117
Views
19
CrossRef citations to date
0
Altmetric
Review

Pediatric CNS tumors: current treatment and future directions

&
Pages 1029-1042 | Published online: 09 Jan 2014

References

  • Hargrave D, Messental B, Plowman PN. Tumours of the central nervous system. In: Paediatric Oncology (3rd Edition). Pinkerton CR, Plowman PN, Pieters R (Eds). Hodder, London, UK 287–322 (2004).
  • Smith MA, Freidlin B, Ries LA, Simon R. Trends in reported incidence of primary malignant brain tumors in children in the United States. J. Natl Cancer Inst.90(17), 1269–1277 (1998).
  • Kaatsch P, Rickert CH, Kuhl J, Schuz J, Michaelis J. Population-based epidemiologic data on brain tumors in German children. Cancer92(12), 3155–3164 (2001).
  • Kleihues P, Louis DN, Scheithauer BW et al. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol.61(3), 215–225 (2002).
  • Broniscer A, Baker SJ, West AN et al. Clinical and molecular characteristics of malignant transformation of low-grade glioma in children. J. Clin. Oncol.25(6), 682–689 (2007).
  • Listernick R, Charrow J, Greenwald M, Mets M. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J. Pediatr.125(1), 63–66 (1994).
  • Wisoff JH, Sanford R, Holmes E, Sposto R, Kun LE, Heier L. Impact of surgical resection on low grade gliomas of childhood: a report from the CCG 9891/POG 9130 low grade astrocytoma study. Neuro. Oncol.5(1), 71 (2003).
  • Grill J, Laithier V, Rodriguez D, Raquin MA, Pierre-Kahn A, Kalifa C. When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single centre. Eur J. Pediatr.159(9), 692–696 (2000).
  • Cappelli C, Grill J, Raquin M et al. Long-term follow up of 69 patients treated for optic pathway tumours before the chemotherapy era. Arch. Dis. Child.79(4), 334–338 (1998).
  • Horwich A, Bloom HJ. Optic gliomas: radiation therapy and prognosis. Int. J. Radiat. Oncol. Biol. Phys.11(6), 1067–1079 (1985).
  • Jenkin D, Angyalfi S, Becker L et al. Optic glioma in children: surveillance, resection, or irradiation? Int. J. Radiat. Oncol. Biol. Phys.25(2), 215–225 (1993).
  • Grill J, Couanet D, Cappelli C et al. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann. Neurol.45(3), 393–396 (1999).
  • Kestle JR, Hoffman HJ, Mock AR. Moyamoya phenomenon after radiation for optic glioma. J. Neurosurg.79(1), 32–35 (1993).
  • Kony SJ, de Vathaire F, Chompret A et al. Radiation and genetic factors in the risk of second malignant neoplasms after a first cancer in childhood. Lancet350(9071), 91–95 (1997).
  • Little MP, de Vathaire F, Shamsaldin A et al. Risks of brain tumour following treatment for cancer in childhood: modification by genetic factors, radiotherapy and chemotherapy. Int. J. Cancer78(3), 269–275 (1998).
  • Saran FH, Baumert BG, Khoo VS et al. Stereotactically guided conformal radiotherapy for progressive low-grade gliomas of childhood. Int. J. Radiat. Oncol. Biol. Phys.53(1), 43–51 (2002).
  • Merchant TE, Zhu Y, Thompson SJ, Sontag MR, Heideman RL, Kun LE. Preliminary results from a Phase II trail of conformal radiation therapy for pediatric patients with localised low-grade astrocytoma and ependymoma. Int. J. Radiat. Oncol. Biol. Phys.52(2), 325–332 (2002).
  • Packer RJ, Lange B, Ater J et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J. Clin. Oncol.11(5), 850–856 (1993).
  • Packer RJ, Ater J, Allen J et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg.86(5), 747–754 (1997).
  • Walker D, Gnekow AK, Perilongo G, Zanetti I. Vincristine/carboplatin in hypothalamic-chiasmatic glioma: a report from the international consortium on low grade glioma. Med. Ped. Oncol.39(4), 229(2002).
  • Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer4(6), 423–436 (2004).
  • Hamano Y, Sugimoto H, Soubasakos MA et al. Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res.64(5), 1570–1574 (2004).
  • Lyden D, Hattori K, Dias S et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med.7(11), 1194–1201 (2001).
  • Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer2(11), 826–835 (2002).
  • Bertolini F, Mancuso P, Kerbel RS. Circulating endothelial progenitor cells. N. Engl. J. Med.353(24), 2613–2616 (2005).
  • Lafay-Cousin L, Holm S, Qaddoumi I et al. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer103(12), 2636–2642 (2005).
  • Chamberlain MC, Grafe MR. Recurrent chiasmatic-hypothalamic glioma treated with oral etoposide. J. Clin. Oncol.13(8), 2072–2076 (1995).
  • Kurzen H, Schmitt S, Naher H, Mohler T. Inhibition of angiogenesis by non-toxic doses of temozolomide. Anticancer Drugs14(7), 515–522 (2003).
  • Baruchel S, Diezi M, Hargrave D et al. Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. Eur. J. Cancer42(14), 2335–2342 (2006).
  • Kuo DJ, Weiner HL, Wisoff J, Miller DC, Knopp EA, Finlay JL. Temozolomide is active in childhood, progressive, unresectable, low-grade gliomas. J. Pediatr. Hematol. Oncol.25(5), 372–378 (2003).
  • Yao Y, Kubota T, Sato K, Kitai R, Takeuchi H, Arishima H. Prognostic value of vascular endothelial growth factor and its receptors Flt-1 and Flk-1 in astrocytic tumours. Acta Neurochir. (Wien)143(2), 159–166 (2001).
  • Gesundheit B, Klement G, Senger C et al. Differences in vasculature between pilocytic and anaplastic astrocytomas of childhood. Med. Pediatr. Oncol.41(6), 516–526 (2003).
  • Plate KH, Breier G, Weich HA, Mennel HD, Risau W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int. J. Cancer59(4), 520–529 (1994).
  • Kieran MW, Turner CD, Rubin JB et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J. Pediatr. Hematol. Oncol.27(11), 573–581 (2005).
  • Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev.15(15), 1913–1925 (2001).
  • Guha A, Dashner K, Black PM, Wagner JA, Stiles CD. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int. J. Cancer60(2), 168–173 (1995).
  • Plate KH, Breier G, Farrell CL, Risau W. Platelet-derived growth factor receptor-β is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab. Invest.67(4), 529–534 (1992).
  • Desjardins A, Quinn JA, Vredenburgh JJ et al. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J. Neurooncol.83(1), 53–60 (2007).
  • Reardon DA, Egorin MJ, Quinn JA et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J. Clin. Oncol.23(36), 9359–9368 (2005).
  • McLaughlin ME, Robson CD, Kieran MW, Jacks T, Pomeroy SL, Cameron S. Marked regression of metastatic pilocytic astrocytoma during treatment with imatinib mesylate (STI-571, Gleevec): a case report and laboratory investigation. J. Pediatr. Hematol. Oncol.25(8), 644–648 (2003).
  • Sposto R, Ertel IJ, Jenkin RD et al. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J. Neurooncol.7(2), 165–177 (1989).
  • Marchese MJ, Chang CH. Malignant astrocytic gliomas in children. Cancer65(12), 2771–2778 (1990).
  • Wisoff JH, Boyett JM, Berger MS et al. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s Cancer Group trial no. CCG-945. J. Neurosurg.89(1), 52–59 (1998).
  • Wolff JE, Gnekow AK, Kortmann RD et al. Preradiation chemotherapy for pediatric patients with high-grade glioma. Cancer94(1), 264–271 (2002).
  • Stupp R, Mason WP, Van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Hegi ME, Diserens AC, Gorlia T et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352(10), 997–1003 (2005).
