44
Views
19
CrossRef citations to date
0
Altmetric
Review

Gene therapy applications for the treatment of neuropathic pain

, &
Pages 487-506 | Published online: 09 Jan 2014

References

  • Bonica J. General considerations of chronic pain. In: The Management of Pain. Bonica J (Ed.). Lea and Febiger, PA, USA 180–196 (1980).
  • Dworkin RH. An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin. J. Pain18(6), 343–349 (2002).
  • Irving GA. Contemporary assessment and management of neuropathic pain. Neurology64(12 Suppl. 3), S21–S27 (2005).
  • Bennett GJ. Neuropathic pain: new insights, new interventions. Hosp. Pract. (Minneap)33(10), 95–98, 101–104, 107–110 passim (1998).
  • Schmader KE. Epidemiology and impact on quality of life of postherpetic neuralgia and painful diabetic neuropathy. Clin. J. Pain18(6), 350–354 (2002).
  • Berger A, Dukes EM, Oster G. Clinical characteristics and economic costs of patients with painful neuropathic disorders. J. Pain5(3), 143–149 (2004).
  • Scholz J, Woolf CJ. Can we conquer pain? Nat. Neurosci.5(Suppl.), 1062–1067 (2002).
  • Millan MJ. The induction of pain: an integrative review. Prog. Neurobiol.57(1), 1–164 (1999).
  • Koltzenburg M. Stability and plasticity of nociceptor function and their relationship to provoked and ongoing pain. Seminars in the Neurosciences7, 199–210 (1995).
  • Woolf CJ. Windup and central sensitization are not equivalent. Pain66, 105–108 (1996).
  • Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci.7, 309–338 (1984).
  • Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature413(6852), 203–210 (2001).
  • Ji R, Woolf CJ. Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol. Dis.8(1), 1–10 (2001).
  • Mannion RJ, Woolf CJ. Pain mechanisms and management: a central perspective. Clin. J. Pain16(3 Suppl.), S144–S156 (2000).
  • Chuang HH, Prescott ED, Kong H et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature411(6840), 957–962 (2001).
  • Raghavendra V, Rutkowski MD, DeLeo JA. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J. Neurosci.22(22), 9980–9989 (2002).
  • Zimmermann M. Pathobiology of neuropathic pain. Eur. J. Pharmacol.429(1–3), 23–37 (2001).
  • Laird JM, Souslova V, Wood JN, Cervero F. Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J. Neurosci.22(19), 8352–8356 (2002).
  • Fang X, Djouhri L, Black JA et al. The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J. Neurosci.22(17), 7425–7433 (2002).
  • Ochoa J, Torebjork HE, Culp WJ, Schady W. Abnormal spontaneous activity in single sensory nerve fibers in humans. Muscle Nerve5(S9), S74–S77 (1982).
  • Sleeper AA, Cummins TR, Dib-Hajj SD et al. Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J. Neurosci.20(19), 7279–7289 (2000).
  • Wu G, Ringkamp M, Hartke TV et al. Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J. Neurosci.21(8), RC140 (2001).
  • Gold MS, Weinreich D, Kim C-S et al. Redistribution of Nav1.8 in uninjured axons enables neuropathic pain. J. Neurosci.23, 158–166 (2003).
  • Michaelis M, Habler HJ, Jaenig W. Silent afferents: a separate class of primary afferents? Clin. Exp. Pharmacol. Physiol.23(2), 99–105 (1996).
  • Xu GY, Huang LY, Zhao ZQ. Activation of silent mechanoreceptive cat C and Aδ sensory neurons and their substance P expression following peripheral inflammation. J. Physiol.528(Pt), 2339–2348 (2000).
  • Haley JE, Sullivan AF, Dickenson AH. Evidence for spinal N-methyl-D-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Res.518(1–2), 218–226 (1990).
  • Basbaum AI, Woolf CJ. Pain. Curr. Biol.9(12), R429–R431 (1999).
  • Hughes DI, Scott DT, Todd AJ, Riddell JS. Lack of evidence for sprouting of Aβ afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J. Neurosci.23(29), 9491–9499 (2003).
