64
Views
4
CrossRef citations to date
0
Altmetric
Review

Epigenetic markers in human gliomas: prospects for therapeutic intervention

, &
Pages 1475-1496 | Published online: 09 Jan 2014

References

  • Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J. Clin.55(2), 74–108 (2005).
  • Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu. Rev. Neurosci.24, 385–428 (2001).
  • Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63(18), 5821–5828 (2003).
  • Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA100(25), 15178–15183 (2003).
  • Scherer HJ. Cerebral astrocytomas and their derivatives. Am. J. Cancer40, 159–198 (1940).
  • Kleihues P, Burger PC, Scheithauer BW. Histological typing of tumours of the central nervous system. In: World Health Organization International Histological Classification of Tumours (Edition 2). Springer Verlag Berlin, Germany (1993).
  • Louis DN, Pomeroy SL, Cairncross JG. Focus on central nervous system neoplasia. Cancer Cell1(2), 125–128 (2002).
  • Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre Phase III trial. Lancet Oncol.7(5), 392–401 (2006).
  • Walker MD, Green SB, Byar DP et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N. Engl. J. Med.303(23), 1323–1329 (1980).
  • Walker MD, Alexander E Jr, Hunt WE et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg.49(3), 333–343 (1978).
  • Salazar OM, Rubin P, Feldstein ML, Pizzutiello R. High dose radiation therapy in the treatment of malignant gliomas: final report. Int. J. Radiat. Oncol. Biol. Phys.5(10), 1733–1740 (1979).
  • Ramsey RG, Brand WN. Radiotherapy of glioblastoma multiforme. J. Neurosurg.39(2), 197–202 (1973).
  • Shapiro WR, Green SB, Burger PC et al. Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. J. Neurosurg.71(1), 1–9 (1989).
  • Marks JE, Baglan RJ, Prassad SC, Blank WF. Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int. J. Radiat. Oncol. Biol. Phys.7(2), 243–252 (1981).
  • Reardon DA, Akabani G, Coleman RE et al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol.20(5), 1389–1397 (2002).
  • Reardon DA, Akabani G, Coleman RE et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: Phase II study results. J. Clin. Oncol.24(1), 115–122 (2006).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Spiegel BM, Esrailian E, Laine L, Chamberlain MC. Clinical impact of adjuvant chemotherapy in glioblastoma multiforme : a meta-analysis. CNS Drugs21(9), 775–787 (2007).
  • Osborne RH, Houben MP, Tijssen CC, Coebergh JW, van Duijn CM. The genetic epidemiology of glioma. Neurology57(10), 1751–1755 (2001).
  • Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat. Rev. Genet.2(2), 120–129 (2001).
  • Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP. Molecular-genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am. J. Pathol.145(5), 1175–1190 (1994).
  • Bello MJ, Leone PE, Vaquero J et al. Allelic loss at 1p and 19q frequently occurs in association and may represent early oncogenic events in oligodendroglial tumors. Int. J. Cancer64(3), 207–210 (1995).
  • Jenkins RB, Blair H, Ballman KV et al. A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res.66(20), 9852–9861 (2006).
  • Griffin CA, Burger P, Morsberger L et al. Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss. J. Neuropathol. Exp. Neurol.65(10), 988–994 (2006).
  • Sasaki H, Zlatescu MC, Betensky RA, Ino Y, Cairncross JG, Louis DN. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am. J. Pathol.159(1), 359–367 (2001).
  • Kleihues P, Ohgaki H. Phenotype vs genotype in the evolution of astrocytic brain tumors. Toxicol. Pathol.28(1), 164–170 (2000).
  • Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N. Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br. J. Cancer82(6), 1218–1222 (2000).
  • White FV, Anthony DC, Yunis EJ, Tarbell NJ, Scot RM, Schofield DE. Nonrandom chromosomal gains in pilocytic astrocytomas of childhood. Hum. Pathol.26(9), 979–986 (1995).
  • Jones DT, Ichimura K, Liu L, Pearson DM, Plant K, Collins VP. Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J. Neuropathol. Exp. Neurol.65(11), 1049–1058 (2006).
