98
Views
10
CrossRef citations to date
0
Altmetric
Review

Commonalities in the genetics of Alzheimer’s disease and Parkinson’s disease

Pages 1865-1877 | Published online: 09 Jan 2014

References

  • Rodgers A, Ezzati M, Vander Hoorn S, Lopez AD, Lin RB, Murray CJ. Distribution of major health risks: findings from the Global Burden of Disease study. PLoS Med.1(1), e27 (2004).
  • Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch. Neurol.57(3), 418–420 (2000).
  • Winklhofer KF, Tatzelt J, Haass C. The two faces of protein misfolding: gain- and loss-of-function in neurodegenerative diseases. EMBO J.27(2), 336–349 (2008).
  • Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med.348(14), 1356–1364 (2003).
  • Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin. Anat.8(6), 429–431 (1995).
  • Clarck C, Ewbank D, Lee V-Y, Trojanowski JQ. Molecular pathology of Alzheimer’s disease: neuronal cytoskeletal abnormalities. In: The Dementias. Growdon J, Rossor MN (Eds). Butterworth–Heinemann, Boston, MA, USA (1998).
  • Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology17(5), 427–442 (1967).
  • Pollanen MS, Dickson DW, Bergeron C. Pathology and biology of the Lewy body. J. Neuropathol. Exp. Neurol.52(3), 183–191 (1993).
  • Boller F, Mizutani T, Roessmann U, Gambetti P. Parkinson disease, dementia, and Alzheimer disease: clinicopathological correlations. Ann. Neurol.7(4), 329–335 (1980).
  • Gaspar P, Gray F. Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases. Acta Neuropathol.64(1), 43–52 (1984).
  • Giasson BI, Ischiropoulos H, Lee VM, Trojanowski JQ. The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases. Free Radic. Biol. Med.32(12), 1264–1275 (2002).
  • Kuopio AM, Marttila RJ, Helenius H, Rinne UK. Environmental risk factors in Parkinson’s disease. Mov. Disord.14(6), 928–939 (1999).
  • Grünblatt E, Zehetmayer S, Bartl J et al. Genetic risk factors and markers for Alzheimer’s disease and/or depression in the VITA study. J. Psychiatr. Res. DOI: 10.1016/j.jpsychires.2008.05.008 (2008) (Epub ahead of print).
  • Fischer P, Zehetmayer S, Jungwirth S et al. Risk factors for Alzheimer dementia in a community-based birth cohort at the age of 75 years. Dement. Geriatr. Cogn. Disord.25(6), 501–507 (2008).
  • Stozicka Z, Zilka N, Novak M. Risk and protective factors for sporadic Alzheimer’s disease. Acta Virol.51(4), 205–222 (2007).
  • Berg D. Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegener. Dis.5(3–4), 133–136 (2008).
  • Bodis-Wollner I. Neuropsychological and perceptual defects in Parkinson’s disease. Parkinsonism Relat. Disord.9(Suppl. 2), S83–S89 (2003).
  • Schweitzer I, Tuckwell V, O’Brien J, Ames D. Is late onset depression a prodrome to dementia? Int. J. Geriatr. Psychiatry17(11), 997–1005 (2002).
  • Hawkes C. Olfaction in neurodegenerative disorder. Mov. Disord.18(4), 364–372 (2003).
  • Doty RL. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann. Neurol.63(1), 7–15 (2008).
  • Coppede F, Mancuso M, Siciliano G, Migliore L, Murri L. Genes and the environment in neurodegeneration. Biosci. Rep.26(5), 341–367 (2006).
  • Allam MF, Del Castillo AS, Navajas RF. Parkinson’s disease risk factors: genetic, environmental, or both? Neurol. Res.27(2), 206–208 (2005).
  • Elbaz A, Dufouil C, Alperovitch A. Interaction between genes and environment in neurodegenerative diseases. C R Biol.330(4), 318–328 (2007).
