575
Views
418
CrossRef citations to date
0
Altmetric
Review

Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications

, , &
Pages 1703-1718 | Published online: 09 Jan 2014

References

  • Christensen DD. Alzheimer’s disease: progress in the development of anti-amyloid disease-modifying therapies. CNS Spectr.12(2), 113–116, 119–123 (2007).
  • Wimo A. Clinical and economic outcomes – friend or foe? Int. Psychogeriatr.19(3), 497–507 (2007).
  • Petersen RC. Mild cognitive impairment as a diagnostic entity. J. Intern. Med.256(3), 183–194 (2004).
  • Winblad B, Palmer K, Kivipelto M et al. Mild cognitive impairment – beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med.256(3), 240–246 (2004).
  • Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology64(5), 834–841 (2005).
  • Ginsberg SD, Che S, Counts SE, Mufson EJ. Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J. Neurochem.96(5), 1401–1408 (2006).
  • Ginsberg SD, Che S, Wuu J, Counts SE, Mufson EJ. Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J. Neurochem.97(2), 475–487 (2006).
  • Markesbery WR, Schmitt FA, Kryscio RJ et al. Neuropathologic substrate of mild cognitive impairment. Arch. Neurol.63(1), 38–46 (2006).
  • Morris JC, Storandt M, Miller JP et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch. Neurol.58(3), 397–405 (2001).
  • DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science302(5646), 830–834 (2003).
  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer’s disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol.68(3), 209–245 (2002).
  • Mufson EJ, Counts SE. Basocortical cholinotrophic dysfunction during the early stages of Alzheimer’s disease. In: Alzheimer’s Disease and Related Disorders: Clinical and Basic Research Advances. Iqbal K, Winblad B (Eds). Alzheimer’s Association, Chicago, IL, USA 204–210 (2004).
  • Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat.26(4), 233–242 (2003).
  • Mufson EJ, Counts SE, Fahnestock M, Ginsberg SD. Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr. Alzheimer Res.4(4), 340–350 (2007).
  • Counts SE, Perez SE, Mufson EJ. Galanin – 25 years with a multitalented neuropeptide: galanin in Alzheimer’s disease: neuroinhibitory or neuroprotective? Cell. Mol. Life Sci.65(12), 1842–1853 (2008).
  • DeKosky ST, Harbaugh RE, Schmitt FA et al. Cortical biopsy in Alzheimer’s disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Intraventricular Bethanecol Study Group. Ann. Neurol.32(5), 625–632 (1992).
  • Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol.163(2), 495–529 (2000).
  • Davis KL, Mohs RC, Marin D et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA281(15), 1401–1406 (1999).
  • DeKosky ST, Ikonomovic MD, Styren SD et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann. Neurol.51(2), 145–155 (2002).
  • Counts SE, Mufson EJ. The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J. Neuropathol. Exp. Neurol.64(4), 263–272 (2005).
  • Gomez-Isla T, Price JL, McKeel DW Jr. et al. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J. Neurosci.16(14), 4491–4500 (1996).
  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science225(4667), 1168–1170 (1984).
  • Kordower JH, Chu Y, Stebbins GT et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann. Neurol.49(2), 202–213 (2001).
  • Hyman BT, Kromer LJ, Van Hoesen GW. Reinnervation of the hippocampal perforant pathway zone in Alzheimer’s disease. Ann. Neurol.21(3), 259–267 (1987).
  • Cotman CW, Matthews DA, Taylor D, Lynch G. Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc. Natl Acad. Sci. USA70(12), 3473–3477 (1973).
  • Savaskan NE, Nitsch R. Molecules involved in reactive sprouting in the hippocampus. Rev. Neurosci.12(3), 195–215 (2001).
  • Mufson EJ, Bothwell M, Kordower JH. Loss of nerve growth factor receptor-containing neurons in Alzheimer’s disease: a quantitative analysis across subregions of the basal forebrain. Exp. Neurol.105(3), 221–232 (1989).
