75
Views
49
CrossRef citations to date
0
Altmetric
Review

Antiangiogenic therapy in brain tumors

&
Pages 1457-1473 | Published online: 09 Jan 2014

References

  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285(21), 1182–1186 (1971).
  • Risau W. Mechanisms of angiogenesis. Nature386(6626), 671–674 (1997).
  • Carmeliet P. Angiogenesis in life, disease and medicine. Nature438(7070), 932–936 (2005).
  • Fidler IJ, Ellis LM. Neoplastic angiogenesis: not all blood vessels are created equal. N. Engl. J. Med.351(3), 215–216 (2004).
  • Los M, Voest EE. The potential role of antivascular therapy in the adjuvant and neoadjuvant treatment of cancer. Semin. Oncol.28(1), 93–105 (2001).
  • Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia53(8), 799–808 (2006).
  • Rijken PF, Bernsen HJ, Peters JP, Hodgkiss RJ, Raleigh JA, van der Kogel AJ. Spatial relationship between hypoxia and the (perfused) vascular network in a human glioma xenograft: a quantitative multi-parameter analysis. Int. J. Radiat. Oncol. Biol. Phys.48(2), 571–582 (2000).
  • Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp. Biol.203(Pt 8), 1253–1263 (2000).
  • Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL. Expression of hypoxia-inducible factor 1α in brain tumors: association with angiogenesis, invasion, and progression. Cancer88(11), 2606–2618 (2000).
  • Du R, Lu KV, Petritsch C et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell13(3), 206–220 (2008).
  • Rempel SA, Dudas S, Ge S, Gutierrez JA. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin. Cancer Res.6(1), 102–111 (2000).
  • De Palma M, Venneri MA, Galli R et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell8(3), 211–226 (2005).
  • Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat. Rev. Mol. Cell Biol.2(4), 257–267 (2001).
  • Behzadian MA, Windsor LJ, Ghaly N, Liou G, Tsai NT, Caldwell RB. VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J.17(6), 752–754 (2003).
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature407(6801), 249–257 (2000).
  • Reiss Y, Machein MR, Plate KH. The role of angiopoietins during angiogenesis in gliomas. Brain Pathol.15(4), 311–317 (2005).
  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature407(6801), 242–248 (2000).
  • Lamszus K, Schmidt NO, Jin L et al. Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int. J. Cancer75(1), 19–28 (1998).
  • Schmidt NO, Westphal M, Hagel C et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer84(1), 10–18 (1999).
  • Chakravarti A, Dicker A, Mehta M. The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int. J. Radiat. Oncol. Biol. Phys.58(3), 927–931 (2004).
  • Choe G, Horvath S, Cloughesy TF et al. Analysis of the phosphatidylinositol 3´-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res.63(11), 2742–2746 (2003).
  • Wang H, Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN. Analysis of the activation status of Akt, NFκB, and Stat3 in human diffuse gliomas. Lab. Invest.84(8), 941–951 (2004).
  • Sun L, Hui AM, Su Q et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell9(4), 287–300 (2006).
  • Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J. Neurooncol.50(1–2), 121–137 (2000).
  • Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev.15(4), 197–204 (2004).
  • Nystrom HC, Lindblom P, Wickman A et al. Platelet-derived growth factor B retention is essential for development of normal structure and function of conduit vessels and capillaries. Cardiovasc. Res.71(3), 557–565 (2006).
  • Wen PY, Yung WK, Lamborn KR et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American brain tumor consortium study 99–08. Clin. Cancer Res.12(16), 4899–4907 (2006).
  • MacDonald TJ, Taga T, Shimada H et al. Preferential susceptibility of brain tumors to the antiangiogenic effects of an α(v) integrin antagonist. Neurosurgery48(1), 151–157 (2001).
  • Longhurst CM, Jennings LK. Integrin-mediated signal transduction. Cell. Mol. Life Sci.54(6), 514–526 (1998).
  • Hu G, Riordan JF, Vallee BL. Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc. Natl Acad. Sci. USA91(25), 12096–12100 (1994).
  • Hu GF, Riordan JF, Vallee BL. A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc. Natl Acad. Sci. USA94(6), 2204–2209 (1997).
