80
Views
16
CrossRef citations to date
0
Altmetric
Review

Genetics of epilepsies

&
Pages 727-734 | Published online: 09 Jan 2014

References

  • Metrakos K, Metrakos JD. Genetics of convulsive disorders. II. Genetic and electroencephalographic studies in centrencephalic epilepsy. Neurology11, 474–483 (1961).
  • Robinson R, Taske N, Sander T et al. Linkage analysis between childhood absence epilepsy and genes encoding GABAA and GABAB receptors, voltage-dependent calcium channels,and the ECA1 region on chromosome 8q. Epilepsy Res.48, 169–179 (2002).
  • Fong GC, Shah PU, Gee MN et al. Childhood absence epilepsy with tonic–clonic seizures and electroencephalogram 3–4-Hz spike and multispike–slow wave complexes: linkage to chromosome 8q24. Am. J. Hum. Genet.63, 1117–1129 (1998).
  • Wallace RH, Marini C, Petrou S et al. Mutant GABA(A) receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet.28, 49–52 (2001).
  • Chen Y, Lu J, Pan H et al. Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann. Neurol.54, 239–243 (2003).
  • Cossette P, Liu L, Brisebois K et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat. Genet.31, 184–189 (2002).
  • Krampfl K, Maljevic S, Cossette P et al. Molecular analysis of the A322D mutation in the GABA receptor α-subunit causing juvenile myoclonic epilepsy. Eur. J. Neurosci.22, 10–20 (2005).
  • Haug K, Warnstedt M, Alekov AK et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat. Genet.33, 527–532 (2003).
  • Suzuki T, Delgado-Escueta AV, Aguan K et al. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat. Genet.36, 842–849 (2004).
  • Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain120(Pt 3), 479–490 (1997).
  • Singh R, Scheffer IE, Crossland K, Berkovic SF. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann. Neurol.45, 75–81 (1999).
  • Baulac S, Gourfinkel-An I, Picard F et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am. J. Hum. Genet.65, 1078–1085 (1999).
  • Scheffer IE, Harkin LA, Dibbens LM, Mulley JC, Berkovic SF. Neonatal epilepsy syndromes and generalized epilepsy with febrile seizures plus (GEFS+). Epilepsia46(Suppl. 10), 41–47 (2005).
  • Wallace RH, Wang DW, Singh R et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nat. Genet.19, 366–370 (1998).
  • Moulard B, Guipponi M, Chaigne D, Mouthon D, Buresi C, Malafosse A. Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24-q33. Am. J. Hum. Genet.65, 1396–1400 (1999).
  • Wallace RH, Scheffer IE, Barnett S et al. Neuronal sodium-channel α1-subunit mutations in generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet.68, 859–865 (2001).
  • Baulac S, Huberfeld G, Gourfinkel-An I et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet.28, 46–48 (2001).
  • Scheffer IE, Harkin LA, Grinton BE et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain130, 100–109 (2007).
  • Audenaert D, Claes L, Ceulemans B, Lofgren A, Van Broeckhoven C, De Jonghe P. A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy. Neurology61, 854–856 (2003).
  • Abou-Khalil B, Ge Q, Desai R et al. Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation. Neurology57, 2265–2272 (2001).
  • Meadows LS, Malhotra J, Loukas A et al. Functional and biochemical analysis of a sodium channel β1 subunit mutation responsible for generalized epilepsy with febrile seizures plus type 1. J. Neurosci.22, 10699–10709 (2002).
  • Spampanato J, Escayg A, Meisler MH, Goldin AL. Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J. Neurosci.21, 7481–7490 (2001).
  • Lossin C, Rhodes TH, Desai RR et al. Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A. J. Neurosci.23, 11289–11295 (2003).
  • Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL Jr. Molecular basis of an inherited epilepsy. Neuron34, 877–884 (2002).
  • Spampanato J, Escayg A, Meisler MH, Goldin AL. Generalized epilepsy with febrile seizures plus type 2 mutation W1204R alters voltage-dependent gating of Nav1.1 sodium channels. Neuroscience116, 37–48 (2003).
  • Spampanato J, Kearney JA, de Haan G et al. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for β subunit interaction. J. Neurosci.24, 10022–10034 (2004).
  • Dravet C. Les epilepsies graves de l’enfant. Vie Médicale8, 543–548 (1978).
  • Jansen FE, Sadleir LG, Harkin LA et al. Severe myoclonic epilepsy of infancy (Dravet syndrome): recognition and diagnosis in adults. Neurology67, 2224–2226 (2006).
  • Ohmori I, Ohtsuka Y, Ouchida M et al. Is phenotype difference in severe myoclonic epilepsy in infancy related to SCN1A mutations? Brain Dev.25, 488–493 (2003).
  • Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K. Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem. Biophys. Res. Commun.295, 17–23 (2002).
  • Sugawara T, Mazaki-Miyazaki E, Fukushima K et al. Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology58, 1122–1124 (2002).
  • Fujiwara T, Sugawara T, Mazaki-Miyazaki E et al. Mutations of sodium channel α subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic–clonic seizures. Brain126, 531–546 (2003).
  • Fukuma G, Oguni H, Shirasaka Y et al. Mutations of neuronal voltage-gated Na+ channel α1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia45, 140–148 (2004).
  • Harkin LA, McMahon JM, Iona X et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain130, 843–852 (2007).
  • Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet.68, 1327–1332 (2001).
  • Mulley JC, Scheffer IE, Petrou S, Dibbens LM, Berkovic SF, Harkin LA. SCN1A mutations and epilepsy. Hum. Mutat.25, 535–542 (2005).
  • Depienne C, Arzimanoglou A, Trouillard O et al. Parental mosaicism can cause recurrent transmission of SCN1A mutations associated with severe myoclonic epilepsy of infancy. Hum. Mutat.27, 389 (2006).
  • Gennaro E, Santorelli FM, Bertini et al. Somatic and germline mosaicisms in severe myoclonic epilepsy of infancy. Biochem. Biophys. Res. Commun.341, 489–493 (2006).
  • Marini C, Mei D, Helen Cross J, Guerrini R. Mosaic SCN1A mutation in familial severe myoclonic epilepsy of infancy. Epilepsia47, 1737–1740 (2006).
  • Morimoto M, Mazaki E, Nishimura A et al. SCN1A mutation mosaicism in a family with severe myoclonic epilepsy in infancy. Epilepsia47, 1732–1736 (2006).
  • Harkin LA, Bowser DN, Dibbens LM et al. Truncation of the GABAA-receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet.70, 530–536 (2002).
  • Scheffer IE, Bhatia KP, Lopes-Cendes I et al. Autosomal dominant nocturnal frontal lobe epilepsy. A distinctive clinical disorder. Brain118(Pt 1), 61–73 (1995).
  • Phillips HA, Marini C, Scheffer IE, Sutherland GR, Mulley JC, Berkovic SF. A de novo mutation in sporadic nocturnal frontal lobe epilepsy. Ann. Neurol.48, 264–267 (2000).
  • Phillips HA, Scheffer IE, Berkovic SF, Hollway GE, Sutherland GR, Mulley JC. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q 13.2. Nat. Genet.10, 117–118 (1995).
  • Steinlein OK, Mulley JC, Propping P et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet.11, 201–203 (1995).
  • De Fusco M, Becchetti A, Patrignani A et al. The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat. Genet.26, 275–276 (2000).
  • Phillips HA, Favre I, Kirkpatrick M et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am. J. Hum. Genet.68, 225–231 (2001).
  • Phillips HA, Scheffer IE, Crossland KM et al. Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24. Am. J. Hum. Genet.63, 1108–1116 (1998).
  • Bonati MT, Combi R, Asselta R et al. Exclusion of linkage of nine neuronal nicotinic acetylcholine receptor subunit genes expressed in brain in autosomal dominant nocturnal frontal lobe epilepsy in four unrelated families. J. Neurol.249, 967–974 (2002).
  • Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D. Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. Br. J. Pharmacol.125, 751–760 (1998).
  • Rodrigues-Pinguet N, Jia L, Li M et al. Five ADNFLE mutations reduce the Ca2+ dependence of the mammalian α4β2 acetylcholine response. J. Physiol.550, 11–26 (2003).
  • Poza JJ, Saenz A, Martinez-Gil A et al. Autosomal dominant lateral temporal epilepsy: clinical and genetic study of a large Basque pedigree linked to chromosome 10q. Ann. Neurol.45, 182–188 (1999).
  • Winawer MR, Ottman R, Hauser WA, Pedley TA. Autosomal dominant partial epilepsy with auditory features: defining the phenotype. Neurology54, 2173–2176 (2000).
  • Kobayashi E, Santos NF, Torres FR et al. Magnetic resonance imaging abnormalities in familial temporal lobe epilepsy with auditory auras. Arch. Neurol.60, 1546–1551 (2003).
  • Ottman R, Risch N, Hauser WA et al. Localization of a gene for partial epilepsy to chromosome 10q. Nat. Genet.10, 56–60 (1995).
  • Kalachikov S, Evgrafov O, Ross B et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet.30, 335–341 (2002).
  • Morante-Redolat JM, Gorostidi-Pagola A, Piquer-Sirerol S et al. Mutations in the LGI1/epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. Hum. Mol. Genet.11, 1119–1128 (2002)
  • Michelucci R, Poza JJ, Sofia V et al. Autosomal dominant lateral temporal epilepsy: clinical spectrum, new epitempin mutations, and genetic heterogeneity in seven European families. Epilepsia44, 1289–1297 (2003).
  • Ottman R, Winawer MR, Kalachikov S et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology62, 1120–1126 (2004).
  • Bisulli F, Tinuper P, Avoni P et al. Idiopathic partial epilepsy with auditory features (IPEAF): a clinical and genetic study of 53 sporadic cases. Brain127, 1343–1352 (2004).
  • Bisulli F, Tinuper P, Scudellaro E et al. A de novo LGI1 mutation in sporadic partial epilepsy with auditory features. Ann. Neurol.56, 455–456 (2004).
  • Senechal KR, Thaller C, Noebels JL. ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum. Mol. Genet.14, 1613–1620 (2005).
  • Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science313, 1792–1795 (2006).
  • Sirerol-Piquer MS, Ayerdi-Izquierdo A, Morante-Redolat JM et al. The epilepsy gene LGI1 encodes a secreted glycoprotein that binds to the cell surface. Hum. Mol. Genet.15, 3436–3445 (2006).
  • Schulte U, Thumfart JO, Klocker N et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvβ1. Neuron49, 697–706 (2006).
  • Furlan S, Roncaroli F, Forner F et al. The LGI1/epitempin gene encodes two protein isoforms differentially expressed in human brain. J. Neurochem.98, 985–991 (2006).
  • Xiong L, Labuda M, Li DS et al. Mapping of a gene determining familial partial epilepsy with variable foci to chromosome 22q11-q12. Am. J. Hum. Genet.65, 1698–1710 (1999).
  • Berkovic SF, Serratosa JM, Phillips HA et al. Familial partial epilepsy with variable foci: clinical features and linkage to chromosome 22q12. Epilepsia45, 1054–1060 (2004).
  • Scheffer IE, Phillips HA, O’Brien CE et al. Familial partial epilepsy with variable foci: a new partial epilepsy syndrome with suggestion of linkage to chromosome 2. Ann. Neurol.44, 890–899 (1998).
  • Callenbach PM, van den Maagdenberg AM, Hottenga JJ et al. Familial partial epilepsy with variable foci in a Dutch family: clinical characteristics and confirmation of linkage to chromosome 22q. Epilepsia44, 1298–1305 (2003).
  • Rett A, Teubel R. Neugeborenenkrampfe im Rhamen einer epileptisch belasten Familie. Wien. Klein. Wochenschr.76, 609–612 (1964).
  • de Haan GJ, Pinto D, Carton D et al. A novel splicing mutation in KCNQ2 in a multigenerational family with BFNC followed for 25 years. Epilepsia47, 851–859 (2006).
  • Ronen GM, Rosales TO, Connolly M, Anderson VE, Leppert M. Seizure characteristics in chromosome 20 benign familial neonatal convulsions. Neurology43, 1355–1360 (1993).
  • Biervert C, Schroeder BC, Kubisch C et al. A potassium channel mutation in neonatal human epilepsy. Science279, 403–406 (1998).
  • Charlier C, Singh NA, Ryan SG et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat. Genet.18, 53–55 (1998).
  • Singh NA, Charlier C, Stauffer D et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet.18, 25–29 (1998).
  • Claes LR, Ceulemans B, Audenaert D et al.De novo KCNQ2 mutations in patients with benign neonatal seizures. Neurology63, 2155–2158 (2004).
  • Rogawski MA. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends Neurosci.23, 393–398 (2000).
  • Tinel N, Lauritzen I, Chouabe C, Lazdunski M, Borsotto M. The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Lett.438, 171–176 (1998).
  • Kaplan RE, Lacey DJ. Benign familial neonatal-infantile seizures. Am. J. Med. Genet.16, 595–599 (1983).
  • Berkovic SF, Heron SE, Giordano L et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann. Neurol.55, 550–557 (2004).
  • Scalmani P, Rusconi R, Armatura E et al. Effects in neocortical neurons of mutations of the Nav1.2 Na+ channel causing benign familial neonatal-infantile seizures. J. Neurosci.26, 10100–10109 (2006).
  • Ottman R. Analysis of genetically complex epilepsies. Epilepsia46(Suppl. 10), 7–14 (2005).
  • Mulley JC, Scheffer IE, Petrou S, Berkovic SF. Channelopathies as a genetic cause of epilepsy. Curr. Opin. Neurol.16, 171–176 (2003).
  • Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. Mapping complex disease loci in whole-genome association studies. Nature429, 446–452 (2004).
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet.6, 95–108 (2005).
  • Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann. Neurol.43, 435–445 (1998).
  • Ottman R, Lee JH, Risch N, Hauser WA, Susser M. Clinical indicators of genetic susceptibility to epilepsy. Epilepsia37, 353–361 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.