  • Bierer LM, Haroutunian V, Gabriel S et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J. Neurochem.64(2), 749–760 (1995).
  • Rinne JO, Kaasinen V, Jarvenpaa T et al. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry74(1), 113–115 (2003).
  • Shinotoh H, Namba H, Fukushi K et al. Progressive loss of cortical acetylcholinesterase activity in association with cognitive decline in Alzheimer’s disease: a positron emission tomography study. Ann. Neurol.48(2), 194–200 (2000).
  • Saykin AJ, Wishart HA, Rabin LA et al. Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain127(Pt 7), 1574–1583 (2004).
  • Wright CI, Geula C, Mesulam MM. Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann. Neurol.34(3), 373–384 (1993).
  • Holmes C, Ballard C, Lehmann D et al. Rate of progression of cognitive decline in Alzheimer’s disease: effect of butyrylcholinesterase K gene variation. J. Neurol. Neurosurg. Psychiatry76(5), 640–643 (2005).
  • Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem. Res.28(3–4), 515–522 (2003).
  • Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol. Appl. Neurobiol.4(4), 273–277 (1978).
  • Gauthier S. Advances in the pharmacotherapy of Alzheimer’s disease. CMAJ166(5), 616–623 (2002).
  • Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet2(8000), 1403 (1976).
  • Saper CB, German DC, White CL III. Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer’s type: possible role in cell loss. Neurology35(8), 1089–1095 (1985).
  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol.10(2), 122–126 (1981).
  • Gilmor ML, Erickson JD, Varoqui H et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J. Comp. Neurol.411(4), 693–704 (1999).
  • Ruberg M, Mayo W, Brice A et al. Choline acetyltransferase activity and [3H]vesamicol binding in the temporal cortex of patients with Alzheimer’s disease, Parkinson’s disease, and rats with basal forebrain lesions. Neuroscience35(2), 327–333 (1990).
  • Eiden LE. The cholinergic gene locus. J. Neurochem.70(6), 2227–2240 (1998).
  • Gilmor ML, Counts SE, Wiley RG, Levey AI. Coordinate expression of the vesicular acetylcholine transporter and choline acetyltransferase following septohippocampal pathway lesions. J. Neurochem.71(6), 2411–2420 (1998).
  • Ginsberg SD, Martin LJ. Ultrastructural analysis of the progression of neurodegeneration in the septum following fimbria–fornix transection. Neuroscience86, 1259–1272 (1998).
  • Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci.24, 1217–1281 (2001).
  • Rinne JO, Paljarvi L, Rinne UK. Neuronal size and density in the nucleus basalis of Meynert in Alzheimer’s disease. J. Neurol. Sci.79(1–2), 67–76 (1987).
  • Pearson RC, Sofroniew MV, Cuello AC et al. Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res.289(1–2), 375–379 (1983).
  • Mufson EJ, Kordower JH. Nerve growth factor in Alzheimer’s disease. In: Cerebral Cortex. Peter AA, Morrison JH (Eds). Kluwer Academic/Plenum Press, NY, USA 681–731 (1999).
  • Edwards RH, Selby MJ, Garcia PD, Rutter WJ. Processing of the native nerve growth factor precursor to form biologically active nerve growth factor. J. Biol. Chem.263(14), 6810–6815 (1988).
  • Kaplan DR, Miller FD. Neurobiology: a move to sort life from death. Nature427(6977), 798–799 (2004).
  • Roux PP, Barker PA. Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol.67(3), 203–233 (2002).
  • Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci.18(9), 3273–3281 (1998).
  • Frade JM. Unscheduled re-entry into the cell cycle induced by NGF precedes cell death in nascent retinal neurones. J. Cell Sci.113(Pt 7), 1139–1148 (2000).
  • Bamji SX, Majdan M, Pozniak CD et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol.140(4), 911–923 (1998).
  • Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science294(5548), 1945–1948 (2001).
  • Friedman WJ. Neurotrophins induce death of hippocampal neurons via the p75 receptor. J. Neurosci.20(17), 6340–6346 (2000).
