135
Views
41
CrossRef citations to date
0
Altmetric
Review

Death in the substantia nigra: a motor tragedy

, &
Pages 677-697 | Published online: 09 Jan 2014

References

  • MacMahon DG, Findley L, Holmes J et al. The true economic impact of Parkinson’s disease: a research survey in the UK. Mov. Disord.15, P861 178 (2000).
  • Jarman B, Hurwitz B, Cook A, Bajekal M, Lee A. Effects of community based nurses specialising in Parkinson’s disease on health outcome and costs: randomised controlled trial. Br. Med. J.324, 1072–1075 (2002).
  • Dowding CH, Shenton CL, Salek SS. A review of the health-related quality of life and economic impact of Parkinson’s disease. Drugs Aging23, 693–721 (2006).
  • Sian J, Gerlach M, Youdim MB, Riederer P. Parkinson’s disease: a major hypokinetic basal ganglia disorder. J. Neural. Transm.106, 443–476 (1999).
  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci.20, 415–455 (1973).
  • Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin. Wochenschr.38, 1236–1239 (1960).
  • Riederer P, Wuketich S. Time course of nigrostriatal degeneration in Parkinson’s disease: a detailed study of influential factors in human brain amine analysis. J. Neural. Transm.38, 277–301 (1976).
  • Utter AA, Basso MA. The basal ganglia: an overview of circuits and function? Neurosci. Biobehav. Rev. (2007) (In press).
  • Hornykiewics O. Neurochemical pathology and etiology of Parkinson’s disease: basic facts and hypothetical possibilities. Mt Sinai J. Med.55, 11–20 (1988).
  • Yurek DM, Sladek JR. Dopamine cell replacement: Parkinson’s disease. Ann. Rev. Neurosci.13, 415–440 (1990).
  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res.318, 121–134 (2004).
  • Stocchi F. Optimising levodopa therapy for the management of Parkinson’s disease. J. Neurol.252, IV43–IV48 (2005).
  • Schapira AH. Present and future drug treatment for Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry76, 1472–1478 (2005).
  • Hirsch EC, Hunot S, Damier P, Faucheux B. Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann. Neurol.44, S115–S120 (1998).
  • Jellinger KA. Cell death mechanisms in Parkinson’s disease. J. Neural. Transm.107, 1–29 (2000).
  • Gebicke-Haerter PJ. Microglia in neurodegeneration: molecular aspects. Microsc. Res. Tech.54, 47–58 (2001).
  • Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Neurology66(10 Suppl. 4), S24–S36 (2006).
  • Novikova L, Garris BL, Garris DR, Lau YS. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson’s disease. Neuroscience140, 67–76 (2006).
  • Nair VD, McNaught KS, Gonzalez-Maeso J, Sealfon SC, Olanow CW. p53 mediates non-transcriptional cell death in dopaminergic cells in response to proteasome inhibition. J. Biol. Chem.281(51) 39550–39560 (2007).
  • Hartmann A, Hirsch EC. Parkinson’s disease. The apoptosis hypothesis revisited. Adv. Neurol.86, 143–153 (2001).
  • Scholtissen B, Verhey FR, Steinbusch HW, Leentjens AF. Serotonergic mechanisms in Parkinson’s disease: opposing results from preclinical and clinical data. J. Neural. Transm.113, 59–73 (2006).
  • Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL. Recent clinical failures in Parkinson’s disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem. Pharmacol.72, 1197–1206 (2006).
  • Cossette M, Lecomte F, Parent A. Morphology and distribution of dopaminergic neurons intrinsic to the human striatum. J. Chem. Neuroanat.29, 1–11 (2005).
  • Baker H, Kobayashi K, Okano H, Saino-Saito S. Cortical and striatal expression of tyrosine hydroxylase mRNA in neonatal and adult mice. Cell Mol. Neurobiol.23, 507–518 (2003).
  • Tashiro Y, Sugimoto T, Hattori T et al. Tyrosine hydroxylase-like immunoreactive neurons in the striatum of the rat. Neurosci. Lett.97, 6–10 (1989).
  • Dubach M, Schmidt R, Kunkel D, Bowden DM, Martin R, German DC. Primate neostriatal neurons containing tyrosine hydroxylase: immunohistochemical evidence. Neurosci. Lett.75, 205–210 (1987).
  • Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci.30(5), 194–202 (2007).
  • Andén NE, Carlsson A, Dahlstroem A, Fuxe K, Hillarp NA, Larsson K. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci.3, 523–530 (1964).
  • Danner H, Pfister C. 7 types of neurons in the substantia nigra of the rat. Golgi rapid-impregnation study. J. Hirnforsch.23, 553–556 (1982).
  • Yelnik J, Francois C, Percheron G, Heyner S. Golgi study of the primate substantia nigra. I. Quantitative morphology and typology of nigral neurons. J. Comp. Neurol.265, 455–472 (1987).
  • McRitchie DA, Halliday GM. Calbindin D28k-containing neurons are restricted to the medial substantia nigra in humans. Neuroscience65, 87–91 (1995).
  • McRitchie DA, Halliday GM, Pamphlett R. Diagnostic evaluation of the substantia nigra. Neuropathol. Appl. Neurobiol.22, 228–232 (1996).
  • Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia20, 398–399 (1964).
  • Hokfelt T, Johansson O, Goldstein M. Chemical anatomy of the brain. Science225, 1326–1334 (1984).
  • Oertel WH, Mugnaini E. Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci. Lett.47, 233–238 (1984).
  • Smith DE, Saji M, Joh TH, Reis DJ, Pickel VM. Ibotenic acid-induced lesions of striatal target and projection neurons: ultrastructural manifestations in dopaminergic and non-dopaminergic neurons and in glia. Histol. Histopathol.2, 251–263 (1987).
  • Ficalora AS, Mize RR. The neurons of the substantia nigra and zona incerta which project to the cat superior colliculus are GABA immunoreactive: a double-label study using GABA immunocytochemistry and lectin retrograde transport. Neuroscience29, 567–581 (1989).
  • German DC, Manaye KF. Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J. Comp. Neurol.331, 297–309 (1993).
  • Nelson EL, Liang CL, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J. Comp. Neurol.369, 361–371 (1996).
  • Tepper JM, Sawyer SF, Groves PM. Electrophysiologically identified nigral dopaminergic neurons intracellularly labeled with HRP: light microscopic analysis? Neuroscience7, 2794–2806 (1987).
  • Di Giovanni G, De Deurwaerdere P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U. Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience91, 587–597 (1999).
  • Berretta N, Freestone PS, Guatteo E et al. Acute effects of 6-hydroxydopamine on dopaminergic neurons of the rat substantia nigra pars compacta in vitro.Neurotoxicology26, 869–881 (2005).
  • Seroogy KB, Dangaran K, Lim S, Haycock JW, Fallon JH. Ventral mesencephalic neurons containing both cholecystokinin- and tyrosine hydroxylase-like immunoreactivities project to forebrain regions. J. Comp. Neurol.279, 397–414 (1989).
  • McRitchie DA, Hardman CD, Halliday GM. Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J. Comp. Neurol.364, 121–150 (1996).
  • Lee CR, Tepper JM. Morphological and physiological properties of parvalbumin- and calretinin-containing γ-aminobutyric acidergic neurons in the substantia nigra. J. Comp. Neurol.500, 958–972 (2007).
  • González-Hernández T, Rodríguez M. Compartmental organization and chemical profile of dopaminergic and GABAergic neurons in the substantia nigra of the rat. J. Comp. Neurol.421, 107–135 (2000).
  • Forno LS, DeLanney LE, Irwin I, Langston JW. Evolution of nerve fiber degeneration in the striatum in the MPTP-treated squirrel monkey. Mol. Neurobiol.9, 163–170 (1994).
  • Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurones in Parkinson’s disease. Brain122, 1437–1448 (1999).
  • Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D (28K) immunohistochemistry. Brain122, 1421–1436 (1999).
  • Smidt MP, Burbach JP. How to make a mesodiencephalic dopaminergic neurone. Nat. Rev. Neurosci.8, 21–32 (2007).
  • Gates MA, Torres EM, White A, Fricker-Gates RA, Dunnett SB. Re-examining the ontogeny of substantia nigra dopamine neurons. Eur. J. Neurosci.23, 1384–1390 (2006).
  • Riddle R., Pollock JD. Making connections: the development of mesencephalic dopaminergic neurones. Dev. Brain Res.147, 3–21 (2003).
  • Smits SM, Burbach JPH, Smidt MP. Developmental origin and fate of meso-diencephalic dopamine neurons. Progr. Neurobiol.78, 1–26 (2006).
  • Prakash N, Wurst W. Genetic networks controlling the development of midbrain dopaminergic neurons. J. Physiol.575, 403–410 (2006).
  • Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science276, 248–250 (1997).
  • Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL, Burbach JP. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat. Neurosci.3, 337–341 (2000).
  • Martinat C, Bacci JJ, Leete T et al. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc. Natl Acad. Sci. USA103, 2874–2879 (2006).
  • Burbach JP, Smidt MP. Molecular programming of stem cells into mesodiencephalic dopaminergic neurones. Trends Neurosci.29, 601–603 (2006).
  • Storch A, Sabolek M, Milosevic J, Schwarz SC, Schwarz J. Midbrain-derived neural stem cells: from basic science to therapeutic approaches. Cell Tissue Res.318, 15–22 (2004).
  • Bogerts B, Hantsch J, Herzer M. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol. Psychiatry18, 951–969 (1983).
  • Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain114, 2283–2301 (1991).
  • Teismann P, Tieu K, Choi DK et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc. Natl Acad. Sci. USA100, 5473–5478 (2003).
  • Asanuma M, Miyazaki I. Nonsteroidal anti-inflammatory drugs in Parkinson’s disease: possible involvement of quinone formation. Expert Rev. Neurother.6, 1313–1325 (2006).
  • Rabinovic AD, Lewis DA, Hastings TG. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience101, 67–76 (2000).
  • Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience39, 151–170 (1990).
  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci.20, 6309–6316 (2000).
  • Hutchinson M, Raff U. Structural changes of the substantia nigra in Parkinson’s disease as revealed by MR imaging. AJNR Am. J. Neuroradiol.21, 697–701 (2000).
  • Lu L, Neff F, Fischer DA et al. Regional vulnerability of mesencephalic dopaminergic neurones prone to degenerate in Parkinson’s disease: a post-mortem study in human control subjects. Neurobiol. Dis.23, 409–421 (2006).
  • Iravani MM, Syed E, Jackson MJ et al. A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets. J. Neurosci.21, 841–854 (2005).
  • Chung S, Hedlund E, Hwang M et al. The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol. Cell. Neurosci.28, 241–252 (2005).
  • Greene JG, Dingledine R, Greenamyre JT. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol. Dis.18, 19–31 (2005).
  • McCormack AL, Atienza JG, Langston JW, Di Monte DA. Decreased susceptibility to oxidative stress underlies the resistance of specific dopaminergic cell populations to paraquat-induced degeneration. Neuroscience141, 929–937 (2006).
  • Double KL, Halliday GM. New face of neuromelanin. J. Neural. Transm.70(Suppl.), 119–123 (2006).
  • Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG. A proposed dual role of neuromelanin in the pathogenesis of Parkinson’s disease. Neurology67, S8–S11 (2006).
  • Liang CL, Nelson O, Yazdani U, Pasbakhsh P, German DC. Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurones. J. Comp. Neurol.473, 97–106 (2004).
  • Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol.14, 633–643 (1978).
  • Mann DM, Yates PO. Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech. Ageing Dev.21, 193–203 (1983).
  • Ellis RJ. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci.26, 597–604 (2001).
  • Pothos EN, Larsen KE, Krantz DE et al. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J. Neurosci.20, 7297–7306 (2000).
  • Halliday GM, Ophof A, Broe M et al. α-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain128, 2654–2664 (2005).
  • Shtilerman MD, Ding TT, Lansbury PT. Molecular crowding accelerates fibrillization of α-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease? Biochemistry41, 3855–3860 (2002).
  • Takahashi H, Wakabyashi K. The cellular pathology of Parkinson’s disease. Neuropathology21, 315–322 (2001).
  • Zhang W, Wang T, Pei Z et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J.19, 533–542 (2005).