  • Jimi S, Ito K, Kohno K et al. Modulation by bovine angiogenin of tubular morphogenesis and expression of plasminogen activator in bovine endothelial cells. Biochem. Biophys. Res. Commun.211(2), 476–483 (1995).
  • Eberle K, Oberpichler A, Trantakis C et al. The expression of angiogenin in tissue samples of different brain tumours and cultured glioma cells. Anticancer Res.20(3A), 1679–1684 (2000).
  • Zadeh G, Qian B, Okhowat A, Sabha N, Kontos CD, Guha A. Targeting the Tie2/Tek receptor in astrocytomas. Am. J. Pathol.164(2), 467–476 (2004).
  • Lee OH, Xu J, Fueyo J et al. Expression of the receptor tyrosine kinase Tie2 in neoplastic glial cells is associated with integrin β1-dependent adhesion to the extracellular matrix. Mol. Cancer Res.4(12), 915–926 (2006).
  • Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-β-deficient mice. Science277(5323), 242–245 (1997).
  • Shih AH, Holland EC. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett.232(2), 139–147 (2006).
  • Jackson EL, Garcia-Verdugo JM, Gil-Perotin S et al. PDGFR α-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron51(2), 187–199 (2006).
  • Hermansson M, Nister M, Betsholtz C, Heldin CH, Westermark B, Funa K. Endothelial cell hyperplasia in human glioblastoma: coexpression of mRNA for platelet-derived growth factor (PDGF) B chain and PDGF receptor suggests autocrine growth stimulation. Proc. Natl Acad. Sci. USA85(20), 7748–7752 (1988).
  • Plate KH, Breier G, Farrell CL, Risau W. Platelet-derived growth factor receptor-β is induced during tumor development and upregulated during tumor progression in endothelial cells in human gliomas. Lab. Invest.67(4), 529–534 (1992).
  • Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-oncology7(4), 452–464 (2005).
  • Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-oncology7(4), 436–451 (2005).
  • Abounader R, Ranganathan S, Lal B et al. Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J. Natl Cancer Inst.91(18), 1548–1556 (1999).
  • Lal B, Xia S, Abounader R, Laterra J. Targeting the c-Met pathway potentiates glioblastoma responses to γ-radiation. Clin. Cancer Res.11(12), 4479–4486 (2005).
  • Burgess T, Coxon A, Meyer S et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res.66(3), 1721–1729 (2006).
  • Cao B, Su Y, Oskarsson M et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc. Natl Acad. Sci. USA98(13), 7443–7448 (2001).
  • Martens T, Schmidt NO, Eckerich C et al. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res.12(20 Pt 1), 6144–6152 (2006).
  • Nagase H, Woessner JF Jr. Matrix metalloproteinases. J. Biol. Chem.274(31), 21491–21494 (1999).
  • Shapiro SD. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol.10(5), 602–608 (1998).
  • Ray JM, Stetler-Stevenson WG. Gelatinase A activity directly modulates melanoma cell adhesion and spreading. EMBO J.14(5), 908–917 (1995).
  • Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol.17463–17516 (2001).
  • Thorns V, Walter GF, Thorns C. Expression of MMP-2, MMP-7, MMP-9, MMP-10 and MMP-11 in human astrocytic and oligodendroglial gliomas. Anticancer Res.23(5A), 3937–3944 (2003).
  • Wang M, Wang T, Liu S, Yoshida D, Teramoto A. The expression of matrix metalloproteinase-2 and -9 in human gliomas of different pathological grades. Brain Tumor Pathol.20(2), 65–72 (2003).
  • Yoshida D, Takahashi H, Teramoto A. Inhibition of glioma angiogenesis and invasion by SI-27, an anti-matrix metalloproteinase agent in a rat brain tumor model. Neurosurgery54(5), 1213–1220 (2004).
  • Lakka SS, Gondi CS, Rao JS. Proteases and glioma angiogenesis. Brain Pathol.15327–15341 (2005).
  • Gondi CS, Lakka SS, Yanamandra N et al. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene22(38), 5967–5975 (2003).
  • Rege TA, Fears CY, Gladson CL. Endogenous inhibitors of angiogenesis in malignant gliomas: nature’s antiangiogenic therapy. Neuro-oncology7(2), 106–121 (2005).
  • O’Reilly MS, Holmgren L, Shing Y et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell79(2), 315–328 (1994).
  • Ma HI, Lin SZ, Chiang YH et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Ther.9(1), 2–11 (2002).
  • Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell Biol.152(6), 1247–1254 (2001).
  • O’Reilly MS, Boehm T, Shing Y et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell88(2), 277–285 (1997).
  • Sasaki T, Fukai N, Mann K, Gohring W, Olsen BR, Timpl R. Structure, function and tissue forms of the C terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. EMBO J.17(15), 4249–4256 (1998).
  • Joki T, Machluf M, Atala A et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol.19(1), 35–39 (2001).
  • Read TA, Farhadi M, Bjerkvig R et al. Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells. Cancer Res.61(18), 6830–6837 (2001).
  • Peroulis I, Jonas N, Saleh M. Antiangiogenic activity of endostatin inhibits C6 glioma growth. Int. J. Cancer97(6), 839–845 (2002).
  • Sorensen DR, Leirdal M, Iversen PO, Sioud M. Combination of endostatin and a protein kinase Cα DNA enzyme improves the survival of rats with malignant glioma. Neoplasia4(6), 474–479 (2002).
  • Schmidt A, Wenzel D, Ferring I et al. Influence of endostatin on embryonic vasculo- and angiogenesis. Dev. Dyn.230(3), 468–480 (2004).
  • Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell92(3), 391–400 (1998).
  • Bello L, Lucini V, Carrabba G et al. Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res.61(24), 8730–8736 (2001).
  • Bello L, Francolini M, Marthyn P et al. α(v)β3 and α(v)β5 integrin expression in glioma periphery. Neurosurgery49(2), 380–389 (2001).
  • Adams JC, Lawler J. The thrombospondins. Int. J. Biochem. Cell Biol.36(6), 961–968 (2004).
  • Volpert OV, Zaichuk T, Zhou W et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat. Med.8(4), 349–357 (2002).
  • Tenan M, Fulci G, Albertoni M et al. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J. Exp. Med.191(10), 1789–1798 (2000).
  • Kragh M, Quistorff B, Tenan M, Van Meir EG, Kristjansen PE. Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma. Cancer Res.62(4), 1191–1195 (2002).
  • Rege TA, Stewart JE Jr, Henkin J, Silverstein RL, Gladson CL. TSP-1 and type 1 repeat domain peptides induce apoptosis of human brain microvascular endothelial cells. Presented at: Second National Meeting of the American Society for Matrix Biology, San Diego, CA, USA, 10–13 November 2004, (Abstract).
  • de Fraipont F, Keramidas M, El AM, Chambaz EM, Berger F, Feige JJ. Expression of the thrombospondin 1 fragment 167–569 in C6 glioma cells stimulates tumorigenicity despite reduced neovascularization. Oncogene23(20), 3642–3649 (2004).
  • Anderson JC, Grammer JR, Wang W et al. ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis. Cancer Biol. Ther.6(3), 454–462 (2007).
  • Deininger MH, Weller M, Streffer J, Mittelbronn M, Meyermann R. Patterns of cyclooxygenase-1 and -2 expression in human gliomas in vivo. Acta Neuropathol.98(3), 240–244 (1999).
  • Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res.61(11), 4375–4381 (2001).
  • Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncology7(2), 122–133 (2005).
  • Charalambous C, Pen LB, Su YS, Milan J, Chen TC, Hofman FM. Interleukin-8 differentially regulates migration of tumor-associated and normal human brain endothelial cells. Cancer Res.65(22), 10347–10354 (2005).
  • Salmaggi A, Gelati M, Pollo B et al. CXCL12 in malignant glial tumors: a possible role in angiogenesis and cross-talk between endothelial and tumoral cells. J. Neurooncol.67(3), 305–317 (2004).
  • Rubin JB, Kung AL, Klein RS et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA100(23), 13513–13518 (2003).
  • Sgadari C, Angiolillo AL, Tosato G. Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood87(9), 3877–3882 (1996).
  • Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res.62(20), 5657–5663 (2002).