  • Zandi PP, Carlson MC, Plassman BL et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA288(17), 2123–2129 (2002).
  • Hoyer S, Riederer P. Alzheimer disease – no target for statin treatment. A mini review. Neurochem. Res.32(4–5), 695–706 (2007).
  • Rosendorff C, Beeri MS, Silverman JM. Cardiovascular risk factors for Alzheimer’s disease. Am. J. Geriatr. Cardiol.16(3), 143–149 (2007).
  • Razay G, Vreugdenhil A, Wilcock G. The metabolic syndrome and Alzheimer disease. Arch. Neurol.64(1), 93–96 (2007).
  • Holmes C. Genotype and phenotype in Alzheimer’s disease. Br. J. Psychiatry180, 131–134 (2002).
  • Polymeropoulos MH. Genetics of Parkinson’s disease. Ann. NY Acad. Sci.920, 28–32 (2000).
  • Hol EM, van Leeuwen FW, Fischer DF. The proteasome in Alzheimer’s disease and Parkinson’s disease: lessons from ubiquitin B+1. Trends Mol. Med.11(11), 488–495 (2005).
  • Shi Q, Tao E. An Ile93Met substitution in the UCH-L1 gene is not a disease-causing mutation for idiopathic Parkinson’s disease. Chin. Med. J. (Engl.)116(2), 312–313 (2003).
  • Lambert JC, Amouyel P. Genetic heterogeneity of Alzheimer’s disease: complexity and advances. Psychoneuroendocrinology32(Suppl. 1), S62–S70 (2007).
  • Pankratz N, Byder L, Halter C et al. Presence of an APOE4 allele results in significantly earlier onset of Parkinson’s disease and a higher risk with dementia. Mov. Disord.21(1), 45–49 (2006).
  • Wider C, Wszolek ZK. Etiology and pathophysiology of frontotemporal dementia, Parkinson disease and Alzheimer disease: lessons from genetic studies. Neurodegener. Dis.5(3–4), 122–125 (2008).
  • Tobin JE, Latourelle JC, Lew MF et al. Haplotypes and gene expression implicate the MAPT region for Parkinson disease: the GenePD Study. Neurology71(1), 28–34 (2008).
  • Pankratz N, Foroud T. Genetics of Parkinson disease. Genet. Med.9(12), 801–811 (2007).
  • Randall CN, Strasburger D, Prozonic J et al. Cluster analysis of risk factor genetic polymorphisms in Alzheimer’s disease. Neurochem. Res. DOI: 10.1007/s11064-008-9626-8 (2008) (Epub ahead of print).
  • Mukherjee O, Kauwe JS, Mayo K, Morris JC, Goate AM. Haplotype-based association analysis of the MAPT locus in late onset Alzheimer’s disease. BMC Genet.8, 3 (2007).
  • Laws SM, Friedrich P, Diehl-Schmid J et al. Fine mapping of the MAPT locus using quantitative trait analysis identifies possible causal variants in Alzheimer’s disease. Mol. Psychiatry12(5), 510–517 (2007).
  • Morris HR, Steele JC, Crook R et al. Genome-wide analysis of the parkinsonism–dementia complex of Guam. Arch. Neurol.61(12), 1889–1897 (2004).
  • Sillen A, Forsell C, Lilius L et al. Genome scan on Swedish Alzheimer’s disease families. Mol. Psychiatry11(2), 182–186 (2006).
  • Grupe A, Abraham R, Li Y et al. Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum. Mol. Genet.16(8), 865–873 (2007).
  • Waring SC, Rosenberg RN. Genome-wide association studies in Alzheimer disease. Arch. Neurol.65(3), 329–334 (2008).
  • Foltynie T, Hicks A, Sawcer S et al. A genome wide linkage disequilibrium screen in Parkinson’s disease. J. Neurol.252(5), 597–602 (2005).
  • Fung HC, Scholz S, Matarin M et al. Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol.5(11), 911–916 (2006).
  • Price AL, Butler J, Patterson N et al. Discerning the ancestry of European Americans in genetic association studies. PLoS Genet.4(1), e236 (2008).
  • Scheet P, Stephens M. Linkage disequilibrium-based quality control for large-scale genetic studies. PLoS Genet.4(8), e1000147 (2008).
  • Zhang W, Duan S, Dolan ME. HapMap filter 1.0: a tool to preprocess the HapMap genotypic data for association studies. Bioinformation2(8), 322–324 (2008).
  • Grünblatt E, Zander N, Bartl J et al. Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J. Alzheimers Dis.12(4), 291–311 (2007).
  • Pasinetti GM. Use of cDNA microarray in the search for molecular markers involved in the onset of Alzheimer’s disease dementia. J. Neurosci. Res.65(6), 471–476 (2001).
  • Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and proinflammatory signaling. J. Neurosci. Res.70(3), 462–473 (2002).
  • Yao PJ, Zhu M, Pyun EI et al. Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s disease. Neurobiol. Dis.12(2), 97–109 (2003).
  • Grünblatt E, Mandel S, Jacob-Hirsch J et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural Transm.111(12), 1543–1573 (2004).
  • Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet.14(13), 1709–1725 (2005).
  • Hauser MA, Li YJ, Xu H et al. Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch. Neurol.62(6), 917–921 (2005).
  • Papapetropoulos S, Ffrench-Mullen J, McCorquodale D, Qin Y, Pablo J, Mash DC. Multiregional gene expression profiling identifies MRPS6 as a possible candidate gene for Parkinson’s disease. Gene Expr.13(3), 205–215 (2006).
  • Li YJ, Oliveira SA, Xu P et al. Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum. Mol. Genet.12(24), 3259–3267 (2003).
  • Li YJ, Scott WK, Zhang L et al. Revealing the role of glutathione S-transferase omega in age-at-onset of Alzheimer and Parkinson diseases. Neurobiol. Aging27(8), 1087–1093 (2006).
  • Perez-Pastene C, Graumann R, Diaz-Grez F et al. Association of GST M1 null polymorphism with Parkinson’s disease in a Chilean population with a strong Amerindian genetic component. Neurosci. Lett.418(2), 181–185 (2007).
  • Vilar R, Coelho H, Rodrigues E et al. Association of A313 G polymorphism (GSTP1*B) in the glutathione-S-transferase P1 gene with sporadic Parkinson’s disease. Eur. J. Neurol.14(2), 156–161 (2007).
  • Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. J. Biomed. Biotechnol.2(3), 120–123 (2002).
  • Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp. Neurol.193(2), 279–290 (2005).
  • Smith MT, Sandy MS, Di Monte D. Free radicals, lipid peroxidation, and Parkinson’s disease. Lancet1(8523), 38 (1987).
  • Smith CD, Carney JM, Starke-Reed PE et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl Acad. Sci. USA88(23), 10540–10543 (1991).
  • Nunomura A, Moreira PI, Takeda A, Smith MA, Perry G. Oxidative RNA damage and neurodegeneration. Curr. Med. Chem.14(28), 2968–2975 (2007).
  • Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol.8(1), 57–64 (2008).
  • Scarpa S, Cavallaro RA, D’Anselmi F, Fuso A. Gene silencing through methylation: an epigenetic intervention on Alzheimer disease. J. Alzheimers Dis.9(4), 407–414 (2006).
  • Golbe LI. Neurodegeneration in the age of molecular biology. BMJ324(7352), 1467–1468 (2002).
  • Spillantini MG, Goedert M. The α-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann. NY Acad. Sci.920, 16–27 (2000).
  • Mollenhauer B, Cullen V, Kahn I et al. Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp. Neurol.213(2), 315–325 (2008).
  • Lei P, Wu WH, Li RW et al. Prevention and promotion effects of apolipoprotein E4 on amylin aggregation. Biochem. Biophys. Res. Commun.368(2), 414–418 (2008).
  • Sadowski MJ, Pankiewicz J, Scholtzova H et al. Blocking the apolipoprotein E/amyloid-β interaction as a potential therapeutic approach for Alzheimer’s disease. Proc. Natl Acad. Sci. USA103(49), 18787–18792 (2006).
  • Zhou J, Chen J, Feng Y. Effect of truncated-ApoE4 overexpression on tau phosphorylation in cultured N2a cells. J. Huazhong Univ. Sci. Technolog. Med. Sci.26(3), 272–274 (2006).
  • Tesseur I, Van Dorpe J, Spittaels K, Van den Haute C, Moechars D, Van Leuven F. Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am. J. Pathol.156(3), 951–964 (2000).
  • Genis L, Chen Y, Shohami E, Michaelson DM. Tau hyperphosphorylation in apolipoprotein E-deficient and control mice after closed head injury. J. Neurosci. Res.60(4), 559–564 (2000).
  • Gallardo G, Schluter OM, Sudhof TC. A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides. Nat. Neurosci.11(3), 301–308 (2008).
  • Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A. Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int. Rev. Neurobiol.82, 235–246 (2007).
  • Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und psychiatrisch-gerichtliche Medizin64, 146–148 (1907).
  • Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol. Immunol.44(5), 999–1010 (2007).
  • Wojtera M, Sikorska B, Sobow T, Liberski PP. Microglial cells in neurodegenerative disorders. Folia Neuropathol.43(4), 311–321 (2005).
  • Guerreiro RJ, Santana I, Bras JM, Santiago B, Paiva A, Oliveira C. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener. Dis.4(6), 406–412 (2007).
  • Koutsilieri E, Scheller C, Grünblatt E, Nara K, Li J, Riederer P. Free radicals in Parkinson’s disease. J. Neurol.249(Suppl. 2), II1–II5 (2002).
  • Retz W, Gsell W, Munch G, Rosler M, Riederer P. Free radicals in Alzheimer’s disease. J. Neural Transm. Suppl.54, 221–236 (1998).
  • Nunomura A, Moreira PI, Lee HG et al. Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol. Disord. Drug Targets6(6), 411–423 (2007).
  • Koutsilieri E, Scheller C, Tribl F, Riederer P. Degeneration of neuronal cells due to oxidative stress – microglial contribution. Parkinsonism Relat. Disord.8(6), 401–406 (2002).
  • Tahirovic I, Sofic E, Sapcanin A et al. Reduced brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer’s disease and diabetes mellitus. Neurochem. Res.32(10), 1709–1717 (2007).
  • de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR. Therapeutic rescue of neurodegeneration in experimental Type 3 diabetes: relevance to Alzheimer’s disease. J. Alzheimers Dis.10(1), 89–109 (2006).
  • Leutner S, Czech C, Schindowski K, Touchet N, Eckert A, Muller WE. Reduced antioxidant enzyme activity in brains of mice transgenic for human presenilin-1 with single or multiple mutations. Neurosci. Lett.292(2), 87–90 (2000).
  • Schipper HM, Bennett DA, Liberman A et al. Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol. Aging27(2), 252–261 (2006).
  • Brugge K, Nichols S, Saitoh T, Trauner D. Correlations of glutathione peroxidase activity with memory impairment in adults with Down syndrome. Biol. Psychiatry46(12), 1682–1689 (1999).
  • Munch G, Luth HJ, Wong A et al. Crosslinking of α-synuclein by advanced glycation endproducts – an early pathophysiological step in Lewy body formation? J. Chem. Neuroanat.20(3–4), 253–257 (2000).
  • Zigmond MJ, Hastings TG, Perez RG. Increased dopamine turnover after partial loss of dopaminergic neurons: compensation or toxicity? Parkinsonism Relat. Disord.8(6), 389–393 (2002).
  • Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB. Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs17(10), 729–762 (2003).
  • Litvan I, MacIntyre A, Goetz CG et al. Accuracy of the clinical diagnoses of Lewy body disease, Parkinson disease and dementia with Lewy bodies: a clinicopathologic study. Arch. Neurol.55(7), 969–978 (1998).
  • Paulus W, Bancher C, Jellinger K. Interrater reliability in the neuropathologic diagnosis of Alzheimer’s disease. Neurology42(2), 329–332 (1992).
  • Jellinger K, Danielczyk W, Fischer P, Gabriel E. Clinicopathological analysis of dementia disorders in the elderly. J. Neurol. Sci.95(3), 239–258 (1990).
  • Borroni B, Premi E, Di Luca M, Padovani A. Combined biomarkers for early Alzheimer disease diagnosis. Curr. Med. Chem.14(11), 1171–1178 (2007).
  • Marksteiner J, Hinterhuber H, Humpel C. Cerebrospinal fluid biomarkers for diagnosis of Alzheimer’s disease: β-amyloid(1–42), tau, phospho-tau-181 and total protein. Drugs Today (Barc.), 43(6), 423–431 (2007).
  • Blennow K, Zetterberg H, Minthon L et al. Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci. Lett.419(1), 18–22 (2007).
  • Martinez M, Fernandez E, Frank A, Guaza C, de la Fuente M, Hernanz A. Increased cerebrospinal fluid cAMP levels in Alzheimer’s disease. Brain Res.846(2), 265–267 (1999).
  • Simonsen AH, McGuire J, Hansson O et al. Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch. Neurol.64(3), 366–370 (2007).
  • Lovell MA, Lynn BC, Xiong S, Quinn JF, Kaye J, Markesbery WR. An aberrant protein complex in CSF as a biomarker of Alzheimer disease. Neurology70(23), 2212–2218 (2008).
  • Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat. Rev. Drug Discov.6(4), 295–303 (2007).
  • Zhang J, Sokal I, Peskind ER et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol.129(4), 526–529 (2008).
  • Jellinger KA, Janetzky B, Attems J, Kienzl E. Biomarkers for early diagnosis of Alzheimer disease: ‘ALZheimer ASsociated gene’– a new blood biomarker? J. Cell Mol. Med.12(4), 1094–1117 (2008).
  • Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am. J. Epidemiol.167(1), 90–95 (2008).
  • Bibl M, Esselmann H, Mollenhauer B et al. Blood-based neurochemical diagnosis of vascular dementia: a pilot study. J. Neurochem.103(2), 467–474 (2007).
  • Schipper HM, Chertkow H, Mehindate K, Frankel D, Melmed C, Bergman H. Evaluation of heme oxygenase-1 as a systemic biological marker of sporadic AD. Neurology54(6), 1297–1304 (2000).
  • Hye A, Lynham S, Thambisetty M et al. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain129(Pt 11), 3042–3050 (2006).
  • Lovestone S, Guntert A, Hye A, Lynham S, Thambisetty M, Ward M. Proteomics of Alzheimer’s disease: understanding mechanisms and seeking biomarkers. Expert Rev. Proteomics4(2), 227–238 (2007).
  • Goldknopf IL. Blood-based proteomics for personalized medicine: examples from neurodegenerative disease. Expert Rev. Proteomics5(1), 1–8 (2008).
  • Ray S, Britschgi M, Herbert C et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat. Med.13(11), 1359–1362 (2007).
  • Grünblatt E, Schlößer R, Fischer P et al. Oxidative stress related markers in the “VITA” and the centenarian projects. Neurobiol. Aging26(4), 429–438 (2005).
  • Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM. Transcriptional profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol. Aging28(12), 1795–1809 (2007).
  • Kalman J, Kitajka K, Pakaski M et al. Gene expression profile analysis of lymphocytes from Alzheimer’s patients. Psychiatr. