73
Views
3
CrossRef citations to date
0
Altmetric
Review

Single photon-emission computed tomography imaging in early Parkinson’s disease

&
Pages 1853-1864 | Published online: 09 Jan 2014

References

  • Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch. Neurol.56, 33–39 (1999).
  • Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry51, 745–752 (1988).
  • Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson’s disease. Lancet Neurol.5, 75–86 (2006).
  • Rajput AH, Rozdilsky B, Rajput A. Accuracy of clinical diagnosis in parkinsonism: a prospective study. Can. J. Neurol. Sci.18, 275–278 (1991).
  • Hughes AJ, Daniel SE, Kilford L, Lees AJ. The accuracy of the clinical diagnosis of Parkinson’s disease: a clinicopathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry55, 181–184 (1992).
  • Mark MH, Sage JI, Dickson DW, Schwarz KO, Duvoisin RC. Levodopa-nonresponsive Lewy body parkinsonism: clinicopathologic study of two cases. Neurology7, 1323–1327 (1992).
  • Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of Parkinson disease. Arch. Neurol.50, 140–148 (1993).
  • Meara J, Bhowmick BK, Hobson P. Accuracy of diagnosis in patients with presumed Parkinson’s disease. Age Ageing28, 99–102 (1999).
  • Tolosa E, Compta Y, Gaig C. The premotor phase of Parkinson’s disease. Parkinsonism Relat. Disord.13, 2–7 (2007).
  • Arvanitakis Z, Wilson RS, Schneider JA et al. Diabetes mellitus and progression of rigidity and gait disturbance in older persons. Neurology63, 996–1001 (2004).
  • Inzelberg R, Jankovic J. Are Parkinson disease patients protected from some but not all cancers? Neurology69, 1542–1550 (2007).
  • Lang AE, Obeso JA. Challenges in Parkinson’s disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol.3, 309–316 (2004).
  • Ahlskog JE. Beating a dead horse: dopamine and Parkinson disease. Neurology69, 1701–1711 (2007).
  • Delong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol.64, 20–24 (2007).
  • Gonera EG, Van’t Hof M, Berger HJ, Van Weel C, Horstink MW. Symptoms and duration of the premotor phase in Parkinson’s disease. Mov. Disord.12, 871–876 (1997).
  • Becker G, Müller A, Braune S et al. Early diagnosis of Parkinson’s disease. J. Neurol.3, 40–48 (2002).
  • Chaudhuri KR, Healy DG, Schapira AH; National Institute for Clinical Excellence. Nonmotor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol.3, 235–245 (2006).
  • Chaudhuri KR, Martinez-Martin P. Quantitation of nonmotor symptoms in Parkinson’s disease. Eur. J. Neurol.15, 2–7 (2008).
  • Marras C, Lang A. Changing concepts in Parkinson disease: moving beyond the Decade of the Brain. Neurology70, 1996–2003 (2008).
  • Abbott RD, Ross GW, White LR et al. Environmental, life-style and physical precursors of clinical Parkinson’s disease: recent findings from the Honolulu–Asia aging study. J. Neurol.250, 30–39 (2003).
  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging.24, 197–211 (2003).
  • Iranzo A. Molinuevo JL, Santamaría J et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol.5, 572–577 (2006).
  • Braak H, Del Tredici K. Invited article: nervous system pathology in sporadic Parkinson disease. Neurology13, 16–25 (2008).
  • Groenewegen HJ, Berendse HW. The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci.17, 52–57 (1994).
  • Brooks DJ, Frey KA, Marek KL et al. Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson’s disease. Exp. Neurol.184, 68–79 (2003).
  • Brooks DJ. Imaging end points for monitoring neuroprotection in Parkinson’s disease. Ann. Neurol.53, 110–118 (2003).
  • Marek K, Jennings D, Seibyl J. Dopamine agonists and Parkinson’s disease progression: what can we learn from neuroimaging studies. Ann. Neurol.53, 160–166 (2003).
  • Morrish PK. How valid is dopamine transporter imaging as a surrogate marker in research trials in Parkinson’s disease. Mov. Disord.18, 63–70 (2003).
