  • Ditzler K. Efficacy and tolerability of memantine in patients with dementia syndrome. A double-blind, placebo controlled trial. Arzneimittelforschung41(8), 773–780 (1991).
  • Gortelmeyer R, Erbler H. Memantine in the treatment of mild to moderate dementia syndrome. A double-blind placebo-controlled study. Arzneimittelforschung42(7), 904–913 (1992).
  • Winblad B, Poritis N. Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int. J. Geriatr. Psychiatry14(2), 135–146 (1999).
  • Kasa P, Rakonczay Z, Gulya K. The cholinergic system in Alzheimer’s disease. Prog. Neurobiol.52(6), 511–535 (1997).
  • Sims NR, Bowen DM, Allen SJ et al. Presynaptic cholinergic dysfunction in patients with dementia. J. Neurochem.40(2), 503–509 (1983).
  • DeKosky ST, Harbaugh RE, Schmitt FA et al. Cortical biopsy in Alzheimer’s disease: diagnostic accuracy and neurochemical, neuropathological and cognitive correlations. Intraventricular Bethanecol Study Group. Ann. Neurol.32(5), 625–632 (1992).
  • Whitehouse PJ. Cholinergic therapy in dementia. Acta Neurol. Scand.149(Suppl.), 42–45 (1993).
  • Giacobini E. Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann. NY Acad. Sci.920, 321–327 (2000).
  • Giacobini E. Do cholinesterase inhibitors have disease-modifying effects in Alzheimer’s disease? CNS Drugs15(2), 85–91 (2001).
  • Giacobini E. Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer’ disease. J. Neural Transm. Suppl.(62), 181–187 (2002).
  • Racchi M, Mazzucchelli M, Porrello E, Lanni C, Govoni S. Acetylcholinesterase inhibitors: novel activities of old molecules. Pharmacol. Res.50(4), 441–451 (2004).
  • Meyer JS, Li Y, Xu G et al. Feasibility of treating mild cognitive impairment with cholinesterase inhibitors. Int. J. Geriatr. Psychiatry17(6), 586–588 (2002).
  • Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol. Res.50(4), 433–440 (2004).
  • Mori F, Lai CC, Fusi F, Giacobini E. Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. Neuroreport6(4), 633–636 (1995).
  • Giacobini E, Mori F, Lai CC. The effect of cholinesterase inhibitors on the secretion of APPS from rat brain cortex. Ann. NY Acad. Sci.777, 393–398 (1996).
  • Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol.1(1), 51–57 (2002).
  • Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW. Activation of c-Jun N-terminal kinase and p38 in an Alzheimer’s disease model is associated with amyloid deposition. J. Neurosci.22(9), 3376–3385 (2002).
  • Rabizadeh S, Bredesen DE. Ten years on: mediation of cell death by the common neurotrophin receptor p75(NTR). Cytokine Growth Factor Rev.14(3–4), 225–239 (2003).
  • Zhu X, Raina AK, Rottkamp CA et al. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J. Neurochem.76(2), 435–441 (2001).
  • Yaar M, Zhai S, Fine RE et al. Amyloid β binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J. Biol. Chem.277(10), 7720–7725 (2002).
  • Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science294(5548), 1945–1948 (2001).
  • Fahnestock M, Michalski B, Xu B, Coughlin MD. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell. Neurosci.18(2), 210–220 (2001).
  • Poduslo JF, Curran GL. Permeability at the blood–brain and blood–nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res.36(2), 280–286 (1996).
  • Hempstead BL. The many faces of p75NTR. Curr. Opin. Neurobiol.12(3), 260–267 (2002).
  • Longo FM, Manthorpe M, Xie YM, Varon S. Synthetic NGF peptide derivatives prevent neuronal death via a p75 receptor-dependent mechanism. J. Neurosci. Res.48(1), 1–17 (1997).
  • Xie Y, Tisi MA, Yeo TT, Longo FM. Nerve growth factor (NGF) loop 4 dimeric mimetics activate ERK and AKT and promote NGF-like neurotrophic effects. J. Biol. Chem.275(38), 29868–29874 (2000).
  • Maliartchouk S, Debeir T, Beglova N et al. Genuine monovalent ligands of TrkA nerve growth factor receptors reveal a novel pharmacological mechanism of action. J. Biol. Chem.275(14), 9946–9956 (2000).
  • DeFreitas MF, McQuillen PS, Shatz CJ. A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J. Neurosci.21(14), 5121–5129 (2001).
  • Khursigara G, Bertin J, Yano H et al. A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J. Neurosci.21(16), 5854–5863 (2001).
  • Mamidipudi V, Wooten MW. Dual role for p75(NTR) signaling in survival and cell death: can intracellular mediators provide an explanation? J. Neurosci. Res.68(4), 373–384 (2002).
  • Dobrowsky RT, Carter BD. p75 neurotrophin receptor signaling: mechanisms for neurotrophic modulation of cell stress? J. Neurosci. Res.61(3), 237–243 (2000).
  • McShea A, Harris PL, Webster KR, Wahl AF, Smith MA. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol.150(6), 1933–1939 (1997).
  • Ogawa O, Lee HG, Zhu X et al. Increased p27, an essential component of cell cycle control, in Alzheimer’s disease. Aging Cell2(2), 105–110 (2003).
  • Ogawa O, Zhu X, Lee HG et al. Ectopic localization of phosphorylated histone H3 in Alzheimer’s disease: a mitotic catastrophe? Acta Neuropathol. (Berl.)105(5), 524–528 (2003).
  • Woods J, Snape M, Smith MA. The cell cycle hypothesis of Alzheimer’s disease: suggestions for drug development. Biochim. Biophys. Acta1772(4), 503–508 (2007).
  • McShea A, Lee HG, Casadesus G et al. Neuronal cell cycle reentry mediates Alzheimer-type changes. Biochim. Biophys. Acta.1772(4), 467–472 (2007).
  • Marlatt MW, Webber KM, Moreira PI et al. Therapeutic opportunities in Alzheimer disease: one for all or all for one? Curr. Med. Chem.12(10), 1137–1147 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.