  • Smith JS, Alderete B, Minn Y et al. Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene18(28), 4144–4152 (1999).
  • Cairncross JG, Ueki K, Zlatescu MC et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J. Natl Cancer Inst.90(19), 1473–1479 (1998).
  • van den Bent MJ, Chinot O, Boogerd W et al. Second-line chemotherapy with temozolomide in recurrent oligodendroglioma after PCV (procarbazine, lomustine and vincristine) chemotherapy: EORTC brain tumor group Phase II study 26972. Ann. Oncol.14(4), 599–602 (2003).
  • Kouwenhoven MCM, Kros JM, French PJ et al. 1p/19q loss within oligodendroglioma is predictive for response to first line temozolomide but not to salvage treatment. Eur. J. Cancer42(15), 2499–2503 (2006).
  • Brandes AA, Tosoni A, Cavallo G et al. Temozolomide (TMZ) 3 weeks on/1 week off in the treatment of progressive low grade gliomas: a Phase II GICNO study. J. Clin. Oncol.24(18), 61S (2006).
  • Hoh J, Jin S, Parrado T, Edington J, Levine AJ, Ott J. The p53MH algorithm and its application in detecting p53-responsive genes. Proc. Natl Acad. Sci. USA99(13), 8467–8472 (2002).
  • Levine AJ, Hu W, Feng Z. The p53 pathway: what questions remain to be explored? Cell Death Differ.13(6), 1027–1036 (2006).
  • Malkin D. The role of p53 in human cancer. J. Neurooncol.51(3), 231–243 (2001).
  • Vousden KH, Lu X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer2(8), 594–604 (2002).
  • Louis DN. The p53 gene and protein in human brain-tumors. J. Neuropathol. Exp. Neurol.53(1), 11–21 (1994).
  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol.6(3), 217–223 (1996).
  • Watanabe K, Sato K, Biernat W et al. Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin. Cancer Res.3(4), 523–530 (1997).
  • el Deiry WS, Tokino T, Velculescu VE et al. WAF1, a potential mediator of p53 tumor suppression. Cell75(4), 817–825 (1993).
  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell75(4), 805–816 (1993).
  • Koopmann J, Maintz D, Schild S et al. Multiple polymorphisms, but no mutations, in the WAF1/CIP1 gene in human brain tumours. Br. J Cancer72(5), 1230–1233 (1995).
  • Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res.53(12), 2736–2739 (1993).
  • Nakamura M, Watanabe T, Klangby U et al.p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol.11(2), 159–168 (2001).
  • Kapoor GS, O’Rourke DM. Mitogenic signaling cascades in glial tumors. Neurosurgery52(6), 1425–1434 (2003).
  • Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc. Natl Acad. Sci. USA84(19), 6899–6903 (1987).
  • Bigner SH, Humphrey PA, Wong AJ et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res.50(24), 8017–8022 (1990).
  • Biernat W, Huang H, Yokoo H, Kleihues P, Ohgaki H. Predominant expression of mutant EGFR (EGFRvIII) is rare in primary glioblastomas. Brain Pathol.14(2), 131–136 (2004).
  • Humphrey PA, Wong AJ, Vogelstein B et al. Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl Acad. Sci. USA87(11), 4207–4211 (1990).
  • Wong AJ, Ruppert JM, Bigner SH et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl Acad. Sci. USA89(7), 2965–2969 (1992).
  • Bentzen SM, Atasoy BM, Daley FM et al. Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J. Clin. Oncol.23(24), 5560–5567 (2005).
  • Eriksen JG, Steiniche T, Askaa J, Alsner J, Overgaard J. The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck. Int. J. Radiat. Oncol. Biol. Phys.58(2), 561–566 (2004).
  • Houillier C, Lejeune J, Benouaich-Amiel A et al. Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer106(10), 2218–2223 (2006).
  • Zhu A, Shaeffer J, Leslie S, Kolm P, El Mahdi AM. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation. Int. J. Radiat. Oncol. Biol. Phys.34(4), 809–815 (1996).
  • Rasheed BK, McLendon RE, Friedman HS et al. Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene10(11), 2243–2246 (1995).
  • Fults D, Pedone CA, Thompson GE et al. Microsatellite deletion mapping on chromosome 10q and mutation analysis of MMAC1, FAS, and MXI1 in human glioblastoma multiforme. Int. J. Oncol.12(4), 905–910 (1998).
  • Schmidt EE, Ichimura K, Goike HM, Moshref A, Liu L, Collins VP. Mutational profile of the PTEN gene in primary human astrocytic tumors and cultivated xenografts. J. Neuropathol. Exp. Neurol.58(11), 1170–1183 (1999).
  • Kitange GJ, Templeton KL, Jenkins RB. Recent advances in the molecular genetics of primary gliomas. Curr. Opin. Oncol.15(3), 197–203 (2003).
  • Chow LM, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett.241(2), 184–196 (2006).
  • Chang N, El Hayek YH, Gomez E, Wan Q. Phosphatase PTEN in neuronal injury and brain disorders. Trends Neurosci.30(11), 581–586 (2007).
  • Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature366(6456), 704–707 (1993).
  • Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell2(2), 103–112 (2002).
  • Henson JW, Schnitker BL, Correa KM et al. The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann. Neurol.36(5), 714–721 (1994).
  • Feinberg AP, Tycko B. Timeline: the history of cancer epigenetics. Nat. Rev. Cancer4(2), 143–153 (2004).
  • Laird PW. The power and the promise of DNA methylation markers. Nat. Rev. Cancer3(4), 253–266 (2003).
  • Bird AP, Wolffe AP. Methylation-induced repression: belts, braces, and chromatin. Cell99(5), 451–454 (1999).
  • Herman JG, Baylin SB. Mechanisms of disease: gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349(21), 2042–2054 (2003).
  • Esteller M. Molecular origins of cancer: epigenetics in cancer. N. Engl. J. Med.358(11), 1148–1159 (2008).
  • Nan XS, Ng HH, Johnson CA et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393(6683), 386–389 (1998).
  • Robertson KD. DNA methylation and chromatin – unraveling the tangled web. Oncogene21(35), 5361–5379 (2002).
  • Costello JF. DNA methylation in brain development and gliomagenesis. Front. Biosci.8, S175–S184 (2003).
  • Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol.196(1), 1–7 (2002).
  • Lyon MF. X-chromosome inactivation. Curr. Biol.9(7), R235–R237 (1999).
  • Kierszenbaum AL. Genomic imprinting and epigenetic reprogramming: unearthing the garden of forking paths. Mol. Reprod. Dev.63(3), 269–272 (2002).
  • Pfeifer K. Mechanisms of genomic imprinting. Am. J. Hum. Gen.67(4), 777–787 (2000).
  • Feinberg AP. Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction. Cancer Res.59(7), 1743S–1746S (1999).
  • Shen L, Kondo Y, Guo Y et al. Genome-wide profiling reveals a class of normally methylated CpG island promoters. PLoS Genet.3(10), 2023–2036 (2007).
  • Xu GL, Bestor TH, Bourc’his D et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402(6758), 187–191 (1999).
  • Webb T, Latif F. Rett syndrome and the MECP2 gene. J. Med. Genet.38(4), 217–223 (2001).
  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.23(2), 185–188 (1999).
  • Costello JF, Plass C. Methylation matters. J. Med. Genet.38(5), 285–303 (2001).
  • Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301(5895), 89–92 (1983).
  • Gamasosa MA, Slagel VA, Trewyn RW et al. The 5-methylcytosine content of DNA from human-tumors. Nucleic Acids Res.11(19), 6883–6894 (1983).
  • Lusher ME, Lindsey JC, Latif F, Pearson ADJ, Ellison DW, Clifford SC. Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer Res.62(20), 5906–5911 (2002).
  • Riemenschneider MJ, Reifenberger J, Reifenberger G. Frequent biallelic inactivation and transcriptional silencing of the DIRAS3 gene at 1p31 in oligodendroglial tumors with 1p loss. Int. J. Cancer122(11), 2503–2510 (2008).
  • Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet.83(2), 155–158 (1989).
  • Ohtanifujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene8(4), 1063–1067 (1993).
  • Gonzalezzulueta M, Bender CM, Yang AS et al. Methylation of the 5´-CpG island of the p16/CDKN2 tumor-suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res.55(20), 4531–4535 (1995).
  • Herman JG, Latif F, Weng Y et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA91(21), 9700–9704 (1994).
  • Graff JR, Herman JG, Lapidus RG et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res.55(22), 5195–5199 (1995).
  • Herman JG, Merlo A, Mao L et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res.55(20), 4525–4530 (1995).
  • Robertson KD, Jones PA. Tissue-specific alternative splicing in the human INK4a/ARF cell cycle regulatory locus. Oncogene18(26), 3810–3820 (1999).
  • Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat. Genet.38(5), 540–549 (2006).
  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21(WAF1) expression and gene-associated histone acetylation. Proc. Natl Acad. Sci. USA97(18), 10014–10019 (2000).
  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J.22(20), 5323–5335 (2003).
  • Cloos PAC, Christensen J, Agger K et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature442(7100), 307–311 (2006).
  • Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet.16(R1), R50–R59 (2007).
  • Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res.61(8), 3225–3229 (2001).
  • Dong SM, Pang JCS, Poon WS et al. Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J. Neuropathol. Exp. Neurol.60(8), 808–816 (2001).
  • Alonso ME, Bello MJ, Gonzalez-Gomez P et al. Aberrant promoter methylation of multiple genes in oligodendrogliomas and ependymomas. Cancer Genet. Cytogenet.144(2), 134–142 (2003).
  • Fukushima T, Katayama Y, Watanabe T et al. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea. Clin. Cancer Res.11(4), 1539–1544 (2005).
  • Amatya VJ, Naumann U, Weller M, Ohgaki H. TP53 promoter methylation in human gliomas. Acta Neuropathol.110(2), 178–184 (2005).
  • Baeza N, Weller M, Yonekawa Y, Kleihues P, Ohgaki H. PTEN methylation and expression in glioblastomas. Acta Neuropathol.106(5), 479–485 (2003).
  • Costello JF, Berger MS, Huang HJS, Cavenee WK. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res.56(10), 2405–2410 (1996).
  • Esteller M, Garcia-Foncillas J, Andion E et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med.343(19), 1350–1354 (2000).
  • Wolter M, Reifenberger J, Blaschke B et al. Oligodendroglial tumors frequently demonstrate hypermethylation of the CDKN2A (MTS1, p16INK4a), p14ARF and CDKN2B (MTS2, p15INK4b) tumor suppressor genes. J. Neuropathol. Exp. Neurol.60(12), 1170–1180 (2001).
  • Uhlmann K, Rohde K, Zeller C et al. Distinct methylation profiles of glioma subtypes. Int. J. Cancer106(1), 52–59 (2003).
  • Gonzalez-Gomez P, Bello MJ, Lomas J et al. Epigenetic changes in pilocytic astrocytomas and medulloblastomas. Int. J. Mol. Med.11(5), 655–660 (2003).
  • Gonzalez-Gomez P, Bello MJ, Arjona D et al. Promoter hypermethylation of multiple genes in astrocytic gliomas. Int. J. Oncol.22(3), 601–608 (2003).
  • Rousseau E, Ruchoux MM, Scaravilli F et al. CDKN2A, CDKN2B and p14(ARF) are frequently and differentially methylated in ependymal tumours. Neuropathol. Appl. Neurobiol.29(6), 574–583 (2003).
  • Hirose Y, Aldape K, Bollen A et al. Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am. J. Pathol.158(3), 1137–1143 (2001).
  • Herman JG, Umar A, Polyak K et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA95(12), 6870–6875 (1998).
  • Kanamori M, Kon H, Nobukuni T et al. Microsatellite instability and the PTEN1 gene mutation in a subset of early onset gliomas carrying germline mutation or promoter methylation of the hMLH1 gene. Oncogene19(12), 1564–1571 (2000).
  • Wei QY, Bondy ML, Mao L et al. Reduced expression of mismatch repair genes measured by multiplex reverse transcription polymerase chain reaction in human gliomas. Cancer Res.57(9), 1673–1677 (1997).