  • Nykjaer A, Lee R, Teng KK et al. Sortilin is essential for proNGF-induced neuronal cell death. Nature427(6977), 843–848 (2004).
  • Mamidipudi V, Wooten MW. Dual role for p75(NTR) signaling in survival and cell death: can intracellular mediators provide an explanation? J. Neurosci. Res.68(4), 373–384 (2002).
  • Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. Cell. Mol. Life Sci.61(1), 35–48 (2004).
  • Fahnestock M, Michalski B, Xu B, Coughlin MD. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell. Neurosci.18(2), 210–220 (2001).
  • Peng S, Wuu J, Mufson EJ, Fahnestock M. Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer’s disease. J. Neuropathol. Exp. Neurol.63(6), 641–649 (2004).
  • Fahnestock M, Yu G, Michalski B et al. The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. J. Neurochem.89(3), 581–592 (2004).
  • Rattenholl A, Lilie H, Grossmann A et al. The pro-sequence facilitates folding of human nerve growth factor from Escherichia coli inclusion bodies. Eur. J. Biochem.268(11), 3296–3303 (2001).
  • Counts SE, Nadeem M, Wuu J et al. Reduction of cortical TrkA but not p75(NTR) protein in early-stage Alzheimer’s disease. Ann. Neurol.56(4), 520–531 (2004).
  • Blasko I, Lederer W, Oberbauer H et al. Measurement of thirteen biological markers in csf of patients with Alzheimer’s disease and other dementias. Dement Geriatr. Cogn. Disord.21(1), 9–15 (2005).
  • Costantini C, Weindruch R, Della Valle G, Puglielli L. A TrkA-to-p75NTR molecular switch activates amyloid β-peptide generation during aging. Biochem. J.391(Pt 1), 59–67 (2005).
  • Paiardini A, Caputo V. Insights into the interaction of sortilin with proneurotrophins: a computational approach. Neuropeptides42(2), 205–214 (2008).
  • Nyborg AC, Ladd TB, Zwizinski CW, Lah JJ, Golde TE. Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Mol. Neurodegener.1, 3 (2006).
  • Jansen P, Giehl K, Nyengaard JR et al. Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat. Neurosci.10(11), 1449–1457 (2007).
  • Bronfman FC, Fainzilber M. Multi-tasking by the p75 neurotrophin receptor: sortilin things out? EMBO Rep.5(9), 867–871 (2004).
  • Teng HK, Teng KK, Lee R et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci.25(22), 5455–5463 (2005).
  • Bruno MA, Clarke PB, Seltzer A et al. Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. J. Neurosci.24(37), 8009–8018 (2004).
  • Longo FM, Yang T, Knowles JK et al. Small molecule neurotrophin receptor ligands: novel strategies for targeting Alzheimer’s disease mechanisms. Curr. Alzheimer Res.4(5), 503–506 (2007).
  • Bruno MA, Cuello AC. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc. Natl. Acad. Sci. USA103(17), 6735–6740 (2006).
  • Bruno MA, Counts SE, Mufson EJ, Cuello AC. Increased MMP-9 cortical level and activity in subjects with mild cognitive impairment. Presented at: Society for Neuroscience Annual Meeting. San Diego, CA, USA, 3–7 November 2007.
  • Lorenzl S, Albers DS, LeWitt PA et al. Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J. Neurol. Sci.207(1–2), 71–76 (2003).
  • Lorenzl S, Buerger K, Hampel H, Beal MF. Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int. Psychogeriatr.20(1), 67–76 (2008).
  • Zucker S, Hymowitz M, Conner C et al. Measurement of matrix metalloproteinases and tissue inhibitors of metalloproteinases in blood and tissues. Clinical and experimental applications. Ann. NY Acad. Sci.878, 212–227 (1999).
  • Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann. NY Acad. Sci.766, 442–458 (1995).
  • Cunningham ME, Greene LA. A function–structure model for NGF-activated TRK. EMBO J.17(24), 7282–7293 (1998).