  • Bao L, Wang HF, Cai HJ et al. Peripheral axotomy induces only very limited sprouting of coarse myelinated afferents into inner lamina II of rat spinal cord. Eur. J. Neurosci.16(2), 175–185 (2002).
  • DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pain90(1–2), 1–6 (2001).
  • Watkins LR, Maier SF, Goehler LE. Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain63(3), 289–302 (1995).
  • Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci.24(8), 450–455 (2001).
  • Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor α in the development of inflammatory hyperalgesia. Br. J. Pharmacol.107(3), 660–664 (1992).
  • Ferreira SH, Lorenzetti BB, Cunha FQ, Poole S. Bradykinin release of TNF-α plays a key role in the development of inflammatory hyperalgesia. Agents Actions38(Spec. No.), C7–C9 (1993).
  • Ferreira SH, Lorenzetti BB, Poole S. Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br. J. Pharmacol.110(3), 1227–1231 (1993).
  • Bauer MK, Lieb K, Schulze-Osthoff K et al. Expression and regulation of cyclooxygenase-2 in rat microglia. Eur. J. Biochem.243(3), 726–731 (1997).
  • Wagner RMyers RR. Endoneurial injection of TNF-α produces neuropathic pain behaviors. Neuroreport7(18), 2897–2901 (1996).
  • Watkins LR, Nguyen KT, Lee JE, Maier SF. Dynamic regulation of proinflammatory cytokines. Adv. Exp. Med. Biol.461, 153–178. (1999).
  • Reeve AJ, Patel S, Fox A, Walker K, Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain4(3), 247–257 (2000).
  • Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-α expression. Pain74(1), 35–42 (1998).
  • Poole S, Cunha FQ, Selkirk S, Lorenzetti BB, Ferreira SH. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-10. Br. J. Pharmacol.115(4), 684–688 (1995).
  • Cunha FQ, Poole S, Lorenzetti BB, Veiga FH, Ferreira SH. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-4. Br. J. Pharmacol.126(1), 45–50 (1999).
  • Lorenzetti BB, Poole S, Veiga FH, Cunha FQ, Ferreira SH. Cytokine-mediated inflammatory hyperalgesia limited by interleukin-13. Eur. Cytokine Netw.12(2), 260–267 (2001).
  • Vale ML, Marques JB, Moreira CA et al. Antinociceptive effects of interleukin-4, -10, and -13 on the writhing response in mice and zymosan-induced knee joint incapacitation in rats. J. Pharmacol. Exp. Ther.304(1), 102–108 (2003).
  • Garrison CJ, Dougherty PM, Kajander KC, Carlton SM. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res.565(1), 1–7 (1991).
  • Fu KY, Light AR, Matsushima GK, Maixner W. Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res.825(1–2), 59–67 (1999).
  • Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute peripheral inflammation induces moderate glial activation and spinal IL-1β expression that correlates with pain behavior in the rat. Brain Res.829(1–2), 209–221 (1999).
  • Hashizume H, DeLeo JA, Colburn RW, Weinstein JN. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine25(10), 1206–1217 (2000).
  • Schwei MJ, Honore P, Rogers SD et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci.19(24), 10886–10897 (1999).
  • Colburn RW, Rickman AJ, DeLeo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp. Neurol.157(2), 289–304 (1999).
  • Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol.51, 29–57 (2000).
  • Rice AS, Hill RG. New treatments for neuropathic pain. Annu. Rev. Med.57, 535–551 (2006).
  • Ossipov MH, Porreca F. Challenges in the development of novel treatment strategies for neuropathic pain. NeuroRx2(4), 650–661 (2005).
  • Hansson P, Lacerenza M, Marchettini P. Aspects of clinical and experimental neuropathic pain: the clinical perspective. In: Neuropathic Pain: Pathophysiology and Treatment. Hansson P, Fields HL, Hill RG and Marchettini P (Eds). IASP Press, WA, USA 1–18 (2001).
  • Cook RJ, Sackett DL. The number needed to treat: a clinically useful measure of treatment effect. Br. Med. J.310(6977), 452–454 (1995).