  • Krex D, Klink B, Hartmann C et al. Long-term survival with glioblastoma multiforme. Brain130(Pt 10), 2596–2606 (2007).
  • Martinez R, Schackert G, Esteller M. Hypermethylation of the proapoptotic gene TMS1/ASC: prognostic importance in glioblastoma multiforme. J. Neurooncol.82(2), 133–139 (2007).
  • Stone AR, Bobo W, Brat DJ, Devi NS, Van Meir EG, Vertino PM. Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma. Am. J. Pathol.165(4), 1151–1161 (2004).
  • Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol.170(5), 1445–1453 (2007).
  • Nakamura M, Watanabe T, Klangby U et al.p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol.11(2), 159–168 (2001).
  • Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H. Promoter hypermethylation of the RB1 gene in glioblastomas. Lab. Invest.81(1), 77–82 (2001).
  • Nakamura M, Watanabe T, Yonekawa Y, Kleihues P, Ohgaki H. Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C→A:T mutations of the TP53 tumor suppressor gene. Carcinogenesis22(10), 1715–1719 (2001).
  • Nakamura M, Ishida E, Shimada K et al. Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab. Invest.85(2), 165–175 (2005).
  • Martinez R, Setien F, Voelter C et al. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis28(6), 1264–1268 (2007).
  • Jiang Z, Li XG, Hu J et al. Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci. Res.56(4), 450–458 (2006).
  • Roman-Gomez J, Jimenez-Velasco A, Castillejo JA et al. Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood104(8), 2492–2498 (2004).
  • Jimenez-Velasco A, Roman-Gomez J, Agirre X et al. Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukemia19(12), 2347–2350 (2005).
  • Takahashi Y, Miyoshi Y, Takahata C et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res.11(4), 1380–1385 (2005).
  • Yang X, Li DM, Chen W, Xu T. Human homologue of Drosophila lats, LATS1, negatively regulate growth by inducing G2/M arrest or apoptosis. Oncogene20(45), 6516–6523 (2001).
  • Kuninaka S, Nomura M, Hirota T et al. The tumor suppressor WARTS activates the Omi/HtrA2-dependent pathway of cell death. Oncogene24(34), 5287–5298 (2005).
  • Iida S, Hirota T, Morisaki T et al. Tumor suppressor WARTS ensures genomic integrity by regulating both mitotic progression and G1 tetraploidy checkpoint function. Oncogene23(31), 5266–5274 (2004).
  • Bothos J, Tuttle RL, Ottey M, Luca FC, Halazonetis TD. Human LATS1 is a mitotic exit network kinase. Cancer Res.65(15), 6568–6575 (2005).
  • Yang XL, Yu KP, Hao YW et al. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat. Cell Biol.6(7), 609–617 (2004).
  • Guo C, Tommasi S, Liu LM, Yee JK, Dammann R, Pfeifer GP. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr. Biol.17(8), 700–705 (2007).
  • Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis. Markers23(1–2), 73–87 (2007).
  • Hesson L, Bieche I, Krex D et al. Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas. Oncogene23(13), 2408–2419 (2004).
  • Hamilton DW, Lusher ME, Lindsey JC, Ellison DW, Clifford SC. Epigenetic inactivation of the RASSF1A tumour suppressor gene in ependymoma. Cancer Lett.227(1), 75–81 (2005).
  • Horiguchi K, Tomizawa Y, Tosaka M et al. Epigenetic inactivation of RASSF1A candidate tumor suppressor gene at 3p21.3 in brain tumors. Oncogene22(49), 7862–7865 (2003).
  • Hesson LB, Cooper WN, Latif F. Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene26(52), 7283–7301 (2007).
  • Agathanggelou A, Dallol A, Zochbauer-Muller S et al. Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene22(10), 1580–1588 (2003).
  • Dallol A, Krex D, Hesson L, Eng C, Maher ER, Latif F. Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene22(29), 4611–4616 (2003).
  • Costello JF, Fruhwald MC, Smiraglia DJ et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet.24(2), 132–138 (2000).
  • Zardo G, Tiirikainen MI, Hong CB et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet.32(3), 453–458 (2002).
  • Hong CB, Moorefield KS, Jun P et al. Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. Proc. Natl Acad. Sci. USA104(26), 10974–10979 (2007).
  • Hong CB, Maunakea A, Jun P et al. Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor SLC5A8. Cancer Res.65(9), 3617–3623 (2005).
  • Kim TY, Zhong S, Fields CR, Kim JH, Robertson KD. Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. Cancer Res.66(15), 7490–7501 (2006).
  • Naumann U, Schmidt F, Wick W et al. Adenoviral natural born killer gene therapy for malignant glioma. Hum. Gene Ther.14(13), 1235–1246 (2003).
  • Gillissen B, Essmann F, Graupner V et al. Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. EMBO J.22(14), 3580–3590 (2003).
  • Tong Y, Yang Q, Vater C et al. The pro-apoptotic protein, Bik, exhibits potent antitumor activity that is dependent on its BH3 domain. Mol. Cancer Ther.1(2), 95–102 (2001).
  • Bredel M, Bredel C, Juric D et al. High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res.65(10), 4088–4096 (2005).
  • Foltz G, Ryu GY, Yoon JG et al. Genome-wide analysis of epigenetic silencing identifies BEX1 and BEX2 as candidate tumor suppressor genes in malignant glioma. Cancer Res.66(13), 6665–6674 (2006).
  • Mueller W, Nutt CL, Ehrich M et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene26(4), 583–593 (2007).
  • Bello MJ, Leone PE, Nebreda P et al. Allelic status of chromosome-1 in neoplasms of the nervous-system. Cancer Genet. Cytogenet.83(2), 160–164 (1995).
  • Smith LS, Tachibana I, Lee HK et al. Mapping of the chromosome 19 q-arm glioma tumor suppressor gene using fluorescence in situ hybridization and novel microsatellite markers. Genes Chromosomes Cancer29(1), 16–25 (2000).
  • Iuchi T, Namba H, Iwadate Y et al. Identification of the small interstitial deletion at chromosome band 1p34-p35 and its association with poor outcome in oligodendroglial tumors. Genes Chromosomes Cancer35(2), 170–175 (2002).
  • Tews B, Roerig P, Hartmann C et al. Hypermethylation and transcriptional downregulation of the CITED4 gene at 1p34.2 in oligodendroglial tumours with allelic losses on 1p and 19q. Oncogene26(34), 5010–5016 (2007).
  • Watanabe T, Huang HT, Nakamura M et al. Methylation of the p73 gene in gliomas. Acta Neuropathol.104(4), 357–362 (2002).
  • McDonald JM, Dunmire V, Taylor E et al. Attenuated expression of DFFB is a hallmark of oligodendrogliomas with 1p-allelic loss. Mol. Cancer4, 35 (2005).
  • McDonald JM, Dunlap S, Cogdell D et al. The SHREW1 gene, frequently deleted in oligodendrogliomas, functions to inhibit cell adhesion and migration. Cancer Biol. Ther.5(3), 300–304 (2006).
  • Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin. Cancer Res.11(3), 1119–1128 (2005).
  • Dong SM, Pang JCS, Hu J, Zhou LF, Ng HK. Transcriptional inactivation of TP73 expression in oligodendroglial tumors. Int. J. Cancer98(3), 370–375 (2002).
  • Cadieux B, Ching TT, VandenBerg SR, Costello JF. Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res.66(17), 8469–8476 (2006).
  • Pike BL, Greiner TC, Wang X et al. DNA methylation profiles in diffuse large B-cell lymphoma and their relationship to gene expression status. Leukemia22(5), 1035–1043 (2008).
  • Hong C, Bollen AW, Costello JF. The contribution of genetic and epigenetic mechanisms to gene silencing in oligodendrogliomas. Cancer Res.63(22), 7600–7605 (2003).
  • Alaminos M, Davalos V, Ropero S et al.EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. Cancer Res.65(7), 2565–2571 (2005).
  • Tews B, Felsberg J, Hartmann C et al. Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int. J. Cancer119(4), 792–800 (2006).
  • Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer4(4), 296–307 (2004).
  • Hegi ME, Diserens AC, Godard S et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res.10(6), 1871–1874 (2004).