  • McInnes C, Sykes BD. Growth factor receptors: structure, mechanism, and drug discovery. Biopolymers43(5), 339–366 (1997).
  • Bonni A, Brunet A, West AE et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science286(5443), 1358–1362 (1999).
  • Descamps S, Toillon RA, Adriaenssens E et al. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J. Biol. Chem.276(21), 17864–17870 (2001).
  • Kaplan DR, Miller FD. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol.10(3), 381–391 (2000).
  • Grewal SS, York RD, Stork PJ. Extracellular-signal-regulated kinase signalling in neurons. Curr. Opin. Neurobiol.9(5), 544–553 (1999).
  • Gomez N, Cohen P. Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature353(6340), 170–173 (1991).
  • Howe LR, Leevers SJ, Gomez N et al. Activation of the MAP kinase pathway by the protein kinase raf. Cell71(2), 335–342 (1992).
  • Kamata H, Tanaka C, Yagisawa H et al. Suppression of nerve growth factor-induced neuronal differentiation of PC12 cells. N-acetylcysteine uncouples the signal transduction from ras to the mitogen-activated protein kinase cascade. J. Biol. Chem.271(51), 33018–33025 (1996).
  • Kimpinski K, Mearow K. Neurite growth promotion by nerve growth factor and insulin-like growth factor-1 in cultured adult sensory neurons: role of phosphoinositide 3-kinase and mitogen activated protein kinase. J. Neurosci. Res.63(6), 486–499 (2001).
  • Andjelkovic M, Suidan HS, Meier R et al. Nerve growth factor promotes activation of the α, β and γ isoforms of protein kinase B in PC12 pheochromocytoma cells. Eur. J. Biochem.251(1–2), 195–200 (1998).
  • Ashcroft M, Stephens RM, Hallberg B, Downward J, Kaplan DR. The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth. Oncogene18(32), 4586–4597 (1999).
  • Vaillant AR, Mazzoni I, Tudan C et al. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol.146(5), 955–966 (1999).
  • Klesse LJ, Parada LF. Trks: signal transduction and intracellular pathways. Microsc. Res. Tech.45(4–5), 210–216 (1999).
  • Stephens RM, Loeb DM, Copeland TD et al. Trk receptors use redundant signal transduction pathways involving SHC and PLC-γ 1 to mediate NGF responses. Neuron12(3), 691–705 (1994).
  • Vetter ML, Martin-Zanca D, Parada LF, Bishop JM, Kaplan DR. Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-γ 1 by a kinase activity associated with the product of the trk protooncogene. Proc. Natl Acad. Sci. USA88(13), 5650–5654 (1991).
  • Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol.11(3), 272–280 (2001).
  • Lad SP, Neet KE, Mufson EJ. Nerve growth factor: structure, function and therapeutic implications for Alzheimer’s disease. Curr. Drug Target CNS Neurol. Disord.2(5), 315–334 (2003).
  • Brann AB, Scott R, Neuberger Y et al. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J. Neurosci.19(19), 8199–8206 (1999).
  • DeFreitas MF, McQuillen PS, Shatz CJ. A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J. Neurosci.21(14), 5121–5129 (2001).
  • Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science265(5178), 1596–1599 (1994).
  • Barrett GL. The p75 neurotrophin receptor and neuronal apoptosis. Prog. Neurobiol.61(2), 205–229 (2000).
  • Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M. Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is age-dependent and transduced through ceramide generated by neutral sphingomyelinase. J. Biol. Chem.277(12), 9812–9818 (2002).
  • Harrington AW, Kim JY, Yoon SO. Activation of Rac GTPase by p75 is necessary for c-jun N-terminal kinase-mediated apoptosis. J. Neurosci.22(1), 156–166 (2002).
  • Bhakar AL, Roux PP, Lachance C et al. The p75 neurotrophin receptor (p75NTR) alters tumor necrosis factor-mediated NF-κB activity under physiological conditions, but direct p75NTR-mediated NF-κB activation requires cell stress. J. Biol. Chem.274(30), 21443–21449 (1999).