  • Rowbotham MC, Davies PS, Verkempinck C, Galer BS. Lidocaine patch: double-blind controlled study of a new treatment method for post-herpetic neuralgia. Pain65(1), 39–44 (1996).
  • Galer BS, Rowbotham MC, Perander J, Friedman E. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: results of an enriched enrollment study. Pain80(3), 533–538 (1999).
  • Katz NP, Gammaitoni AR, Davis MW, Dworkin RH. Lidocaine patch 5% reduces pain intensity and interference with quality of life in patients with postherpetic neuralgia: an effectiveness trial. Pain Med.3(4), 324–332 (2002).
  • Galer BS, Jensen MP, Ma T, Davies PS, Rowbotham MC. The lidocaine patch 5% effectively treats all neuropathic pain qualities: results of a randomized, double-blind, vehicle-controlled, 3-week efficacy study with use of the neuropathic pain scale. Clin. J. Pain18(5), 297–301 (2002).
  • Devers A, Galer BS. Topical lidocaine patch relieves a variety of neuropathic pain conditions: an open-label study. Clin. J. Pain16(3), 205–208 (2000).
  • Meier T, Wasner G, Faust M et al. Efficacy of lidocaine patch 5% in the treatment of focal peripheral neuropathic pain syndromes: a randomized, double-blind, placebo-controlled study. Pain106(1–2), 151–158 (2003).
  • Lycka BA, Watson CP, Nevin K. EMLA cream for the treatment of pain caused by post-herpetic neuralgia: a double-blind, placebo-controlled study. In: Proceedings of the 1996 Annual Meeting of the American Pain Society.A111 (1996) (abstract).
  • Attal N, Brasseur L, Chauvin M, Bouhassira D. Effects of single and repeated applications of a eutectic mixture of local anaesthetics (EMLA) cream on spontaneous and evoked pain in post-herpetic neuralgia. Pain81(1–2), 203–209 (1999).
  • Mason L, Moore RA, Derry S, Edwards JE, McQuay HJ. Systematic review of topical capsaicin for the treatment of chronic pain. Br. Med. J.328(7446), 991 (2004).
  • Hempenstall K, Nurmikko TJ, Johnson RW, A’Hern RP, Rice AS. Analgesic therapy in postherpetic neuralgia: a quantitative systematic review. PLoS Med.2(7), E164 (2005).
  • Robbins WR, Staats PS, Levine J et al. Treatment of intractable pain with topical large-dose capsaicin: preliminary report. Anesth. Analg.86(3), 579–583 (1998).
  • Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur. J. Pain4(1), 5–15 (2000).
  • Denac H, Mevissen M, Scholtysik G. Structure, function and pharmacology of voltage-gated sodium channels. Naunyn Schmiedebergs Arch. Pharmacol.362(6), 453–479 (2000).
  • Blom S. Trigeminal neuralgia: its treatment with a new anticonvulsant drug. Lancet1, 839–840 (1962).
  • Sindrup SH, Jensen TS. Pharmacotherapy of trigeminal neuralgia. Clin. J. Pain18(1), 22–27 (2002).
  • Backonja MM. Use of anticonvulsants for treatment of neuropathic pain. Neurology59(5 Suppl. 2), S14–S17 (2002).
  • Wiffen PJ, McQuay HJ, Moore RA. Carbamazepine for acute and chronic pain. Cochrane Database Syst. Rev.3, CD005451 (2005).
  • Tremont-Lukats IW, Megeff C, Backonja MM. Anticonvulsants for neuropathic pain syndromes: mechanisms of action and place in therapy. Drugs60(5), 1029–1052 (2000).
  • Wiffen P, Collins S, McQuay H et al. Anticonvulsant drugs for acute and chronic pain. Cochrane Database Syst. Rev.3, CD001133 (2005).
  • Kochar DK, Rawat N, Agrawal RP et al. Sodium valproate for painful diabetic neuropathy: a randomized double-blind placebo-controlled study. QJM97(1), 33–38 (2004).