  • Estlin EJ, Lashford L, Ablett S et al. Phase I study of temozolomide in paediatric patients with advanced cancer. United Kingdom Children’s Cancer Study Group. Br. J. Cancer78(5), 652–661 (1998).
  • Nicholson HS, Krailo M, Ames MM et al. Phase I study of temozolomide in children and adolescents with recurrent solid tumors: a report from the Children’s Cancer Group. J. Clin. Oncol.16(9), 3037–3043 (1998).
  • Lashford LS, Thiesse P, Jouvet A et al. Temozolomide in malignant gliomas of childhood: a United Kingdom Children’s Cancer Study Group and French Society for Pediatric Oncology Intergroup Study. J. Clin. Oncol.20(24), 4684–4691 (2002).
  • Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol.7(3), 241–248 (2006).
  • Pollack IF, Finkelstein SD, Burnham J et al. Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res.61(20), 7404–7407 (2001).
  • Pollack IF, Finkelstein SD, Woods J et al. Expression of p53 and prognosis in children with malignant gliomas. N. Engl. J. Med.346(6), 420–427 (2002).
  • Louis DN, Rubio MP, Correa KM, Gusella JF, von Deimling A. Molecular genetics of pediatric brain stem gliomas. Application of PCR techniques to small and archival brain tumor specimens. J. Neuropathol. Exp. Neurol.52(5), 507–515 (1993).
  • Cheng Y, Ng HK, Zhang SF et al. Genetic alterations in pediatric high-grade astrocytomas. Hum. Pathol.30(11), 1284–1290 (1999).
  • Newcomb EW, Alonso M, Sung T, Miller DC. Incidence of p14ARF gene deletion in high-grade adult and pediatric astrocytomas. Hum. Pathol.31(1), 115–119 (2000).
  • Sung T, Miller DC, Hayes RL, Alonso M, Yee H, Newcomb EW. Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol.10(2), 249–259 (2000).
  • Wong KK, Tsang YT, Chang YM et al. Genome-wide allelic imbalance analysis of pediatric gliomas by single nucleotide polymorphic allele array. Cancer Res.66(23), 11172–11178 (2006).
  • Rood BR, MacDonald TJ. Pediatric high-grade glioma: molecular genetic clues for innovative therapeutic approaches. J. Neurooncol.75(3), 267–272 (2005).
  • Muracciole X, Romain S, Dufour H et al. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int. J. Radiat. Oncol. Biol. Phys.52(3), 592–598 (2002).
  • Saito T, Hama S, Kajiwara Y et al. Prognosis of cerebellar glioblastomas: correlation between prognosis and immunoreactivity for epidermal growth factor receptor compared with supratentorial glioblastomas. Anticancer Res.26(2B), 1351–1357 (2006).
  • Smith JS, Tachibana I, Passe SM et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J. Natl Cancer Inst.93(16), 1246–1256 (2001).
  • Narita Y, Nagane M, Mishima K, Huang HJ, Furnari FB, Cavenee WK. Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res.62(22), 6764–6769 (2002).
  • Shinojima N, Tada K, Shiraishi S et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res.63(20), 6962–6970 (2003).
  • Pollack IF, Hamilton RL, James CD et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J. Neurosurg.105(Suppl. 5), 418–424 (2006).
  • Bredel M, Pollack IF, Hamilton RL, James CD. Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin. Cancer Res.5(7), 1786–1792 (1999).
  • Khatua S, Peterson KM, Brown KM et al. Overexpression of the EGFR/FKBP12/HIF-2α pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res.63(8), 1865–1870 (2003).
  • Gilbertson RJ, Hill DA, Hernan R et al. ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin. Cancer Res.9(10 Pt 1), 3620–3624 (2003).
  • Freeman BB III, Daw NC, Geyer JR, Furman WL, Stewart CF. Evaluation of gefitinib for treatment of refractory solid tumors and central nervous system malignancies in pediatric patients. Cancer Invest.24(3), 310–317 (2006).
  • Daw NC, Furman WL, Stewart CF et al. Phase I and pharmacokinetic study of gefitinib in children with refractory solid tumors: a Children’s Oncology Group Study. J. Clin. Oncol.23(25), 6172–6180 (2005).
  • Broniscer A, Laningham FH, Kocak M et al. Intratumoral hemorrhage among children with newly diagnosed, diffuse brainstem glioma. Cancer106(6), 1364–1371 (2006).
  • Bode U, Buchen G, Janssen T et al. Results of a Phase II trial of h-R3 monoclonal antibody (nimotuzumab) in the treatment of resistant or relapsed high-grade gliomas in children and adolescents. J. Clin. Oncol.24(Suppl. 18) (2006) (Abstract 1522).
  • Allen C, Vongpunsawad S, Nakamura T et al. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res.66(24), 11840–11850 (2006).
  • Wang J, Chen P, Su ZF et al. Amplified delivery of indium-111 to EGFR-positive human breast cancer cells. Nucl. Med. Biol.28(8), 895–902 (2001).
  • Yang W, Barth RF, Wu G et al. Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin. Cancer Res.12(12), 3792–3802 (2006).
  • Yip WL, Weyergang A, Berg K, Tonnesen HH, Selbo PK. targeted delivery and enhanced cytotoxicity of cetuximab-saporin by photochemical internalization in EGFR-positive cancer cells. Mol. Pharm.4(2), 241–251 (2007).
  • Pollack IF, Jakacki RI, Blaney SM et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro. Oncol.9(2), 145–160 (2007).
  • Stark-Vance V. Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma. Neuro. Oncol.7, 370 (2005).
  • Vredenburgh JJ, Desjardins A, Herndon JE et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res.13(4), 1253–1259 (2007).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11(1), 69–82 (2007).
  • Dirks PB. Cancer: stem cells and brain tumours. Nature444(7120), 687–688 (2006).
  • Stupp R, Hegi ME. Targeting brain-tumor stem cells. Nat. Biotechnol.25(2), 193–194 (2007).
  • Siegel MJ, Finlay JL, Zacharoulis S. State of the art chemotherapeutic management of pediatric brain tumors. Expert Rev. Neurother.6(5), 765–779 (2006).
  • Fan QW, Knight ZA, Goldenberg DD et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell9(5), 341–349 (2006).
  • Choe G, Horvath S, Cloughesy TF et al. Analysis of the phosphatidylinositol 3´-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res.63(11), 2742–2746 (2003).
  • Klingler-Hoffmann M, Bukczynska P, Tiganis T. Inhibition of phosphatidylinositol 3-kinase signaling negates the growth advantage imparted by a mutant epidermal growth factor receptor on human glioblastoma cells. Int. J. Cancer105(3), 331–339 (2003).
  • Knobbe CB, Trampe-Kieslich A, Reifenberger G. Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas. Neuropathol. Appl. Neurobiol.31(5), 486–490 (2005).
  • Koul D, Shen R, Bergh S et al. Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol. Cancer Ther.5(3), 637–644 (2006).
  • Cheng CL, Johnson SP, Keir ST et al. Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol. Cancer Ther.4(9), 1364–1368 (2005).
  • Curtin NJ, Wang LZ, Yiakouvaki A et al. Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin. Cancer Res.10(3), 881–889 (2004).
  • Miknyoczki SJ, Jones-Bolin S, Pritchard S et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer Ther.2(4), 371–382 (2003).
  • Tentori L, Portarena I, Torino F, Scerrati M, Navarra P, Graziani G. Poly(ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia40(1), 44–54 (2002).
  • Liu L, Gerson SL. Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr. Opin. Investig. Drugs5(6), 623–627 (2004).
  • Yan L, Bulgar A, Miao Y et al. Combined treatment with temozolomide and methoxyamine: blocking apurininc/pyrimidinic site repair coupled with targeting topoisomerase IIα. Clin. Cancer Res.13(5), 1532–1539 (2007).