  • Seibyl J, Jennings D, Tabamo R, Marek K. Neuroimaging trials of Parkinson’s disease progression. J. Neurol.251, 9–13 (2004).
  • Ravina B, Eidelberg D, Ahlskog JE et al. The role of radiotracer imaging in Parkinson disease. Neurology64, 208–215 (2005).
  • Nestler J, Hyman SE, Malenka RC. Catecholamines. In: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience. Nestler EJ, Hyman SE Malenka RC (Eds). McGraw-Hill, NY, USA (2001).
  • Uhl GR, Walther D, Mash D, Faucheux B, Javoy-Agid F. Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann. Neurol.35, 494–498 (1994).
  • Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI. Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J. Comp. Neurol.388, 211–227 (1997).
  • Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J. Neurosci.16, 436–447 (1996).
  • Bezard E, Dovero S, Prunier C et al. Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J. Neurosci.21, 6853–6861 (2001).
  • Innis RB. Single photon emission tomography imaging of dopamine terminal innervation: a potential clinical tool in Parkinson’s disease. Eur. J. Nucl. Med.21, 1–5 (1994).
  • Innis RB, Seibyl JP, Scanley BE et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson’s disease. Proc. Natl Acad. Sci. USA90, 11965–11969 (1993).
  • Seibyl JP. Single-photon emission computed tomography of the dopamine transporter in parkinsonism. J. Neuroimaging9, 223–228 (1999).
  • Carroll FI, Scheffel U, Dannals RF et al. Development of imaging agents for the dopamine transporter. Med. Res. Rev.15, 419–444 (1995).
  • Seibyl JP, Marek KL, Quinlan D et al. Decreased single-photon emission computed tomographic [123I]β-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann. Neurol.38, 589–598 (1995).
  • Seibyl JP, Marek K, Sheff K et al. Test/retest reproducibility of iodine-123-β-CIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J. Nucl. Med.38, 1453–1459 (1997).
  • Abi-Dargham A, Gandelman MS, DeErausquin GA et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of β-CIT. J. Nucl. Med.37, 1129–1133 (1996).
  • Booij J, Tissingh G, Winogrodzka A et al. Practical benefit of [123I]FP-CIT SPET in the demonstration of the dopaminergic deficit in Parkinson’s disease. Eur. J. Nucl. Med.24, 68–71 (1997).
  • Goodman MM, Kung M-P, Kabalka GW et al. Synthesis and characterization of radioiodinated N-(3-iodopropen-1-yl)-2β-carbomethoxy-3β-(4-chlorophenyl)tropanes: potential dopamine reuptake site imaging agents. J. Med. Chem.37, 1535–1542 (1994).
  • Mozley PD, Stubbs JB, Kim H-J et al. Dosimetry of an iodine-123-labeled tropane to image dopamine transporters. J. Nucl. Med.37, 151–159 (1996).
  • Tatsch K, Schwarz J, Mozley PD et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single photon emission tomography. Eur. J. Nucl. Med.24, 415–421 (1997).
  • Fischman AJ, Bonab AA, Babich JW et al. Rapid detection of Parkinson’s disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse29, 128–141 (1998).
  • Madras BK, Meltzer PC, Liang AY et al. Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse29, 93–104 (1998).
  • Seibyl JP, Marek K, Sheff K et al. Iodine-123-β-CIT and iodine-123-FPCIT SPECT measurement of dopamine transporters in healthy subjects and Parkinson’s patients. J. Nucl. Med.39, 1500–1508 (1998).
  • Neumeyer JL, Wang SY, Milius RA et al. [123I]-2 β-carbomethoxy-3 β-(4-iodophenyl)tropane: high-affinity SPECT radiotracer of monoamine reuptake sites in brain. J. Med. Chem.34, 3144–3146 (1991).
  • Mozley PD, Schneider JS, Acton PD et al. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J. Nucl. Med.41, 584–589 (2000).
  • Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evaluation of early-stage Parkinson’s disease with 99mTc-TRODAT-1 imaging. J. Nucl. Med.42, 1303–1308 (2001).
  • Tzen KY, Lu CS, Yen TC, Wey SP, Ting G. Differential diagnosis of Parkinson’s disease and vascular parkinsonism by (99m)Tc-TRODAT-1. J. Nucl. Med.42, 408–413 (2001).
  • Weng YH, Yen TC, Chen MC et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J. Nucl. Med.45, 393–401 (2004).
  • Booij J, Speelman JD, Horstink HW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPECT in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur. J. Nucl. Med.28, 266–272 (2001).
  • Riederer P, Wuketich S. Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J. Neural Transm.38, 277–301 (1976).
  • Hornykiewicz O, Kish SJ. Biochemical pathophysiology of Parkinson’s disease. Adv. Neurol.45, 19–34 (1987).
  • Tissingh G, Bergmans P, Booij J et al. Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]β-CIT SPECT. J. Neurol.245, 14–20 (1998).
  • Tissingh G, Booij J, Bergmans P et al. Iodine-123-N-Vfluoropropyl-2β-carbomethoxy-3β-[4-iodophenyl]tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J. Nucl. Med.39, 1143–1114 (1998).
  • Marek K, Innis R, van Dyck C et al. [123I]β-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology57, 2089–2094 (2001).
  • Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: SN regional selectivity. Brain114, 2283–2301 (1991).
  • Morrish PK, Rakshi JS, Bailey DL, Sawle GV Brooks DJ. Measuring the rate of progression and estimating the premotoral period of Parkinson’s disease with [18F]DOPA PET. J. Neurol. Neurosurg. Psychiatry64, 314–319 (1998).
  • Berendse HW, Booij J, Francot CM et al. Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann. Neurol.50, 34–41 (2001).
  • Whone AL, Watts RL, Stoessl AJ et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann. Neurol.54, 93–101 (2003).
  • Morrish PK. Real-PET and CONSORT. Ann. Neurol.54, 692–693 (2003).
  • Marek K, Jennings D, Seibyl J. Long-term follow-up of patients with scans without evidence of dopaminergic deficit (SWEDD) in the ELLDOPA study. Neurology64, A274 (2005).
  • Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA287, 1653–1661 (2002).
  • Winogrodzka A, Bergmans P, Booij J, van Royen EA, Janssen AG, Wolters EC. [123I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease. J. Neural Transm.108, 1011–1019 (2001).
  • Marshall VL, Patterson J, Hadley DM, Grosset KA, Grosset DG. Two-year follow-up in 150 consecutive cases with normal dopamine transporter imaging. Nucl. Med. Commun.27, 933–937 (2006).
  • Parkinson Study Group PRECEPTS Investigators. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology69, 1480–1490 (2007).
  • Antonini A, Isaias IU. Imaging evidence supports a link between essential tremor and Parkinson’s disease. Nucl. Med. Comm. (2008) (In Press).
  • Asenbaum S, Pirker W, Angelberger P, Bencsits G, Pruckmayer M, Brucke T. [123I]β-CIT and SPECT in essential tremor and Parkinson’s disease. J. Neural Transm.105, 1213–1228 (1998).
  • Benamer HTS, Patterson J, Grosset DG. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]FP-CIT SPECT imaging: the [123I]FP-CIT SPECT study group. Mov. Disord.15, 503–510 (2000).
  • Vlaar AM, van Kroonenburgh MJ, Kessels AG, Weber WE. Meta-analysis of the literature on diagnostic accuracy of SPECT in parkinsonian syndromes. BMC Neurol.7, 27 (2007).
  • Vlaar AM, de Nijs T, Kessel AG et al. Diagnostic value of 123I-ioflupane and 123I-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur. Neurol.59, 258–266 (2008).
  • Isaias IU, Canesi M, Benti R et al. Striatal dopamine transporter abnormalities in patients with essential tremor. Nucl. Med. Commun.29, 349–353 (2008).
  • Wang J, Jiang YP, Liu XD et al.99mTc-TRODAT-1 SPECT study in early Parkinson’s disease and essential tremor. Acta Neurol. Scand.112, 380–385 (2005).
  • Antonini A. Berto P, Lopatriello S et al. Cost-effectiveness of 123I-FP-CIT SPECT in the differential diagnosis of essential tremor and Parkinson’s disease in Italy. Mov. Disord. (2008) (Epub ahead of print).
  • Antonini A, Benti R, De Notaris R et al. [123I]-ioflupane/SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Neurol. Sci.24, 149–150 (2003).
  • Scherfler C, Seppi K, Donnemiller E et al. Voxel-wise analysis of [123I]-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain128, 1605–1612 (2005).
  • Zijlmans JCM, Daniel SE, Hughes AJ, Révész T, Lees AJ. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov. Disord.19, 630–640 (2004).
  • Scherfler C, Schwarz J, Antonini A et al. Role of DAT-SPECT in the diagnostic work up of parkinsonism. Mov. Disord.22, 1229–1238 (2007).
  • Lavalaye J, Linszen DH, Booij J et al. Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr. Res.47, 59–67 (2001).
  • Lorberboym M, Treves TA, Melamed E, Lampl Y, Hellmann M, Djaldetti R. [123I] FP/CIT SPECT imaging for distinguishing drug-induced parkinsonism from Parkinson’s disease. Mov. Disord.21, 510–514 (2006).
  • Tinazzi M, Ottaviani S, Isaias IU et al. [123I]FP-CIT SPET imaging in drug induced parkinsonism. Mov. Disord.23(13), 1825–1829 (2008).
  • Staffen W, Mair A, Unterrainer J, Trinka E, Ladurner G. Measuring the progression of idiopathic Parkinson’s disease with [123I]-CIT SPECT. J. Neural Transm.107, 543–552 (2000).
  • Chouker M, Tatsch K, Linke R, Pogarell O, Hahn K, Schwarz J. Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl. Med. Commun.22, 721–725 (2001).
  • Colloby SJ, Williams ED, Burn DJ et al. Progression of dopaminergic degeneration in dementia with Lewy bodies and Parkinson’s disease with and without dementia assessed using 123I-FP-CIT SPECT. Eur. J. Nucl. Med. Mol. Imaging32, 1176–1185 (2005).
  • Kung HF, Guo YZ, Billings J et al. Preparation and biodistribution of [125I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. Int. J. Rad. Appl. Instrum.15, 195–201 (1988).
  • Laruelle M, Abi-Dargham A, van Dyck CH et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J. Nucl. Med.36, 1182–1190 (1995).
  • Murphy RA, Kung HF, Kung MP, Billings J. Synthesis and characterization of iodobenzamide analogues: potential D-2 dopamine receptor imaging agents. J. Med. Chem.33, 171–178 (1990).
  • Kung MP, Kung HF, Billings J, Yang Y, Murphy RA, Alavi A. The characterization of IBF as a new selective dopamine D-2 receptor imaging agent. J. Nucl. Med.31, 648–654 (1990).
  • Schwarz J, Tatsch K, Arnold G et al.123I-iodobenzamide-SPECT predicts dopaminergic responsiveness in patients with de novo parkinsonism. Neurology42, 556–561 (1992).
  • Hierholzer J, Cordes M, Schelosky L et al. The differential diagnosis of Parkinson diseases-123I-IBZM-SPECT vs the apomorphine test. Rofo159, 86–90 (1993).
  • Antonini A, Vontobel P, Psylla M et al. Complementary PET studies of the striatal dopaminergic system in Parkinson’s disease. Arch. Neurol.52, 1183–1192 (1995).
  • Pizzolato G, Cagnin A, Rossato A et al. Striatal dopamine D2 receptor alterations and response to L-DOPA in Parkinson’s disease. A [123I]IBZM SPET study. Adv. Neurol.69, 467–473 (1996).
  • Hierholzer J, Cordes M, Venz S et al. Loss of dopamine-D2 receptor binding sites in Parkinsonian plus syndromes. J. Nucl. Med.39, 954–960 (1998).
  • Booij J, Tissingh G, Winogrodzka A, van Royen EA. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur. J. Nucl. Med.26, 171–182 (1999).
  • Prunier C, Tranquart F, Cottier JP et al. Quantitative analysis of striatal dopamine D2 receptors with 123I-iodolisuride SPECT in degenerative extrapyramidal diseases. Nucl. Med. Commun.22, 1207–1214 (2001).
  • Knudsen GM, Karlsborg M, Thomsen G et al. Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur. J. Nucl. Med. Mol. Imaging31, 1631–1638 (2004).
  • Buck A, Westera G, Sutter M et al. Iodine-123-IBF SPECT evaluation of extrapyramidal diseases. J. Nucl. Med.36, 1196–1200 (1995).
  • Aarsland D, Karlsen K. Neuropsychiatric aspects of Parkinson’s disease. Curr. Psychiatry Rep.1, 61–68 (1999).
  • Antonini A. Unraveling depression in Parkinson’s disease. Eur. J. Neurol.15(9), 885–886 (2008).
  • Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin. Chem.40, 288–295 (1994).
  • Nakamura M, Ueno S, Sano A, Tanabe H. The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol. Psychiatry5, 32–38 (2000).
  • Suehiro M, Scheffel UA, Ravert HT et al. Highly potent indanamine serotonin uptake blockers as radiotracers for imaging serotonin uptake sites. Nucl. Med. Biol.21, 1083–1091 (1994).
  • Szabo Z, Kao PF, Scheffel U et al. Positron emission tomography imaging of serotonin transporters in the human brain using [11C](+)MCN5652. Synapse20, 37–43 (1995).
  • Szabo Z, Mohamadiyeh M, Scheffel U et al. Impulse-response function and kinetic-model of C-11-labeled (+)MCN5652. J. Nucl. Med.37, 125 (1996).
  • Szabo Z, Scheffel U, Mathews WB et al. Kinetic analysis of [11C]McN5652. A serotonin transporter radioligand. J. Cereb. Blood Flow Metab.19, 967–981 (1999).
  • Parsey RV, Kegeles LS, Hwang DR et al.In vivo quantification of brain serotonin transporters in humans using [11C]McN 5652. J. Nucl. Med.41, 1465–1477 (2000).
  • Maryanoff EM, Vaught JL, Shank RP et al. Pyrroloisoquinoleines antidepressants. A focus on serotonin. J. Med. Chem.33, 2793–2797 (1990).
  • Laruelle M, Baldwin RM, Malison RT et al. SPECT imaging of dopamine and serotonin transporters with [123I]β-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse13, 295–309 (1993).
  • Kuikka JT, Bergstrom KA, Ahonen A et al. Comparison of iodine-123 labelled 2 β-carbomethoxy-3β-(4-iodophenyl)tropane and 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane for imaging of the dopamine transporter in the living human brain. Eur. J. Nucl. Med.22, 356–360 (1995).
  • Fujita M, Takatoku K, Matoba Y et al. Differential kinetics of [123I]β-CIT binding to dopamine and serotonin transporters. Eur. J. Nucl. Med.23, 431–436 (1996).
  • Tiihonen J, Kuikka JT, Bergstrom KA et al. Single-photon emission tomography imaging of monoamine transporters in impulsive violent behavior. Eur. J. Nucl. Med.24, 1253–1260 (1997).
  • Malison RT, Price LH, Berman R et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2β-carbomethoxy-3β-(4-iodophenyl)tropane and single photon emission computed tomography. Biol. Psychiatry44, 1090–1098 (1998).
  • Meltzer CC, Smith G, DeKosky ST et al. Serotonin in aging, late-life depression, and Alzheimer’s disease: the emerging role of functional imaging. Neuropsychopharmacology18, 407–430 (1998).
  • Staley JK, Malison RT, Innis RB. Imaging of the serotonergic system: interactions of neuroanatomical and functional abnormalities of depression. Biol. Psychiatry44, 534–549 (1998).
  • Willeit M, Praschak-Rieder N, Neumeister A et al. [123I]β-CIT SPECT imaging shows reduced brain serotonin transporter availability in drug-free depressed patients with seasonal affective disorder. Biol. Psychiatry47, 482–489 (2000).
  • Caretti V, Stoffers D, Winogrodzka A et al. Loss of thalamic serotonin transporters in early drug-naive Parkinson’s disease patients is associated with tremor: an [123I]β-CIT SPECT study. J. Neural Transm.115, 721–729 (2008).
  • Bergstrom KA, Halldin C, Hall H et al.In vitro and in vivo characterization of nor-β-CIT: a potential radioligand for visualization of the serotonin transporter in the brain. Eur. J. Nucl. Med.24, 596–601 (1997).
  • Blough BE, Abraham P, Mills AC et al. 3β-(4-ethyl-3-iodophenyl)nortropane-2 β-carboxylic acid methyl ester as a high-affinity selective ligand for the serotonin transporter. J. Med. Chem.40, 3861–3864 (1997).
  • Hiltunen J, Akerman KK, Kuikka JT et al. Iodine-123 labeled nor-β-CIT as a potential tracer for serotonin transporter imaging in the human brain with single-photon emission tomography. Eur. J. Nucl. Med.25, 19–23 (1998).
  • Oya S, Kung M-P, Acton PD et al. A new single-photon emission computed tomography imaging agent for serotonin transporters: [123I] IDAM, 5-iodo-2-((2-((dimethyl- amino)methyl)phenyl)thio)benzyl alcohol. J. Med. Chem.42, 333–335 (1999).
  • Zhuang ZP, Choi SR, Hou C et al. A novel serotonin transporter ligand: (5-iodo-2-(2-di-methylaminomethylphenoxy)-benzyl alcohol (ODAM). Nucl. Med. Biol.27, 169–175 (2000).
  • Acton PD, Kung MP, Mu M et al. Single-photon emission tomography imaging of serotonin transporters in the non-human primate brain with the selective radioligand [123I]IDAM. Eur. J. Nucl. Med.26, 854–861 (1999).
  • Kung MP, Hou C, Oya S et al. Characterization of [123I]IDAM as a novel single-photon emission tomography tracer for serotonin transporters. Eur. J. Nucl. Med.26, 844–853 (1999).
  • Sacher J, Asenbaum S, Klein N. Binding kinetics of 123I[ADAM] in healthy controls: a selective SERT radioligand. Int. J. Neuropsychopharmacol.10, 1–8 (2006).
  • Erlandsson K, Sivananthan T, Lui D et al. Measuring SSRI occupancy of SERT using the novel tracer [123I]ADAM: a SPECT validation study. Eur. J. Nucl. Med. Mol. Imaging32, 1329–1336 (2005).
  • Klein N, Sacher J, Geiss-Granadia T et al.In vivo imaging of serotonin transporter occupancy by means of SPECT and [123I]ADAM in healthy subjects administered different doses of escitalopram or citalopram. Psychopharmacology (Berl.)188, 263–272 (2006).
  • Klein N, Sacher J, Geiss-Granadia T et al. Higher serotonin transporter occupancy after multiple dose administration of escitalopram compared to citalopram: an [123I]ADAM SPECT study. Psychopharmacology (Berl.)191, 333–339 (2007).
  • Tamagnan GD, Brennerb E, Alagillea D et al. Development of SPECT imaging agents for the norepinephrine transporters: [123I]INER. Bioorg. Med. Chem. Lett.15, 533–537 (2007).
  • Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. Lancet Neurol.6, 926–932 (2007).
  • Feigin A, Antonini A, Fukuda M et al. Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov. Disord.17, 1265–1270 (2002).
  • Bosman T, Van Laere K, Santens P. Anatomically standardised 99mTc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging30, 16–24 (2003).
  • Van Laere K, De Ceuninck L, Dom R et al. Dopamine transporter SPECT using fast kinetic ligands: 123I-FP-β-CIT versus 99mTc-TRODAT-1. Eur. J. Nucl. Med. Mol. Imaging31, 1119–1127 (2004).
  • Cilia R, Siri C, Marotta G et al. Brain networks underlining verbal fluency decline during STN-DBS in Parkinson’s disease: an ECD-SPECT study. Parkinsonism Relat. Disord.13, 290–294 (2007).
  • Antonini A, De Notaris R, Benti R et al. Perfusion ECD/SPECT in the characterization of cognitive deficits in Parkinson’s disease. Neurol. Sci.22, 45–46 (2001).
  • Antonini A, Benti R, Righini A, Pezzoli G. Sensitivity and specificity of ECD/SPECT and high field (1,5T) MRI in the differential diagnosis between MSA and Parkinson’s disease. Neurology52, S351 (1999).
  • Derejko M, Slawek J, Wieczorek D, Brockhuis B, Dubaniewicz M, Lass P. Regional cerebral blood flow in Parkinson’s disease as an indicator of cognitive impairment. Nucl. Med. Commun.27, 945–951 (2006).
  • Chang CC, Liu JS, Chang YY, Chang WN, Chen SS, Lee CH. (99m)Tc-ethyl cysteinate dimer brain SPECT findings in early stage of dementia with Lewy bodies and Parkinson’s disease patients: a correlation with neuropsychological tests. Eur. J. Neurol.15, 61–65 (2008).
  • Kageyama H, Kikuchi S, Tashiro K. Analysis of Parkinson’s disease and related syndromes using 123I-IMP-SPECT with the ARG method. Nippon Rinsho55, 238–242 (2007).
  • Hayashi H, Odano I, Nishihara M, Higuchi S, Sakai K, Ishikawa A. Clinical evaluation of Parkinson’s disease using 123I-IMP SPECT. Kaku Igaku26, 1405–1415 (1989).
  • Kamei H, Nakajima T, Fukuhara N. Statistic rCBF study of extrapyramidal disorders. No To Shinkei54, 667–672 (2002).
  • Matsui H, Udaka F, Miyoshi T et al. Brain perfusion differences between Parkinson’s disease and multiple system atrophy with predominant parkinsonian features. Parkinsonism Relat. Disord.11, 227–232 (2005).
  • Matsui H, Nishinaka K, Oda M et al. Heterogeneous factors in dementia with Parkinson’s disease: IMP-SPECT study. Parkinsonism Relat. Disord.13, 174–181 (2006).
  • Leenders KL. Significance of non-presynaptic SPECT tracer methods in Parkinson’s disease. Mov. Disord.18, 39–42 (2003).
  • Pizzolato G, Chierichetti F, Rossato A et al. Dopamine receptor SPET imaging in Parkinson’s disease: a [123I]-IBZM and [99mTc]-HM-PAO study. Eur. Neurol.33, 143–148 (1993).
  • Saur HB, Bartenstein P, Schober O, Oberwittler C, Lerch H, Masur H. Comparison of D2 receptor scintigraphy (123I-IBZM) with cerebral perfusion (99m-Tc-HMPAO) in extrapyramidal disorders. Nuklearmedizin33, 184–188 (1994).
  • Markus HS, Costa DC, Lees AJ. HMPAO SPECT in Parkinson’s disease before and after levodopa: correlation with dopaminergic responsiveness. J. Neurol. Neurosurg. Psychiatry57, 180–185 (1994).
  • Liu RS, Lin KN, Wang SJ et al. Cognition and 99Tcm-HMPAO SPECT in Parkinson’s disease. Nucl. Med. Commun.13, 744–748 (1992).
  • Wang SJ, Liu RS, Liu HC et al. Technetium-99m hexamethylpropylene amine oxime single photon emission tomography of the brain in early Parkinson’s disease: correlation with dementia and lateralization. Eur. J. Nucl. Med.20, 339–344 (1993).
  • Markus HS, Lees AJ, Lennox G, Marsden CD, Costa DC. Patterns of regional cerebral blood flow in corticobasal degeneration studied using HMPAO SPECT: comparison with Parkinson’s disease and normal controls. Mov. Disord.10, 179–187 (1995).
  • Varma AR, Talbot PR, Snowden JS, Lloyd JJ, Testa HJ, Neary D. A 99mTc-HMPAO single-photon emission computed tomography study of Lewy body disease. J. Neurol.244, 349–359 (1997).
  • Donnemiller E, Heilmann J, Wenning GK et al. Brain perfusion scintigraphy with 99mTc-HMPAO or 99mTc-ECD and 123I – CIT single-photon emission tomography in dementia of the Alzheimer-type and diffuse Lewy body disease. Eur. J. Nucl. Med.24, 320–325 (1997).
  • Talbot PR, Lloyd JJ, Snowden JS, Neary D, Testa HJ. A clinical role for 99mTc-HMPAO SPECT in the investigation of dementia? J. Neurol. Neurosurg. Psychiatry64, 306–313 (1998).