  • Beydoun A, Kobetz SA, Carrazana EJ. Efficacy of oxcarbazepine in the treatment of painful diabetic neuropathy. Clin. J. Pain20(3), 174–178 (2004).
  • Carrazana E, Mikoshiba I. Rationale and evidence for the use of oxcarbazepine in neuropathic pain. J. Pain Symptom. Manage.25(5 Suppl.), S31–S35 (2003).
  • Hasegawa H. Utilization of zonisamide in patients with chronic pain or epilepsy refractory to other treatments: a retrospective, open label, uncontrolled study in a VA hospital. Curr. Med. Res. Opin.20(5), 577–580 (2004).
  • Rice AS, Maton S. Gabapentin in postherpetic neuralgia: a randomised, double blind, placebo controlled study. Pain94(2), 215–224 (2001).
  • Rowbotham M, Harden N, Stacey B, Bernstein P, Magnus-Miller L. Gabapentin for the treatment of postherpetic neuralgia: a randomized controlled trial. JAMA280(21), 1837–1842 (1998).
  • Wiffen PJ, McQuay HJ, Edwards JE, Moore RA. Gabapentin for acute and chronic pain. Cochrane Database Syst. Rev.3, CD005452 (2005).
  • Dworkin RH, Corbin AE, Young JP Jr et al. Pregabalin for the treatment of postherpetic neuralgia: a randomized, placebo-controlled trial. Neurology60(8), 1274–1283 (2003).
  • Sabatowski R, Galvez R, Cherry DA et al. Pregabalin reduces pain and improves sleep and mood disturbances in patients with post-herpetic neuralgia: results of a randomised, placebo-controlled clinical trial. Pain109(1–2), 26–35 (2004).
  • Rosenstock J, Tuchman M, LaMoreaux L, Sharma U. Pregabalin for the treatment of painful diabetic peripheral neuropathy: a double-blind, placebo-controlled trial. Pain110(3), 628–638 (2004).
  • Sindrup SH, Otto M, Finnerup NB, Jensen TS. Antidepressants in the treatment of neuropathic pain. Basic Clin. Pharmacol. Toxicol.96(6), 399–409 (2005).
  • Sindrup SH, Jensen TS. Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain83(3), 389–400 (1999).
  • Saarto T, Wiffen PJ. Antidepressants for neuropathic pain. Cochrane Database Syst. Rev.3, CD005454 (2005).
  • Sindrup SH, Bach FW, Madsen C, Gram LF, Jensen TS. Venlafaxine versus imipramine in painful polyneuropathy: a randomized, controlled trial. Neurology60(8), 1284–1289 (2003).
  • Rowbotham MC, Goli V, Kunz NR, Lei D. Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study. Pain110(3), 697–706 (2004).
  • Goldstein DJ, Lu Y, Detke MJ, Lee T, CIyengar S. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain116(1–2), 109–118 (2005).
  • Semenchuk MR, Sherman S, Davis B. Double-blind, randomized trial of bupropion SR for the treatment of neuropathic pain. Neurology57(9), 1583–1588 (2001).
  • Dellemijn P. Are opioids effective in relieving neuropathic pain? Pain80(3), 453–462 (1999).
  • Rowbotham MC, Reisner-Keller LA, Fields HL. Both intravenous lidocaine and morphine reduce the pain of postherpetic neuralgia. Neurology41(7), 1024–1028 (1991).
  • Jadad AR, Carroll D, Glynn CJ, Moore RA, McQuay HJ. Morphine responsiveness of chronic pain: double-blind randomised crossover study with patient-controlled analgesia. Lancet339(8806), 1367–1371 (1992).
  • Watson CP, Babul N. Efficacy of oxycodone in neuropathic pain: a randomized trial in postherpetic neuralgia. Neurology50(6), 1837–1841 (1998).
  • Watson CP, Moulin D, Watt-Watson J, Gordon A, Eisenhoffer J. Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy. Pain105(1–2), 71–78 (2003).
  • Gimbel JS, Richards P, Portenoy RK. Controlled-release oxycodone for pain in diabetic neuropathy: a randomized controlled trial. Neurology60(6), 927–934 (2003).
  • Boureau F, Legallicier P, Kabir-Ahmadi M. Tramadol in post-herpetic neuralgia: a randomized, double-blind, placebo-controlled trial. Pain104(1–2), 323–331 (2003).
  • Harati Y, Gooch C, Swenson M et al. Double-blind randomized trial of tramadol for the treatment of the pain of diabetic neuropathy. Neurology50(6), 1842–1846 (1998).
  • Sindrup SH, Andersen G, Madsen C et al. Tramadol relieves pain and allodynia in polyneuropathy: a randomised, double-blind, controlled trial. Pain83(1), 85–90 (1999).
  • Wu CL, Garry MG, Zollo RA, Yang J. Gene therapy for the management of pain: Part I: methods and strategies. Anesthesiology94(6), 1119–1132 (2001).
  • Wu CL, Garry MG, Zollo RA, Yang J. Gene therapy for the management of pain: part II: molecular targets. Anesthesiology95(1), 216–240 (2001).
  • Glorioso JC, Mata M, Fink DJ. Gene therapy for chronic pain. Curr. Opin. Mol. Ther.5(5), 483–488 (2003).
  • Sagen J, Pappas GD, Perlow MJ. Adrenal medullary tissue transplants in the rat spinal cord reduce pain sensitivity. Brain Res.384(1), 189–194 (1986).
  • Sagen J, Pappas GD, Pollard HB. Analgesia induced by isolated bovine chromaffin cells implanted in rat spinal cord. Proc. Natl Acad. Sci. USA83(19), 7522–7526 (1986).
  • Hama AT, Sagen J. Reduced pain-related behavior by adrenal medullary transplants in rats with experimental painful peripheral neuropathy. Pain52(2), 223–231 (1993).
  • Hama AT, Sagen J. Alleviation of neuropathic pain symptoms by xenogeneic chromaffin cell grafts in the spinal subarachnoid space. Brain Res.651(1–2), 183–193 (1994).
  • Sagen J, Wang H, Pappas GD. Adrenal medullary implants in the rat spinal cord reduce nociception in a chronic pain model. Pain42(1), 69–79 (1990).
  • Siegan JB, Sagen J. Attenuation of formalin pain responses in the rat by adrenal medullary transplants in the spinal subarachnoid space. Pain70(2–3), 279–285 (1997).
  • Wu HH, Lester BR, Sun Z, Wilcox GL. Antinociception following implantation of mouse B16 melanoma cells in mouse and rat spinal cord. Pain56(2), 203–210 (1994).
  • Eaton MJ, Plunkett JA, Martinez MA et al. Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant.8(1), 87–101 (1999).
  • Eaton MJ, Karmally S, Martinez MA et al. Lumbar transplant of neurons genetically modified to secrete galanin reverse pain-like behaviors after partial sciatic nerve injury. J. Peripher. Nerv. Syst.4(3–4), 245–257 (1999).
  • Cejas PJ, Martinez M, Karmally S et al. Lumbar transplant of neurons genetically modified to secrete brain-derived neurotrophic factor attenuates allodynia and hyperalgesia after sciatic nerve constriction. Pain86(1–2), 195–210 (2000).
  • Duplan H, Li RY, Vue C et al. Grafts of immortalized chromaffin cells bio-engineered to improve met-enkephalin release also reduce formalin-evoked c-fos expression in rat spinal cord. Neurosci. Lett.370(1), 1–6 (2004).
  • Ishii K, Isono M, Inoue R, Hori S. Attempted gene therapy for intractable pain: dexamethasone-mediated exogenous control of β-endorphin secretion in genetically modified cells and intrathecal transplantation. Exp. Neurol.166(1), 90–98 (2000).
  • Wu HH, Wilcox GL, McLoon SC. Implantation of AtT-20 or genetically modified AtT-20/hENK cells in mouse spinal cord induced antinociception and opioid tolerance. J. Neurosci.14(8), 4806–4814 (1994).
  • Pappas GD, Lazorthes Y, Bes JC, Tafani M, Winnie AP. Relief of intractable cancer pain by human chromaffin cell transplants: experience at two medical centers. Neurol. Res.19(1), 71–77 (1997).
  • Winnie AP, Pappas GD, Das Gupta TK et al. Subarachnoid adrenal medullary transplants for terminal cancer pain. A report of preliminary studies. Anesthesiology79(4), 644–653 (1993).
  • Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat. Biotechnol.18(1), 33–37 (2000).
  • Lin CR, Yang LC, Lee TH et al. Electroporation-mediated pain-killer gene therapy for mononeuropathic rats. Gene Ther.9(18), 1247–1253 (2002).
  • Wu CM, Lin MW, Cheng JT et al. Regulated, electroporation-mediated delivery of pro-opiomelanocortin gene suppresses chronic constriction injury-induced neuropathic pain in rats. Gene Ther.11(11), 933–940 (2004).
  • Wang Y, Pei G, Cai YC et al. Human interleukin-2 could bind to opioid receptor and induce corresponding signal transduction. Neuroreport8(1), 11–14 (1996).
  • Yao MZ, Gu JF, Wang JH et al. Interleukin-2 gene therapy of chronic neuropathic pain. Neuroscience112(2), 409–416 (2002).
  • Chuang YC, Chou AK, Wu PC et al. Gene therapy for bladder pain with gene gun particle encoding pro-opiomelanocortin cDNA. J. Urol.170(5), 2044–2048 (2003).
  • Chuang YC, Yang LC, Chiang PH et al. Gene gun particle encoding preproenkephalin cDNA produces analgesia against capsaicin-induced bladder pain in rats. Urology65(4), 804–810 (2005).
  • Hogrefe RI. An antisense oligonucleotide primer. Antisense Nucleic Acid Drug Dev.9(4), 351–357 (1999).
  • Garry MG, Malik S, Yu J, Davis MA, Yang J. Knock down of spinal NMDA receptors reduces NMDA and formalin evoked behaviors in rat. Neuroreport11(1), 49–55 (2000).
  • Noda K, Anzai T, Ogata M et al. Antisense knockdown of spinal-mGluR1 reduces the sustained phase of formalin-induced nociceptive responses. Brain Res.987(2), 194–200 (2003).
  • Rydh-Rinder M, Berge OG, Hokfelt T. Antinociceptive effects after intrathecal administration of phosphodiester-, 2´-O-allyl-, and C-5-propyne-modified antisense oligodeoxynucleotides targeting the NMDAR1 subunit in mouse. Brain Res. Mol. Brain Res.86(1–2), 23–33 (2001).
  • Tan PH, Yang LC, Shih HC, Lan KC, Cheng JT. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther.12(1), 59–66 (2005).
  • Dorn G, Patel S, Wotherspoon G et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res.32(5), E49 (2004).
  • Christoph T, Grunweller A, Mika J et al. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem. Biophys. Res. Commun.350(1), 238–243 (2006).
  • Ma W, Hatzis C, Eisenach JC. Intrathecal injection of cAMP response element binding protein (CREB) antisense oligonucleotide attenuates tactile allodynia caused by partial sciatic nerve ligation. Brain Res.988(1–2), 97–104 (2003).
  • Wang YY, Wu SX, Zhou L et al. Dose-related antiallodynic effects of cyclic AMP response element-binding protein-antisense oligonucleotide in the spared nerve injury model of neuropathic pain. Neuroscience139(3), 1083–1093 (2006).
  • Roth CM. Molecular and cellular barriers limiting the effectiveness of antisense oligonucleotides. Biophys. J.89(4), 2286–2295 (2005).
  • Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med.7(1), 33–40 (2001).
  • Davidson BL, Breakefield XO. Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci.4(5), 353–364 (2003).
  • Lotze MT, Kost TA. Viruses as gene delivery vectors: application to gene function, target validation, and assay development. Cancer Gene Ther.9(8), 692–699 (2002).
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302(5644), 415–419 (2003).
  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl Acad. Sci. USA93(21), 11382–11388 (1996).
  • Jakobsson J, Lundberg C. Lentiviral vectors for use in the central nervous system. Mol. Ther.13(3), 484–493 (2006).
  • Pezet S, Krzyzanowska A, Wong LF et al. Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF. Mol. Ther.13(6), 1101–1109 (2006).
  • Meunier A, Latremoliere A, Dominguez E et al. Lentiviral-mediated targeted NF-κB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the Rat. Mol. Ther. (2007) (In press).
  • Zhu Y, Jones G, Tsutsui S et al. Lentivirus infection causes neuroinflammation and neuronal injury in dorsal root ganglia: pathogenic effects of STAT-1 and inducible nitric oxide synthase. J. Immunol.175(2), 1118–1126 (2005).
  • Tsai SY, Schillinger K, Ye X. Adenovirus-mediated transfer of regulable gene expression. Curr. Opin. Mol. Ther.2(5), 515–523 (2000).
  • Finegold AA, Mannes AJ, Iadarola MJ. A paracrine paradigm for in vivo gene therapy in the central nervous system: treatment of chronic pain. Hum. Gene Ther.10(7), 1251–1257 (1999).
  • Milligan ED, Langer SJ, Sloane EM et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur. J. Neurosci.21(8), 2136–2148 (2005).
  • Yao MZ, Gu JF, Wang JH et al. Adenovirus-mediated interleukin-2 gene therapy of nociception. Gene Ther.10(16), 1392–1399 (2003).
  • Yang Y, Li Q, Ertl HC, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol.69(4), 2004–2015 (1995).
  • Varnavski AN, Calcedo R, Bove M, Gao G, Wilson JM. Evaluation of toxicity from high-dose systemic administration of recombinant adenovirus vector in vector-naive and pre-immunized mice. Gene Ther.12(5), 427–436 (2005).
  • Burger C, Nash K, Mandel RJ. Recombinant adeno-associated viral vectors in the nervous system. Hum. Gene Ther.16(7), 781–791 (2005).
  • Mandel RJ, Manfredsson FP, Foust KD et al. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol. Ther.13(3), 463–483 (2006).
  • Eaton MJ, Blits B, Ruitenberg MJ, Verhaagen J, Oudega M. Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord. Gene Ther.9(20), 1387–1395 (2002).
  • Milligan ED, Sloane EM, Langer SJ et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol. Pain1(1), 9 (2005).
  • Xu Y, Gu Y, Xu GY et al. Adeno-associated viral transfer of opioid receptor gene to primary sensory neurons: a strategy to increase opioid antinociception. Proc. Natl Acad. Sci. USA100(10), 6204–6209 (2003).
  • Gu Y, Xu Y, Li GW, Huang LY. Remote nerve injection of µ opioid receptor adeno-associated viral vector increases antinociception of intrathecal morphine. J. Pain6(7), 447–454 (2005).
  • Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science301(5634), 839–842 (2003).
  • Martinov VN, Sefland I, Walaas SI et al. Targeting functional subtypes of spinal motoneurons and skeletal muscle fibers in vivo by intramuscular injection of adenoviral and adeno-associated viral vectors. Anat. Embryol. (Berl.)205(3), 215–221 (2002).
  • Zaiss AK, Muruve DA. Immune responses to adeno-associated virus vectors. Curr. Gene Ther.5(3), 323–331 (2005).
  • Mellerick DM, Fraser NW. Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology158(2), 265–275 (1987).
  • Glorioso JC, Goins WF, DeLuca N, Fink DJ. Development of herpes simplex virus as a gene transfer vector for the nervous system. Gene Ther.1(Suppl. 1), S39 (1994).
  • Marconi P, Krisky D, Oligino T et al. Replication-defective herpes simplex virus vectors for gene transfer in vivo. Proc. Natl Acad. Sci. USA93(21), 11319–11320 (1996).
  • Krisky DM, Wolfe D, Goins WF et al. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther.5(12), 1593–1603 (1998).
  • Goins WF, Sternberg LR, Croen KD et al. A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J. Virol.68(4), 2239–2252 (1994).
  • Goins WF, Lee KA, Cavalcoli JD et al. Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglion neurons from peroxide toxicity. J. Virol.73(1), 519–532 (1999).
  • Chattopadhyay M, Wolfe D, Mata M et al. Long-term neuroprotection achieved with latency-associated promoter-driven herpes simplex virus gene transfer to the peripheral nervous system. Mol. Ther.12(2), 307–313 (2005).
  • Puskovic V, Wolfe D, Goss J et al. Prolonged biologically active transgene expression driven by HSV LAP2 in brain in vivo. Mol. Ther.10(1), 67–75 (2004).
  • Antunes bras J, Becker C, Bourgoin S et al. Met-enkephalin is preferentially transported into the peripheral processes of primary afferent fibres in both control and HSV1-driven proenkephalin A overexpressing rats. Neuroscience103(4), 1073–1083 (2001).
  • Goss JR, Mata M, Goins WF et al. Antinociceptive effect of a genomic herpes simplex virus-based vector expressing human proenkephalin in rat dorsal root ganglion. Gene Ther.8(7), 551–556. (2001).
  • Hao S, Mata M, Wolfe D et al. HSV-mediated gene transfer of the glial cell-derived neurotrophic factor provides an antiallodynic effect on neuropathic pain. Mol. Ther.8(3), 367–375 (2003).
  • Hao S, Mata M, Goins W, Glorioso JC, Fink DJ. Transgene-mediated enkephalin release enhances the effect of morphine and evades tolerance to produce a sustained antiallodynic effect in neuropathic pain. Pain102(1–2), 135–142 (2003).
  • Hao S, Mata M, Wolfe D et al. Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann Neurol.57(6), 914–918 (2005).
  • Hao S, Mata M, Glorioso JC, Fink DJ. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol. Pain2, 6 (2006).
  • Liu J, Wolfe D, Hao S et al. Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol. Ther.10(1), 57–66 (2004).
  • Meunier A, Latremoliere A, Mauborgne A et al. Attenuation of pain-related behavior in a rat model of trigeminal neuropathic pain by viral-driven enkephalin overproduction in trigeminal ganglion neurons. Mol. Ther.11(4), 608–616 (2005).
  • Braz J, Beaufour C, Coutaux A et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J. Neurosci.21(20), 7881–7888 (2001).
  • Goss JR, Harley CF, Mata M et al. Herpes vector-mediated expression of proenkephalin reduces bone cancer pain. Ann Neurol.52(5), 662–665 (2002).
  • Wilson SP, Yeomans DC, Bender MA et al. Antihyperalgesic effects of infection with a preproenkephalin-encoding herpes virus. Proc. Natl Acad. Sci. USA96(6), 3211–3216 (1999).
  • Yeomans DC, Jones T, Laurito CE, Lu Y, Wilson SP. Reversal of ongoing thermal hyperalgesia in mice by a recombinant herpesvirus that encodes human preproenkephalin. Mol. Ther.9(1), 24–29 (2004).
  • Yeomans DC, Lu Y, Laurito CE et al. Recombinant herpes vector-mediated analgesia in a primate model of hyperalgesia. Mol. Ther.13(3), 589–597 (2006).
  • Galluzzi KE. Management of neuropathic pain. J. Am. Osteopath. Assoc.105(9 Suppl. 4), S12–S19 (2005).
  • Ghivizzani SC, Lechman ER, Kang R et al. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor α soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects. Proc. Natl Acad. Sci. USA95(8), 4613–4618 (1998).
  • Kang W, Wilson SP, Wilson MA. Changes in nociceptive and anxiolytic responses following herpes virus-mediated preproenkephalin overexpression in rat amygdala are naloxone-reversible and transient. Ann. NY Acad. Sci.877, 751–755 (1999).
  • Lubberts E, Joosten LA, Chabaud M et al. IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion. J. Clin. Invest.105(12), 1697–1710 (2000).

Website

  • Human gene transfer protocols www4.od.nih.gov/oba/rac/PROTOCOL. pdf
  • Technology review: the glimmering promise of gene therapy www.technologyreview.com/Biotech/17826
  • Neuropathic Pain Network www.neuropathicpainnetwork.org/english/ index.php

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.