  • Bouffet E, Perilongo G, Canete A, Massimino M. Intracranial ependymomas in children: a critical review of prognostic factors and a plea for cooperation. Med. Pediatr. Oncol.30(6), 319–329 (1998).
  • Robertson PL, Zeltzer PM, Boyett JM et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J. Neurosurg.88(4), 695–703 (1998).
  • Awaad YM, Allen JC, Miller DC, Schneider SJ, Wisoff J, Epstein FJ. Deferring adjuvant therapy for totally resected intracranial ependymoma. Pediatr. Neurol.14(3), 216–219 (1996).
  • Pollack IF, Gerszten PC, Martinez AJ et al. Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery37(4), 655–666 (1995).
  • Vanuytsel L, Brada M. The role of prophylactic spinal irradiation in localized intracranial ependymoma. Int. J. Radiat. Oncol. Biol. Phys.21(3), 825–830 (1991).
  • Goldwein JW, Corn BW, Finlay JL, Packer RJ, Rorke LB, Schut L. Is craniospinal irradiation required to cure children with malignant (anaplastic) intracranial ependymomas? Cancer67(11), 2766–2771 (1991).
  • Merchant TE, Mulhern RK, Krasin MJ et al. Preliminary results from a Phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol.22(15), 3156–3162 (2004).
  • Bouffet E, Foreman N. Chemotherapy for intracranial ependymomas. Childs Nerv. Syst.15(10), 563–570 (1999).
  • Evans AE, Anderson JR, Lefkowitz-Boudreaux IB, Finlay JL. Adjuvant chemotherapy of childhood posterior fossa ependymoma: cranio-spinal irradiation with or without adjuvant CCNU, vincristine, and prednisone: a Childrens Cancer Group study. Med. Pediatr. Oncol.27(1), 8–14 (1996).
  • Needle MN, Goldwein JW, Grass J et al. Adjuvant chemotherapy for the treatment of intracranial ependymoma of childhood. Cancer80(2), 341–347 (1997).
  • Zacharoulis S, Levy A, Chi SN et al. Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr. Blood Cancer49(1), 34–40 (2007).
  • Grill J, Kalifa C. High dose chemotherapy for childhood ependymona. J. Neurooncol.40(1), 97 (1998).
  • Carter M, Nicholson J, Ross F et al. Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. Br. J. Cancer86(6), 929–939 (2002).
  • Dyer S, Prebble E, Davison V et al. Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am. J. Pathol.161(6), 2133–2141 (2002).
  • Ward S, Harding B, Wilkins P et al. Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma. Genes Chromosomes Cancer32(1), 59–66 (2001).
  • Reardon DA, Entrekin RE, Sublett J et al. Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer24(3), 230–237 (1999).
  • Gilbertson RJ, Bentley L, Hernan R et al. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin. Cancer Res.8(10), 3054–3064 (2002).
  • Poppleton H, Gilbertson RJ. Stem cells of ependymoma. Br. J. Cancer96(1), 6–10 (2007).
  • Taylor MD, Poppleton H, Fuller C et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell8(4), 323–335 (2005).
  • Fan X, Matsui W, Khaki L et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res.66(15), 7445–7452 (2006).
  • Kleinman GM, Hochberg FH, Richardson EP Jr. Systemic metastases from medulloblastoma: report of two cases and review of the literature. Cancer48(10), 2296–2309 (1981).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415(6870), 436–442 (2002).
  • McManamy CS, Lamont JM, Taylor RE et al. Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J. Neuropathol. Exp. Neurol.62(6), 627–632 (2003).
  • Eberhart CG, Kepner JL, Goldthwaite PT et al. Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer94(2), 552–560 (2002).
  • Tait DM, Thornton-Jones H, Bloom HJ, Lemerle J, Morris-Jones P. Adjuvant chemotherapy for medulloblastoma: the first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur. J. Cancer26(4), 464–469 (1990).
  • Evans AE, Jenkin RD, Sposto R et al. The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J. Neurosurg.72(4), 572–582 (1990).
  • Packer RJ, Siegel KR, Sutton LN et al. Efficacy of adjuvant chemotherapy for patients with poor-risk medulloblastoma: a preliminary report. Ann. Neurol.24(4), 503–508 (1988).
  • Taylor RE, Bailey CC, Robinson K et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J. Clin. Oncol.21(8), 1581–1591 (2003).
  • Packer RJ, Sutton LN, Elterman R et al. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J. Neurosurg.81(5), 690–698 (1994).
  • Packer RJ, Goldwein J, Nicholson HS et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J. Clin. Oncol.17(7), 2127–2136 (1999).
  • Pizer BL, Taylor RE, Weston CL et al. Analysis of patients with supratentorial PNET entered in the SIOP PNET III trial. Neuro. Oncol.5(1), 57 (2003).
  • Gandola L, Cefalo G, Massimino M et al. Hyperfractionated accelerated radiotherapy (HART) for metastatic medulloblastoma. Neuro. Oncol.5(1), 39 (2003).
  • Taylor MD, Liu L, Raffel C et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet.31(3), 306–310 (2002).
  • Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/-p53-/- mice. Cancer Cell6(3), 229–240 (2004).
  • Clifford SC, Lusher ME, Lindsey JC et al. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle5(22), 2666–2670 (2006).
  • Dahmen RP, Koch A, Denkhaus D et al. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res.61(19), 7039–7043 (2001).
  • Dakubo GD, Mazerolle CJ, Wallace VA. Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J. Neurooncol.79(3), 221–227 (2006).
  • Eberhart CG, Tihan T, Burger PC. Nuclear localization and mutation of β-catenin in medulloblastomas. J. Neuropathol. Exp. Neurol.59(4), 333–337 (2000).
  • Taylor MD, Zhang X, Liu L et al. Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene23(26), 4577–4583 (2004).
  • Yokota N, Nishizawa S, Ohta S et al. Role of Wnt pathway in medulloblastoma oncogenesis. Int. J. Cancer101(2), 198–201 (2002).
  • Ellison DW, Onilude OE, Lindsey JC et al. β-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol.23(31), 7951–7957 (2005).
  • Grotzer MA, Janss AJ, Fung K et al. TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J. Clin. Oncol.18(5), 1027–1035 (2000).
  • Grotzer MA, Hogarty MD, Janss AJ et al. MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin. Cancer Res.7(8), 2425–2433 (2001).
  • Gilbertson RJ, Pearson AD, Perry RH, Jaros E, Kelly PJ. Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br. J. Cancer71(3), 473–477 (1995).
  • Gilbertson RJ, Perry RH, Kelly PJ, Pearson AD, Lunec J. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res.57(15), 3272–3280 (1997).
  • Dakubo GD, Mazerolle CJ, Wallace VA. Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J. Neurooncol.79(3), 221–227 (2006).
  • Duffner PK, Horowitz ME, Krischer JP et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N. Engl. J. Med.328(24), 1725–1731 (1993).
  • Geyer JR, Zeltzer PM, Boyett JM et al. Survival of infants with primitive neuroectodermal tumors or malignant ependymomas of the CNS treated with eight drugs in 1 day: a report from the Childrens Cancer Group. J. Clin. Oncol.12(8), 1607–1615 (1994).
  • Grill J, Sainte-Rose C, Jouvet A et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol.6(8), 573–580 (2005).
  • Rutkowski S, Bode U, Deinlein F et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med.352(10), 978–986 (2005).
  • Chi SN, Gardner SL, Levy AS et al. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J. Clin. Oncol.22(24), 4881–4887 (2004).
  • Grill J, Le Deley MC, Gambarelli D et al. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J. Clin. Oncol.19(5), 1288–1296 (2001).
  • Zacharoulis S, Levy A, Chi SN et al. Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr. Blood Cancer49(1), 34–40 (2007).
  • Dufour C, Grill J, Lellouch-Tubiana A et al. High-grade glioma in children under 5 years of age: a chemotherapy only approach with the BBSFOP protocol. Eur. J. Cancer42(17), 2939–2945 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.