  • Cosgaya JM, Shooter EM. Binding of nerve growth factor to its p75 receptor in stressed cells induces selective IκB-β degradation and NF-κB nuclear translocation. J. Neurochem.79(2), 391–399 (2001).
  • Foehr ED, Lin X, O’Mahony A et al. NF-κB signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC12 cells. J. Neurosci.20(20), 7556–7563 (2000).
  • Gentry JJ, Casaccia-Bonnefil P, Carter BD. Nerve growth factor activation of nuclear factor κB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J. Biol. Chem.275(11), 7558–7565 (2000).
  • Hamanoue M, Middleton G, Wyatt S et al. p75-mediated NF-κB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci.14(1), 28–40 (1999).
  • Hughes AL, Messineo-Jones D, Lad SP, Neet KE. Distinction between differentiation, cell cycle, and apoptosis signals in PC12 cells by the nerve growth factor mutant delta9/13, which is selective for the p75 neurotrophin receptor. J. Neurosci. Res.63(1), 10–19 (2001).
  • Roux PP, Bhakar AL, Kennedy TE, Barker PA. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem.276(25), 23097–23104 (2001).
  • Susen K, Heumann R, Blochl A. Nerve growth factor stimulates MAPK via the low affinity receptor p75(LNTR). FEBS Lett.463(3), 231–234 (1999).
  • Mufson EJ, Counts SE, Fahnestock M, Ginsberg SD. NGF family of neurotrophins and their receptors: early involvement in the progression of Alzheimer‘s disease. In: Neurobiology of Alzheimer’s Disease. Dawbarn D, Allen SJ (Eds). Oxford University Press, Oxford, UK 283–321 (2007).
  • Tuszynski MH, Thal L, Pay M et al. A Phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat. Med.11(5), 551–555 (2005).
  • Morse JK, Wiegand SJ, Anderson K et al. Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J. Neurosci.13(10), 4146–4156 (1993).
  • Skaper SD. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol. Disord. Drug Targets7(1), 46–62 (2008).
  • Jang SW, Okada M, Sayeed I et al. Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc. Natl Acad. Sci. USA104(41), 16329–16334 (2007).
  • Gotti C, Fornasari D, Clementi F. Human neuronal nicotinic receptors. Prog. Neurobiol.53(2), 199–237 (1997).
  • Mufson EJ, Jaffar S, Levey AI. m2 muscarinic acetylcholine receptor-immunoreactive neurons are not reduced within the nucleus basalis in Alzheimer’s disease: relationship with cholinergic and galaninergic perikarya. J. Comp. Neurol.392(3), 313–329 (1998).
  • Counts SE, He B, Che S et al. α7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer’s disease. Arch. Neurol.64(12), 1771–1776 (2007).
  • Chu LW, Ma ES, Lam KK, Chan MF, Lee DH. Increased α 7 nicotinic acetylcholine receptor protein levels in Alzheimer’s disease patients. Dement. Geriatr. Cogn. Disord.19(2–3), 106–112 (2005).
  • Hellstrom-Lindahl E, Mousavi M, Zhang X, Ravid R, Nordberg A. Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Brain Res. Mol. Brain Res.66(1–2), 94–103 (1999).
  • Teaktong T, Graham A, Court J et al. Alzheimer’s disease is associated with a selective increase in α7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia41(2), 207–211 (2003).
  • Nagele RG, D’Andrea MR, Anderson WJ, Wang HY. Intracellular accumulation of β-amyloid(1–42) in neurons is facilitated by the α 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience110(2), 199–211 (2002).
  • Small DH, Maksel D, Kerr ML et al. The β-amyloid protein of Alzheimer’s disease binds to membrane lipids but does not bind to the α7 nicotinic acetylcholine receptor. J. Neurochem.101(6), 1527–1538 (2007).
  • Wang HY, Lee DH, D’Andrea MR et al. β-amyloid(1–42) binds to α7 nicotinic acetylcholine receptor with high affinity: implications for Alzheimer’s disease pathology. J. Biol. Chem.275(8), 5626–5632 (2000).