  • Allport JR, Shinde Patil VR, Weissleder R. Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via α4-integrin and SDF-1α-dependent mechanisms. Cancer Biol. Ther.3(9), 838–844 (2004).
  • Annabi B, Naud E, Lee YT, Eliopoulos N, Galipeau J. Vascular progenitors derived from murine bone marrow stromal cells are regulated by fibroblast growth factor and are avidly recruited by vascularizing tumors. J. Cell Biochem.91(6), 1146–1158 (2004).
  • Fears CY, Sontheimer HW, Bullard DC, Gladson CL. Could labeled neuronal progenitor cells be used to target glioma tumor endothelium? Cancer Biol. Ther.3(9), 845–846 (2004).
  • Walkley CR, Olsen GH, Dworkin S et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell129(6), 1097–1110 (2007).
  • Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer4(1), 71–78 (2004).
  • Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell11(1), 69–82 (2007).
  • Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche. J. Neurosci. Res.84(8), 1656–1668 (2006).
  • Santarelli JG, Sarkissian V, Hou LC, Veeravagu A, Tse V. Molecular events of brain metastasis. Neurosurg. Focus22(3), E1 (2007).
  • Bao S, Wu Q, Sathornsumetee S et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66(16), 7843–7848 (2006).
  • Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res.67(8), 3560–3564 (2007).
  • Sundberg C, Nagy JA, Brown LF et al. Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor-164 gene delivery. Am. J. Pathol.158(3), 1145–1160 (2001).
  • Kim KJ, Li B, Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature362(6423), 841–844 (1993).
  • Cheng SY, Huang HJ, Nagane M et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA93(16), 8502–8507 (1996).
  • Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature367(6463), 576–579 (1994).
  • Vajkoczy P, Menger MD, Vollmar B et al. Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-1 inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia1(1), 31–41 (1999).
  • Kunkel P, Ulbricht U, Bohlen P et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res.61(18), 6624–6628 (2001).
  • Takano S, Matsumura A. [Anti-angiogenesis treatment for brain tumors: present and future]. No Shinkei Geka34(7), 657–678 (2006).
  • Batchelor TT, Sorensen AG, di TE et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell11(1), 83–95 (2007).
  • Maris JM, Courtright J, Houghton PJ et al. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr. Blood Cancer50(3), 581–587 (2008).
  • Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology66(8), 1258–1260 (2006).
  • Vredenburgh JJ, Desjardins A, Herndon JE et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol.25(30), 4722–4729 (2007).
  • Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from Phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol.3(1), 24–40 (2006).
  • Sathornsumetee S, Cao Y, Marcello JE et al. Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J. Clin. Oncol.26(2), 271–278 (2008).
  • Norden AD, Young GS, Setayesh K et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology70(10), 779–787 (2008).
  • Miraux S, Lemiere S, Pineau R et al. Inhibition of FGF receptor activity in glioma implanted into the mouse brain using the tetracyclin-regulated expression system. Angiogenesis7(2), 105–113 (2004).
  • Takano S, Gately S, Engelhard H, Tsanaclis AM, Brem S. Suramin inhibits glioma cell proliferation in vitro and in the brain. J. Neurooncol.21(3), 189–201 (1994).
  • Grossman SA, Phuphanich S, Lesser G et al. Toxicity, efficacy, and pharmacology of suramin in adults with recurrent high-grade gliomas. J. Clin. Oncol.19(13), 3260–3266 (2001).
  • Laterra JJ, Grossman SA, Carson KA, Lesser GJ, Hochberg FH, Gilbert MR. Suramin and radiotherapy in newly diagnosed glioblastoma: Phase 2 NABTT CNS Consortium study. Neuro-oncology6(1), 15–20 (2004).
  • Geng L, Shinohara ET, Kim D et al. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Int. J. Radiat. Oncol. Biol. Phys.64(1), 263–271 (2006).
  • Kilic T, Alberta JA, Zdunek PR et al. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res.60(18), 5143–5150 (2000).
  • Dresemann G. Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann. Oncol.16(10), 1702–1708 (2005).
  • Reardon DA, Egorin MJ, Quinn JA et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J. Clin. Oncol.23(36), 9359–9368 (2005).
  • Desjardins A, Quinn JA, Vredenburgh JJ et al. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J. Neurooncol.83(1), 53–60 (2007).
  • DeAngelo DJ, Stone RM, Heaney ML et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood108(12), 3674–3681 (2006).
  • Zhang X, Bu XY, Zhen HN, Fei Z, Zhang JN, Fu LA. Expression and localisation of urokinase-type plasminogen activator gene in gliomas. J. Clin. Neurosci.7(2), 116–119 (2000).
  • Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene18(55), 7908–7916 (1999).
  • Kang KB, Wang TT, Woon CT et al. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: inhibition of tumor angiogenesis with extensive tumor necrosis. Int. J. Radiat. Oncol. Biol. Phys.67(3), 888–896 (2007).
  • Nam DH, Park K, Park C et al. Intracranial inhibition of glioma cell growth by cyclooxygenase-2 inhibitor celecoxib. Oncol. Rep.11(2), 263–268 (2004).
  • Reardon DA, Quinn JA, Vredenburgh J et al. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer103(2), 329–338 (2005).
  • Levin VA, Giglio P, Puduvalli VK et al. Combination chemotherapy with 13-cis-retinoic acid and celecoxib in the treatment of glioblastoma multiforme. J. Neurooncol.78(1), 85–90 (2006).
  • Solomon SD, McMurray JJ, Pfeffer MA et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med.352(11), 1071–1080 (2005).
  • Li L, Lin X, Shoemaker AR, Albert DH, Fesik SW, Shen Y. Hypoxia-inducible factor-1 inhibition in combination with temozolomide treatment exhibits robust antitumor efficacy in vivo. Clin. Cancer Res.12(15), 4747–4754 (2006).
  • Kang SH, Cho HT, Devi S et al. Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res.66(24), 11991–11997 (2006).
  • Del Bufalo D, Ciuffreda L, Trisciuoglio D et al. Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res.66(11), 5549–5554 (2006).
  • Chang SM, Wen P, Cloughesy T et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest. New Drugs23(4), 357–361 (2005).
  • Galanis E, Buckner JC, Maurer MJ et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a north central cancer treatment group study. J. Clin. Oncol.23(23), 5294–5304 (2005).
  • Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ. Interferons α and β down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl Acad. Sci. USA92(10), 4562–4566 (1995).
  • Chang E, Boyd A, Nelson CC et al. Successful treatment of infantile hemangiomas with interferon-α-2b. J. Pediatr. Hematol. Oncol.19(3), 237–244 (1997).
  • Wakabayashi T, Natsume A, Hashizume Y, Fujii M, Mizuno M, Yoshida J. A Phase I clinical trial of interferon-β gene therapy for high-grade glioma: novel findings from gene expression profiling and autopsy. J. Gene Med.10(4), 329–339 (2008).
  • Colman H, Berkey BA, Maor MH et al. Phase II Radiation Therapy Oncology Group trial of conventional radiation therapy followed by treatment with recombinant interferon-β for supratentorial glioblastoma: results of RTOG 9710. Int. J. Radiat. Oncol. Biol. Phys.66(3), 818–824 (2006).
  • Aoki T, Takahashi JA, Ueba T et al. Phase II study of nimustine, carboplatin, vincristine, and interferon-β with radiotherapy for glioblastoma multiforme: experience of the Kyoto Neuro-Oncology Group. J. Neurosurg.105(3), 385–391 (2006).
  • D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. USA91(9), 4082–4085 (1994).
  • Volcker HE. Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch. Clin. Exp. Ophthalmol.236461–236466 (1998).
  • Fine HA, Figg WD, Jaeckle K et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J. Clin. Oncol.18(4), 708–715 (2000).
  • Son MJ, Kim JS, Kim MH et al. Combination treatment with temozolomide and thalidomide inhibits tumor growth and angiogenesis in an orthotopic glioma model. Int. J. Oncol.28(1), 53–59 (2006).
  • Baumann F, Bjeljac M, Kollias SS et al. Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J. Neurooncol.67(1–2), 191–200 (2004).
  • Chang SM, Lamborn KR, Malec M et al. Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys.60(2), 353–357 (2004).
  • Fine HA, Wen PY, Maher EA et al. Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J. Clin. Oncol.21(12), 2299–2304 (2003).
  • Lee JI, Itasaka S, Kim JT, Nam DH. Antiangiogenic agent, thalidomide increases the antitumor effect of single high dose irradiation (gamma knife radiosurgery) in the rat orthotopic glioma model. Oncol. Rep.15(5), 1163–1168 (2006).
  • Murphy S, Davey RA, Gu XQ et al. Enhancement of cisplatin efficacy by thalidomide in a 9L rat gliosarcoma model. J. Neurooncol.85(2), 181–189 (2007).
  • Rabbani G, Benzil D, Wallam MN et al. Combination therapy with thalidomide, temozolomide and tamoxifen improves quality of life in patients with malignant astrocytomas. Anticancer Res.27(4C), 2729–2736 (2007).
  • Puduvalli VK, Giglio P, Groves MD et al. Phase II trial of irinotecan and thalidomide in adults with recurrent glioblastoma multiforme. Neuro-oncology10(2), 216–222 (2008).
  • Fine HA, Kim L, Albert PS et al. A Phase I trial of lenalidomide in patients with recurrent primary central nervous system tumors. Clin. Cancer Res.13(23), 7101–7106 (2007).
  • Liao F, Doody JF, Overholser J et al. Selective targeting of angiogenic tumor vasculature by vascular endothelial–cadherin antibody inhibits tumor growth without affecting vascular permeability. Cancer Res.62(9), 2567–2575 (2002).
  • Shaheen RM, Ahmad SA, Liu W et al. Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors. Br. J. Cancer85(4), 584–589 (2001).
  • Burrows FJ, Thorpe PE. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc. Natl Acad. Sci. USA90(19), 8996–9000 (1993).
  • Okaji Y, Tsuno NH, Saito S et al. Vaccines targeting tumour angiogenesis – a novel strategy for cancer immunotherapy. Eur. J. Surg. Oncol.32(4), 363–370 (2006).
  • Okaji Y, Tsuno NH, Tanaka M et al. Pilot study of anti-angiogenic vaccine using fixed whole endothelium in patients with progressive malignancy after failure of conventional therapy. Eur. J. Cancer44(3), 383–390 (2008).
  • Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111(9), 1287–1295 (2003).
  • Nakamizo A, Marini F, Amano T et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res.65(8), 3307–3318 (2005).
  • Kanehira M, Xin H, Hoshino K et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther.14(11), 894–903 (2007).
  • Fenton BM, Paoni SF, Ding I. Effect of VEGF receptor-2 antibody on vascular function and oxygenation in spontaneous and transplanted tumors. Radiother. Oncol.72(2), 221–230 (2004).
  • Ma J, Pulfer S, Li S, Chu J, Reed K, Gallo JM. Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res.61(14), 5491–5498 (2001).
  • Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med.7(9), 987–989 (2001).
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307(5706), 58–62 (2005).
  • Kang MK, Kang SK. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev.16(5), 837–847 (2007).
  • Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444(7120), 756–760 (2006).
  • Parthymou A, Kardamakis D, Pavlopoulos I, Papadimitriou E. Irradiated C6 glioma cells induce angiogenesis in vivo and activate endothelial cells in vitro. Int. J. Cancer110(6), 807–814 (2004).
  • Bertolini F, Mancuso P, Shaked Y, Kerbel RS. Molecular and cellular biomarkers for angiogenesis in clinical oncology. Drug Discov. Today12(19–20), 806–812 (2007).
  • Onguru O, Gamsizkan M, Ulutin C, Gunhan O. Cyclooxygenase-2 (Cox-2) expression and angiogenesis in glioblastoma. Neuropathology28(1), 29–34 (2008).
  • Di IA, Grizzi F, Ceva-Grimaldi G et al. Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J. Anat.211(5), 673–680 (2007).
  • Grizzi F, Colombo P, Taverna G et al. Geometry of human vascular system: is it an obstacle for quantifying antiangiogenic therapies? Appl. Immunohistochem. Mol. Morphol.15(2), 134–139 (2007).
  • Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53 status on tumor response to antiangiogenic therapy. Science295(5559), 1526–1528 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.