  • Defebvre LJ, Leduc V, Duhamel A et al. Technetium HMPAO SPECT study in dementia with Lewy bodies, Alzheimer’s disease and idiopathic Parkinson’s disease. J. Nucl. Med.40, 956–962 (1999).
  • Cummings JL. Depression and Parkinson’s disease:a review. Am. J. Psychiatry149, 443–454 (1992).
  • Koller WC. Sensory symptoms in Parkinson’s disease. Neurology34, 957–959 (1984).
  • Santamaria J, Tolosa E, Valles A. Parkinson’s disease with depression: a possible subgroup ofidiopathic parkinsonism. Neurology36, 1130–1133 (1986).
  • Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neuologic signs, disease stage, or disease duration. Neurology38, 1237–1244 (1988).
  • Doty RL, Riklan M, Deems DA, Reynolds C, Stellar S The olfactory and cognitive deficits of Parkinson’s disease: evidence for independence. Ann. Neurol.25, 166–171 (1989).
  • Ward CD, Duvoisin RC, Ince SE et al. Parkinson’s disease in twins. Adv. Neurol.40, 341–344 (1984).
  • Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology53, 1020–1025 (1999).
  • Courbon F, Brefel-Courbon C, Thalamas C et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov. Disord.18, 890–897 (2003).
  • Taki J, Yoshita M, Yamada M, Tonami N. Significance of 123I-MIBG scintigraphy as a pathophysiological indicator in the assessment of Parkinson’s disease and related disorders: it can be a specific marker for Lewy body disease. Ann. Nucl. Med.18, 453–461(2004).
  • Iwasa K, Nakajima K, Yoshikawa H, Tada A, Taki J, Takamori M. Decreased myocardial 123I-MIBG uptake in Parkinson’s disease. Acta Neurol. Scand.97, 303–306 (1998).
  • Yoshita M. Differentiation of idiopathic Parkinson’s disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 meta-iodobenzylguanidine myocardial scintigraphy. J. Neurol. Sci.155, 60–67 (1998).
  • Taki J, Nakajima K, Hwang EH et al. Peripheral sympathetic dysfunction in patients with Parkinson’s disease without autonomic failure is heart selective and disease specific. Eur. J. Nucl. Med.27, 566–573 (2000).
  • Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology53, 1020–1025 (1999).
  • Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. 123I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry67, 189–194 (1999).
  • Druschky A, Hilz MJ, Platsch G et al. Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J. Neurol. Sci.175, 3–12 (2000).
  • Takatsu H, Nishida H, Matsuo H et al. Cardiac sympathetic denervation from the early stage of Parkinson’s disease: clinical and experimental studies with radiolabeled MIBG. J. Nucl. Med.41, 71–77 (2000).
  • Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry76, 249–251 (2005).
  • Spiegel J, Hellwig D, Farmakis G et al. Myocardial sympathetic degeneration correlates with clinical phenotype of Parkinson’s disease. Mov. Disord.15, 1004–1008 (2007).
  • Schneider SA, Edwards MJ, Mir P et al. Patients with adult-onset dystonic tremor resembling parkinsonian tremor have scans without evidence of dopaminergic deficit (SWEDDs). Mov. Disord.22, 2210–2215 (2007).
  • Wenning GK, Donnemiller E, Granata R, Riccabona G, Poewe W. 123I-β-CIT and 123I-IBZM-SPECT scanning in levodopa-naive Parkinson’s disease. Mov. Disord.13, 438–445 (1998).
  • Vaamonde J, Ibáñez R, García AM, Poblete V. Study of the pre and post-synaptic dopaminergic system by DaTSCAN/IBZM SPECT in the differential diagnosis of parkinsonism in 75 patients. Neurologia19, 292–300 (2004).
  • Plotkin M, Amthauer H, Klaffke S et al. Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J. Neural Transm.112, 677–692 (2005).
  • Verstappen CC, Bloem BR, Haaxma CA, Oyen WJ, Horstink MW. Diagnostic value of asymmetric striatal D2 receptor upregulation in Parkinson’s disease: an [123I]IBZM and [123I]FP-CIT SPECT study. Eur. J. Nucl. Med. Mol. Imaging34, 502–507 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.