  • Sulzer D, Bogulavsky J, Larsen KE et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA97, 11869–11874 (2000).
  • McCormack AL, Delfani K, Janson AM, Langston JW, Di Monte DA. Neuronal vulnerability to MPTP injury: roles of aging and neuromelanin. Abstr. Soc. Neurosci.31, 386 (2001).
  • Conway KA, Rochet J-C, Bieganski RM, Lansbury PT. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science294, 1346–1349 (2001).
  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science219, 979–980 (1983).
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenmyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurobiol.3, 1301–1306 (2000).
  • Kubo S, Hattori N, Mizuno Y. Recessive Parkinson’s disease. Mov. Disord.21, 885–893 (2006).
  • Bonifati V. Genetics of Parkinson’s disease. Minerva Med.96, 175–186 (2005).
  • Bonifati V, Oostra BA, Heutink P. Unraveling the pathogenesis of Parkinson’s disease: the contribution of monogenic forms. Cell. Mol. Life Sci.61, 1729–1750 (2004).
  • Grandhi S, Wood NW. Molecular pathogenesis of Parkinson’s disease. Human Mol. Genet.14, 2749–2755 (2005).
  • Abeliovich A, Flint Beal M. Parkinsonism genes: culprits and clues. J. Neurochem.99, 1062–1072 (2006).
  • McGeer PL, Yasojima K, McGeer EG. Inflammation in Parkinson’s disease. Adv. Neurol.86, 83–89 (2001).
  • Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med.38, 333–347 (2006).
  • Kim W, De Vellis S. Microglia in health and disease. J. Neurosci. Res.81, 302–313 (2005).
  • Beyer ML, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Phagocytosis of neuronal or glial debris by microglial cells: upregulation of MHC Class I expression and multinuclear giant cell formation in vitro.Glia31, 262–266 (2000).
  • Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp. Neurol.193, 279–290 (2005).
  • McGeer PL, McGeer EG. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat. Disord.10, S3–S7 (2004).
  • Minghetti L. Role of inflammation in neurodegenerative diseases. Curr. Opin. Neurol.18, 315–321 (2005).
  • Marchetti B, Abbracchio MP. To be or not to be (inflamed) – is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol. Sci.26, 517–525 (2005).
  • McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology38, 1285–1291 (1988).
  • Czonkowska I, Kurkowska-Jastrzbska A, Czonkowski PD, Stefano GB. Immune processes in the pathogenesis of Parkinson’s disease – a potential role for microglia and nitric oxide. Med. Sci. Monit.8, RA165–RA177 (2002).
  • McGeer PL, Schwab C, Parent A, Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenil-1,2,3,6-tetrahydropyridine administration. Ann. Neurol.54, 599–604 (2003).
  • Sugama S, Cho BP, Degiorgio LA et al. Temporal and sequential analysis of microglia in the substantia nigra following medial forebrain bundle axotomy in rat. Neuroscience116, 925–933 (2003).
  • de Meira Santos Lima M, Braga Reksidler A, Marques Zanata S, Bueno Machado H, Tufik S, Vital MA. Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res.1101, 117–125 (2006).
  • Przybykowski A, Kurkowska-Jastrz bska I, Joniec I, Ciesielska A, Czonkowska A, Czonkowski A. Cyclooxygenases mRNA and protein expression in striata in the experimental mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to mouse. Brain Res.1019, 144–151 (2004).
  • Kaku K, Shikimi T, Kamisaki Y et al. Elevation of striatal interleukin-6 and serum corticosterone contents in MPTP-treated mice. Clin. Exp. Pharmacol. Physiol.26, 680–683 (1999).
  • Mogi M, Togari A, Ogawa M et al. Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mice on interleukin-1β and nerve growth factor in the striatum. Neurosci. Lett.250, 25–28 (1998).
  • Iravani MM, Kashefi K, Mander P, Rose S, Jenner P. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience110, 49–58 (2002).
  • Kataoka M, Tonooka K, Ando T, Imai K, Aimoto T. Hydroxyl radical scavenging activity of nonsteroidal anti-inflammatory drugs. Free Radic. Res.27, 419–427 (1997).
  • Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci.16, 724–739 (2000).
  • Kurkowska-Jastrzębska A, Wronska M, Kohutnicka A, Człokowski A, Członkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp. Neurol.156, 50–61 (1999).
  • Takeuchi H, Mizuno T, Zhang G et al. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J. Biol. Chem.280, 10444–10454 (2005).
  • Schiefer J, Kampe K, Dodt HU, Zieglgansberger W, Kreutzberg GW. Microglial motility in the rat facial nucleus following peripheral axotomy. J. Neurocytol.28, 439–453 (1999).
  • Isacson O, Brundin P, Gage FH, Bjorklund A. Neural grafting in a rat model of Huntington’s disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience16, 799–817 (1985).
  • Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J. Neuroinflammation3, 6 (2006).
  • Wang, T, Pei Z, Zhang W et al. MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB J.19, 1134–1136 (2005).
  • Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB. Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with IκBα induction and block of NFκB and iNOS activation. J. Neurochem.88, 494–501 (2004).
  • Baeuerle PA, Baichwal VR. NF-κB as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv. Immunol.65, 111–137 (1997).
  • Dugan LL, Choi DW. Hypoxic-ischemic brain injury and oxidative stress. In: Basic Neurochemistry. Siegel GJ. Agranoff BW, Albers RW, Fisher SK, Uhler MD (Eds). Raven Press, NY, USA 711–730 (1999).
  • Adams J, Collaco-Moraes Y, De Belleroche J. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J. Neurochem.66, 6–13 (1996).
  • Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA. Tumor necrosis factor α stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J. Biol. Chem.269, 26396–26401 (1994).
  • McCarty MF. Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med. Hypotheses67, 251–269 (2006).
  • Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol. Sci.24, 395–401 (2003).
  • Klegeris A, McGeer PL. Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr. Alzheimer Res.2, 355–365 (2005).
  • Kopp E, Ghosh S. Inhibition of NF-κB by sodium salicylate and aspirin. Science265, 956–959 (1994).
  • Grilli M, Pizzi M, Memo M, Spano P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science274, 1383–1385 (1996).
  • Dong Z, Huang C, Brown RE, Ma WY. Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J. Biol. Chem.272, 9962–9970 (1997).
  • Vane JR, Botting RM. Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J.1, 89–96 (1987).
  • Weissmann G. Aspirin. Sci. Am.264, 58–64 (1991).
  • Mitchell JA, Saunders M, Barnes PJ, Newton R, Belvisi MG. Sodium salicylate inhibits cyclo-oxygenase-2 activity independently of transcription factor (nuclear factor κB) activation: role of arachidonic acid. Mol. Pharmacol.51, 907–912 (1997).
  • Amann R, Egger, T, Schuligoi R, Heinemann A, Peskar BA. Sodium salicylate enhances the expression of cyclooxygenase-2 in endotoxin-stimulated human mononuclear cells. Eur. J. Pharmacol.433, 129–134 (2001).
  • Vaux DL, Strasser A, The molecular biology of apoptosis. Proc. Natl Acad. Sci. USA93, 2239–2244 (1996).
  • Xu XM, Sansores-Garcia L, Chen XM, Matijevic-Aleksic N, Du M, Wu KK. Suppression of inducible cyclooxygenase 2 gene transcription by aspirin and sodium salicylate. Proc. Natl Acad. Sci. USA96, 5292–5297 (1999).
  • Wu KK. Aspirin and other cyclooxygenase inhibitors: new therapeutic insights. Semin. Vasc. Med.3, 107–112 (2003).
  • Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem.76, 1895–1904 (2001).
  • Farivar RS, Chobanian AV, Brecher P. Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ. Res.78, 759–768 (1996).
  • Chen TG, Chen JZ, Xie XD. Effects of aspirin on number, activity and inducible nitric oxide synthase of endothelial progenitor cells from peripheral blood. Acta Pharmacol. Sin.27, 430–436 (2006).
  • Di Matteo V, Pierucci M, Di Giovanni G et al. Aspirin protects striatal dopaminergic neurones from neurotoxin-induced degeneration: an in vivo microdialysis study. Brain Res.1095, 167–177 (2006).
  • Di Matteo V, Benigno A, Pierucci M et al. 7-nitroindazole protects striatal dopaminergic neurons against MPP+-induced degeneration: an in vivo microdialysis study. Ann. NY Acad. Sci.1089, 462–471 (2006).
  • Lehmann, JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem.272, 3406–3410 (1997).
  • Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Ann. Rev. Cell Dev. Biol.12, 335–363 (1996).
  • Jiang C, Ting AT, Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature391, 82–86 (1998).
  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature391, 79–82 (1998).
  • Bishop-Bailey D, Warner TD. PPARγ ligands induce prostaglandin production in vascular smooth muscle cells: indomethacin acts as a peroxisome proliferator-activated receptor-γ antagonist. FASEB J.17, 1925–1927 (2003).
  • Heneka MT, Sastre M, Dumitrescu-Ozimek L et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice. Brain128, 1442–1453 (2005).
  • Sastre M, Dewachter I, Rossner S et al. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc. Natl Acad. Sci. USA103, 443–448 (2006).
  • Aubin N, Curet O, Deffois A, Carter C. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J. Neurochem.71, 1635–1642 (1998).
  • Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH. Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch. Pharmacol.360, 256–261 (1999).
  • Mohanakumar KP, Muralikrishnan D, Thomas B. Neuroprotection by sodium salicylate against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Brain Res.864, 281–290 (2000).
  • Sairam, K, Saravanan KS, Banerjee R, Mohanakumar KP. Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Brain Res.966, 245–252 (2003).
  • Maharaj DS, Saravanan KS, Maharaj H, Mohanakumar KP, Daya S. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats. Neurochem. Int.44, 355–360 (2004).
  • Carrasco E, Camper D, Werner P. Dopaminergic neurotoxicity by 6-OHDA and MPP+: differential requirement for neuronal cyclooxygenase activity. J. Neurosci. Res.81, 121–131 (2005).
  • Maharaj H, Maharaj DS, Daya S. Acetylsalicylic acid and acetaminophen protect against MPP+-induced mitochondrial damage and superoxide anion generation. Life Sci.78, 2438–2443 (2006).
  • Kurkowska-Jastrzębska I, Babiuch M, Joniec I, Przybyłkowski A, Członkowski A, Członkowska, A. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int. Immunopharmacol.2, 1213–1218 (2002).
  • Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse39, 167–174 (2001).
  • Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol. Rev.80, 1107–1213 (2000).
  • Klivenyi P, Gardian G, Calingasan NY, Yang L, Beal MF. Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J. Mol. Neurosci.21, 191–198 (2003).
  • Sánchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, Isacson O. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J. Neuroinflammation1, 6 (2004).
  • Reksidler AB, Lima MM, Zanata SM et al. The COX-2 inhibitor parecoxib produces neuroprotective effects in MPTP-lesioned rats. Eur. J. Pharmacol.560, 163–175 (2007).
  • Chen H, Zhang S, Herna MA et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol.60, 1059–1064 (2003).
  • Chen H, Jacobs E, Schwarzschild MA et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann. Neurol.58, 963–967 (2005).
  • Hernán MA, Logroscino G, García Rodríguez LA. Nonsteroidal anti-inflammatory drugs and the incidence of Parkinson disease. Neurology66, 1097–1099 (2006).
  • Bower JH, Maraganore DM, Peterson BJ, Ahlskog JE, Rocca WA. Immunologic diseases, anti-inflammatory drugs, and Parkinson disease: a case–control study. Neurology67, 494–496 (2006).
  • McGeer EG, McGeer PL. The role of the immune system in neurodegenerative disorders. Mov. Disord.12, 855–858 (1997).
  • Ton TG, Heckbert SR, Longstreth WT et al. Nonsteroidal anti-inflammatory drugs and risk of Parkinson’s disease. Mov. Disord.21, 964–969 (2006).
  • Hancock DB, Martin ER, Stajich JM et al. Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease. Arch. Neurol.64, 576–580 (2007).
  • Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci.32, 37–43 (2007).
  • Nicotera P, Leist M, Fava E, Berliocchi L, Vollbrecht C. Energy requirement for caspase activation and neuronal cell death. Brain Pathol.10, 276–282 (2000).
  • Krantic S, Mechawar N, Reix S, Quirion R. Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci.28, 670–676 (2005).
  • Bredesen DE. Key note lecture: toward a mechanistic taxonomy for cell death programs. Stroke38, 652–660 (2007).
  • Leist M, Nicotera P. Apoptosis, excitotoxicity, and neuropathology. Exp. Cell. Res.239, 183–201 (1998).
  • Roth KA, D’Sa C. Apoptosis and brain development. Ment. Retard. Dev. Disabil. Res. Rev.7, 261–266 (2001).
  • Mogi M, Kondo T, Mizuno Y, Nagatsu T. p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neurosci. Lett.414, 94–97 (2007).
  • Mochizuki H, Goto K, Mori H, Mizuno Y. Histochemical detection of apoptosis in Parkinson’s disease. J. Neurol. Sci.137, 120–123 (1996).
  • Anglade P, Vyas S, Javoy-Agid F et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol. Histopathol.2, 25–31 (1997).
  • Tatton WG, Chalmers-Redman R, Brown D, Tatton N. Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann. Neurol.53, S61–S70 (2003).
  • Banati RB, Daniel SE, Path MRC, Blunt SB. Glial pathology but absence of apoptotic nigral neurones in long-standing Parkinson’s disease. Mov. Disord.13, 221–227 (1998).
  • Graeber MB, Grasbon-Frodl E, Abell-Aleff P, Kösel S. Nigral neurones are likely to die of a mechanism other than classical apoptosis in Parkinson’s disease. Parkinsonism Relat. Disord.5, 187–192 (1999).
  • Wüllner U, Kornhuber J, Weller M, Schulz JB, Löschmann PA, Riederer P. Cell death and apoptosis regulating proteins in Parkinson’s disease – a cautionary note. Acta Neuropathol.97, 408–412 (1999).
  • Kösel S, Egensperger R, von Eitzen U, Mehraein P, Graeber M. On the question of apoptosis in the parkinsonian substantia nigra. Acta Neuropathol.93, 105–108 (1997).
  • He XJ, Nakayama H, Dong M et al. Evidence of apoptosis in the subventricular zone and rostral migratory stream in the MPTP mouse model of Parkinson disease. J. Neuropathol. Exp. Neurol.65, 873–882 (2006).
  • Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG. Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur. J. Neurosci.18, 1387–1401 (2003).
  • Saporito MS, Thomas BA, Scott RW. MPTP activates c-Jun NH2-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo.J. Neurochem.75, 1200–1208 (2000).
  • Blum D, Torch S, Lambeng N et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol.65, 135–172 (2001).
  • Mladenovic A, Perovic M, Raicevic N, Kanazir S, Rakic L, Ruzdijic S. 6-Hydroxydopamine increases the level of TNFα and bax mRNA in the striatum and induces apoptosis of dopaminergic neurons in hemiparkinsonian rats. Brain Res.996, 237–245 (2004).
  • Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ. Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+- induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J. Neurosci. Res.57, 86–94 (1999).
  • O’Malley KL, Liu J, Lotharius J, Holtz W. Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons. Neurobiol. Dis.14, 43–51 (2003).
  • Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron41(5), 683–686 (2004).
  • Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol.39, 569–578 (1999).
  • Santarelli L, Saxe M, Gross C et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003).
  • Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci.24, 8354–8365 (2004).
  • Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci.27, 447–452 (2004).
  • Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci.22, 6639–6649 (2002).
  • Zhao M, Momma S, Delfani K et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA100, 7925–7930 (2003).
  • Fillmore HL, Holloway KL, Gillies GT. Cell replacement efforts to repair neuronal injury: a potential paradigm for the treatment of Parkinson’s disease. NeuroRehabilitation20, 233–242 (2005).
  • Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders: how to make it work. Nat. Med.10, S42–S50 (2004).
  • Piper M, Abrams GM, Marks WJ. Deep brain stimulation for the treatment of Parkinson’s disease: overview and impact on gait and mobility. NeuroRehabilitation20, 223–232 (2005).
  • Borta A, Hoglinger GU. Dopamine and adult neurogenesis. J. Neurochem.100, 587–595 (2007).
  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP. The role of glial reaction and inflammation in Parkinson’s disease. Ann. NY Acad. Sci.991, 214–228 (2003).
  • Ho A, Blum M. Induction of interleukin-1 associated with compensatory dopaminergic sprouting in the denervated striatum of young mice: model of aging and neurodegenerative disease. J. Neurosci.18, 5614–5629 (1998).
  • Porritt MJ, Batchelor PE, Hughes AJ, Kalnins R, Donnan GA, Howells DW. New dopaminergic neurons in Parkinson’s disease striatum. Lancet356, 44–45 (2000).
  • Brbet R, Turner R, Chockkan V et al. Dopaminergic neurons intrinsic to the primate striatum. J. Neurosci.17, 6761–6768 (1997).
  • Palfi S, Leventhal L, Chu Y et al. Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci.22, 4942–4954 (2002).
  • Meredith GE, Farrell T, Kellaghan P, Tan Y, Zahm DS, Totterdell S. Immunocytochemical characterization of catecholaminergic neurons in the rat striatum following dopamine-depleting lesions. Eur. J. Neurosci.11, 3585–3596 (1999).
  • Freundlieb N, Francois C, Tande D, Oertel WH, Hirsch EC, Hoglinger GU. Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J. Neurosci.26, 2321–2325 (2006).
  • Hoglinger GU, Rizk P, Muriel MP et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci.7, 726–735 (2004).
  • Shan X, Chi L, Bishop M et al. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phyenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease-like mice. Stem Cells24, 1280–1287 (2006).
  • Frielingsdorf H, Schwarz K, Brundin P, Mohapel P. No evidence for new dopaminergic neurones in the adult mammalian substantia nigra. Proc. Natl Acad. Sci. USA101, 10177–10182 (2004).
  • Steiner B, Winter C, Hosman K et al. Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp. Neurol.199, 291–300 (2006).
  • Fallon J, Reid S, Kinyamu R et al.In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl Acad. Sci. USA97, 14686–14691 (2000).
  • Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci.21, 6718–6731 (2001).
  • Mohapel P, Frielingsdorf H, Haggblad J, Zachrisson O, Brundin P. Platelet-derived growth factor (PDGF-BB) and brain-derived neurotrophic factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions. Neuroscience132, 767–776 (2005).
  • Prodan CI, Monnot M, Ross ED, Coleman AE. Reversible dementia with parkinsonian features associated with budesonide use. Neurology67, 723 (2006).
  • Bonuccelli U, Del Dotto P. New pharmacologic horizons in the treatment of Parkinson disease. Neurology67, S30–S38 (2006).
  • Di Giovanni G, Di Matteo V, Pierucci M, Benigno A, Esposito E. Serotonin involvement in the basal ganglia pathophysiology: could the 5-HT2C receptor be a new target for therapeutic strategies? Curr. Med. Chem.13, 3069–3081 (2006).
  • Schapira AH, Bezard E, Brotchie J et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat. Rev. Drug Discov.5, 845–854 (2006).
  • Fernández-Ruiz J, García-Arencibia M, Sagredo O, Ramos JA. Role of endogenous cannabinoids in the control of basal ganglia activity. In: The Basal Ganglia Pathophysiology: Recent Advances. Di Giovanni G (Ed.). Transworld Research, Kerala, India 75–95 (2007).
  • Del Bell E, Bermúdez-Echeverry M, Salum C, Raisman-Vozary R. Nitric oxide and basal ganglia physiopathology. In: The Basal Ganglia Pathophysiology: Recent Advances. Di Giovanni G (Ed.). Transworld Research, Kerala, India 129–158 (2007).
  • Pinna A, Simola N, Morelli M. Adenosine A2A receptor antagonist treatment of Parkinson’s disease. In: The Basal Ganglia Pathophysiology: Recent Advances. Di Giovanni G (Ed.). Transworld Research, Kerala, India 191–223 (2007).
  • Marchetti B. Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: key role of neuron-glia crosstalk. In: The Basal Ganglia Pathophysiology: Recent Advances. Di Giovanni G (Ed ). Transworld Research, Kerala, India 225–252 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.