  • Counts SE, He B, Che S, Ginsberg SD, Mufson EJ. Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer’s disease. Neurodegener. Dis.5(3–4), 228–231 (2008).
  • Fisher A. M1 muscarinic agonists target major hallmarks of Alzheimer’s disease – the pivotal role of brain M1 receptors. Neurodegener. Dis.5(3–4), 237–240 (2008).
  • Fisher A. M1 muscarinic agonists target major hallmarks of Alzheimer’s disease – an update. Curr. Alzheimer Res.4(5), 577–580 (2007).
  • Fisher A, Brandeis R, Bar-Ner RH et al. AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J. Mol. Neurosci.19(1–2), 145–153 (2002).
  • Caccamo A, Oddo S, Billings LM et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron49(5), 671–682 (2006).
  • Ginsberg SD, Che S, Counts SE, Mufson EJ. Single cell gene expression profiling in Alzheimer’s disease. NeuroRx3(3), 302–318 (2006).
  • Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging27(10), 1372–1384 (2005).
  • Terry RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol.30(4), 572–580 (1991).
  • Mufson EJ, Counts SE, Che S, Ginsberg SD. Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease. Prog. Brain Res.158, 197–222 (2006).
  • Mufson EJ, Counts SE, Ginsberg SD. Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer’s disease. Neurochem. Res.27(10), 1035–1048 (2002).
  • Ginsberg SD, Hemby SE, Lee VM, Eberwine JH, Trojanowski JQ. Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons. Ann. Neurol.48(1), 77–87 (2000).
  • Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci.22(8), 1942–1950 (2005).
  • Rahman A, Grundke-Iqbal I, Iqbal K. Phosphothreonine-212 of Alzheimer abnormally hyperphosphorylated tau is a preferred substrate of protein phosphatase-1. Neurochem. Res.30(2), 277–287 (2005).
  • Forman MS, Mufson EJ, Leurgans S et al. Cortical biochemistry in MCI and Alzheimer disease: lack of correlation with clinical diagnosis. Neurology68(10), 757–763 (2007).
  • Mesulam M, Shaw P, Mash D, Weintraub S. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann. Neurol.55(6), 815–828 (2004).
  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron3(4), 519–526 (1989).
  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J.8(2), 393–399 (1989).
  • Boutajangout A, Boom A, Leroy K, Brion JP. Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease. FEBS Lett.576(1–2), 183–189 (2004).
  • Hyman BT, Augustinack JC, Ingelsson M. Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim. Biophys. Acta1739(2–3), 150–157 (2005).
  • Togo T, Akiyama H, Iseki E et al. Immunohistochemical study of tau accumulation in early stages of Alzheimer-type neurofibrillary lesions. Acta Neuropathol.107(6), 504–508 (2004).
  • Crawley JN. Galanin – 25 years with a multitalented neuropeptide: galanin impairs cognitive abilities in rodents: relevance to Alzheimer’s disease. Cell. Mol. Life Sci.65(12), 1836–1841 (2008).
  • Hobson SA, Bacon A, Elliot-Hunt CR et al. Galanin – 25 years with a multitalented neuropeptide: galanin acts as a trophic factor to the central and peripheral nervous systems. Cell. Mol. Life Sci.65(12), 1806–1812 (2008).
  • Chan-Palay V. Galanin hyperinnervates surviving neurons of the human basal nucleus of Meynert in dementias of Alzheimer’s and Parkinson’s disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J. Comp. Neurol.273(4), 543–557 (1988).
  • Counts SE, Perez SE, Ginsberg SD, De Lacalle S, Mufson EJ. Galanin in Alzheimer disease. Mol. Interv.3(3), 137–156 (2003).
  • Mufson EJ, Cochran E, Benzing W, Kordower JH. Galaninergic innervation of the cholinergic vertical limb of the diagonal band (Ch2) and bed nucleus of the stria terminalis in aging, Alzheimer’s disease and Down’s syndrome. Dementia4(5), 237–250 (1993).
  • Counts SE, Chen EY, Che S et al. Galanin fiber hypertrophy within the cholinergic nucleus basalis during the progression of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord.21(4), 205–214 (2006).
  • Jhamandas JH, Harris KH, MacTavish D, Jassar BS. Novel excitatory actions of galanin on rat cholinergic basal forebrain neurons: implications for its role in Alzheimer’s disease. J. Neurophysiol.87(2), 696–704 (2002).
  • Ding X, MacTavish D, Kar S, Jhamandas JH. Galanin attenuates β-amyloid (Aβ) toxicity in rat cholinergic basal forebrain neurons. Neurobiol. Dis.21(2), 413–420 (2006).
  • Mufson EJ, Counts SE, Perez SE, Binder L. Galanin plasticity in the cholinergic basal forebrain in Alzheimer’s disease and transgenic mice. Neuropeptides39(3), 232–236 (2005).
  • Trojanowski JQ, Lee VM. Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. Faseb J.9(15), 1570–1576 (1995).
  • Liu HX, Brumovsky P, Schmidt R et al. Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: selective actions via GalR1 and GalR2 receptors. Proc. Natl. Acad. Sci. USA98(17), 9960–9964 (2001).
  • Mahoney SA, Hosking R, Farrant S et al. The second galanin receptor GalR2 plays a key role in neurite outgrowth from adult sensory neurons. J. Neurosci.23(2), 416–421 (2003).
  • Planas B, Kolb PE, Raskind MA, Miller MA. Nerve growth factor induces galanin gene expression in the rat basal forebrain: implications for the treatment of cholinergic dysfunction. J. Comp. Neurol.379(4), 563–570 (1997).
  • Ballard CG, Chalmers KA, Todd C et al. Cholinesterase inhibitors reduce cortical Aβ in dementia with Lewy bodies. Neurology68(20), 1726–1729 (2007).
  • Lopez OL, Becker JT, Wisniewski S et al. Cholinesterase inhibitor treatment alters the natural history of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry72(3), 310–314 (2002).
  • Krishnan KR, Charles HC, Doraiswamy PM et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am. J. Psychiatry160(11), 2003–2011 (2003).
  • Francis PT, Nordberg A, Arnold SE. A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol. Sci.26(2), 104–111 (2005).
  • Nordberg A. Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Dis. Assoc. Disord.20(2 Suppl. 1), S12–S18 (2006).
  • Inestrosa NC, Alvarez A, Perez CA et al. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron16(4), 881–891 (1996).
  • Rogers SL, Doody RS, Pratt RD, Ieni JR. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: final analysis of a US multicentre open-label study. Eur. Neuropsychopharmacol.10(3), 195–203 (2000).
  • Burgos I, Cuello AC, Liberini P, Pioro E, Masliah E. NGF-mediated synaptic sprouting in the cerebral cortex of lesioned primate brain. Brain Res.692(1–2), 154–160 (1995).
  • Charles V, Mufson EJ, Friden PM, Bartus RT, Kordower JH. Atrophy of cholinergic basal forebrain neurons following excitotoxic cortical lesions is reversed by intravenous administration of an NGF conjugate. Brain Res.728(2), 193–203 (1996).
  • Hartikka J, Hefti F. Comparison of nerve growth factor’s effects on development of septum, striatum, and nucleus basalis cholinergic neurons. J. Neurosci. Res.21(2–4), 352–364 (1988).
  • Hatanaka H, Nihonmatsu I, Tsukui H. Nerve growth factor promotes survival of cultured magnocellular cholinergic neurons from nucleus basalis of Meynert in postnatal rats. Neurosci. Lett.90(1–2), 63–68 (1988).
  • Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci.6(8), 2155–2162 (1986).
  • Humpel C, Weis C. Nerve growth factor and cholinergic CNS neurons studied in organotypic brain slices. Implication in Alzheimer’s disease? J. Neural Transm. Suppl. (62), 253–263 (2002).
  • Williams LR, Varon S, Peterson GM et al. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA83(23), 9231–9235 (1986).
  • Nabeshima T, Nitta A, Fuji K, Kameyama T, Hasegawa T. Oral administration of NGF synthesis stimulators recovers reduced brain NGF content in aged rats and cognitive dysfunction in basal-forebrain-lesioned rats. Gerontology40 (Suppl. 2), 46–56 (1994).
  • Chu Y, Cochran EJ, Bennett DA, Mufson EJ, Kordower JH. Down-regulation of trkA mRNA within nucleus basalis neurons in individuals with mild cognitive impairment and Alzheimer’s disease. J. Comp. Neurol.437(3), 296–307 (2001).
  • Mufson EJ, Ma SY, Cochran EJ et al. Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer’s disease. J. Comp. Neurol.427(1), 19–30 (2000).
  • Mufson EJ, Ma SY, Dills J et al. Loss of basal forebrain P75(NTR) immunoreactivity in subjects with mild cognitive impairment and Alzheimer’s disease. J. Comp. Neurol.443(2), 136–153 (2002).
  • Knusel B, Gao H. Neurotrophins and Alzheimer’s disease: beyond the cholinergic neurons. Life Sci.58(22), 2019–2027 (1996).
  • Apfel SC. Neurotrophic factor therapy – prospects and problems. Clin. Chem. Lab. Med.39(4), 351–355 (2001).
  • Jonhagen ME. Nerve growth factor treatment in dementia. Alzheimer Dis. Assoc. Disord.14 (Suppl. 1), S31–S38 (2000).
  • McArthur JC, Yiannoutsos C, Simpson DM et al. A Phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group Team 291. Neurology54(5), 1080–1088 (2000).
  • Sramek JJ, Cutler NR. Recent developments in the drug treatment of Alzheimer’s disease. Drugs Aging14(5), 359–373 (1999).
  • Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int. Rev. Neurobiol.50, 393–413 (2002).
  • Winkler J, Ramirez GA, Kuhn HG et al. Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann. Neurol.41(1), 82–93 (1997).
  • Blesch A, Tuszynski M. Ex vivo gene therapy for Alzheimer’s disease and spinal cord injury. Clin. Neurosci.3(5), 268–274 (1995).
  • Gage FH, Rosenberg MB, Tuszynski MH et al. Gene therapy in the CNS: intracerebral grafting of genetically modified cells. Prog. Brain Res.86, 205–217 (1990).
  • Gage FH, Tuszynski MH, Chen KS, Armstrong D, Buzsaki G. Survival, growth and function of damaged cholinergic neurons. EXS57, 259–274 (1989).
  • Gnahn H, Hefti F, Heumann R, Schwab ME, Thoenen H. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res.285(1), 45–52 (1983).
  • Hefti F, Hartikka J, Knusel B. Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol. Aging10(5), 515–533 (1989).
  • Higgins GA, Koh S, Chen KS, Gage FH. NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron3(2), 247–256 (1989).
  • Tuszynski MH, Roberts J, Senut MC, U HS, Gage FH. Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther.3(4), 305–314 (1996).
  • Tuszynski MH, Sang H, Yoshida K, Gage FH. Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neurol.30(5), 625–636 (1991).
  • Tuszynski MH, U HS, Amaral DG, Gage FH. Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci.10(11), 3604–3614 (1990).
  • Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF. Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer’s disease. Neuroscience75(2), 373–387 (1996).
  • Doody RS, Gavrilova SI, Sano M et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet372(9634), 207–215 (2008).
  • Blesch A. Delivery of neurotrophic factors to neuronal targets: toward gene therapy in the CNS. Drug News Perspect.13(5), 269–280 (2000).
  • Gilman S, Koller M, Black RS et al. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology64(9), 1553–1562 (2005).
  • Hock C, Konietzko U, Streffer JR et al. Antibodies against β-amyloid slow cognitive decline in Alzheimer’s disease. Neuron38(4), 547–554 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.