  • Bello MJ, Alonso ME, Aminoso C et al. Hypermethylation of the DNA repair gene MGMT: association with TP53 G:C to A:T transitions in a series of 469 nervous system tumors. Mutat. Res.554(1–2), 23–32 (2004).
  • Esteller M, Herman JG. Generating mutations but providing chemosensitivity: the role of O-6-methylguanine DNA methyltransferase in human cancer. Oncogene23(1), 1–8 (2004).
  • Esteller M, Silva JM, Dominguez G et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl Cancer Inst.92(7), 564–569 (2000).
  • Agrelo R, Cheng W H, Setien F et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl Acad. Sci. USA103(23), 8822–8827 (2006).
  • Alonso MM, Gomez-Manzano C, Bekele BN, Yung WKA, Fueyo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O-6-methylguanine-DNA methyltransferase promoter. Cancer Res.67(24), 11499–11504 (2007).
  • Mack GS. Epigenetic cancer therapy makes headway. J. Natl Cancer Inst.98(20), 1443–1444 (2006).
  • Dulaimi E, Uzzo RG, Greenberg RE, Al Saleem T, Cairns P. Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin. Cancer Res.10(6), 1887–1893 (2004).
  • Battagli C, Uzzo RG, Dulaimi E et al. Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res.63(24), 8695–8699 (2003).
  • Ibanez de Caceres I, Battagli C, Esteller M et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res.64(18), 6476–6481 (2004).
  • Muller HM, Widschwendter A, Fiegl H et al. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res.63(22), 7641–7645 (2003).
  • Topaloglu O, Hoque MO, Tokumaru Y et al. Detection of promoter hypermethylation of multiple genes in the tumor and bronchoalveolar lavage of patients with lung cancer. Clin. Cancer Res.10(7), 2284–2288 (2004).
  • Belinsky SA, Klinge DM, Dekker JD et al. Gene promoter methylation in plasma and sputum increases with lung cancer risk. Clin. Cancer Res.11(18), 6505–6511 (2005).
  • Muller HM, Oberwalder M, Fiegl H et al. Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet363(9417), 1283–1285 (2004).
  • Balana C, Ramirez JL, Taron M et al.O-6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin. Cancer Res.9(4), 1461–1468 (2003).
  • Michalowski MB, de Fraipont F, Michelland S et al. Methylation of RASSFIA and TRAIL pathway-related genes is frequent in childhood intracranial ependymornas and benign choroid plexus papilloma. Cancer Genet. Cytogenet.166(1), 74–81 (2006).
  • Alonso ME, Bello MJ, Gonzalez-Gomez P et al. Aberrant CpG island methylation of multiple genes in ependymal tumors. J. Neurooncol.67(1–2), 159–165 (2004).
  • Yu J, Zhang HY, Gu J et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer4, 65 (2004).
  • Li Q, Jedlicka A, Ahuja N et al. Concordant methylation of the ER and N33 genes in glioblastoma multiforme. Oncogene16(24), 3197–3202 (1998).
  • Mollemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int. J. Cancer113(3), 379–385 (2005).
  • Kamiryo T, Tada K, Shiraishi S, Shinojima N, Kochi M, Ushio Y. Correlation between promoter hypermethylation of the O-6-methylguanine-deoxyribonucleic acid methyltransferase gene and prognosis in patients with high-grade astrocytic tumors treated with surgery, radiotherapy, and 1-(4-amino-2-methyl-5-primidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea-based chemotherapy. Neurosurgery54(2), 349–357 (2004).
  • Hegi ME, Diserens A, Gorlia T et al.MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med.352(10), 997–1003 (2005).
  • Bello MJ, Rey JA. The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. Cancer Genet. Cytogenet.164(2), 172–173 (2006).
  • Ohta T, Watanabe T, Katayama Y et al. Aberrant promoter hypermethylation profile of cell cycle regulatory genes in malignant astrocytomas. Oncol. Rep.16(5), 957–963 (2006).
  • Waha A, Guntner S, Huang THM et al. Identification of protocadherin PCDH-g-A11 as a frequent target for epigenetic silencing in astrocytomas by CpG island microarray analysis. Acta Neuropathol.108(4), 352 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.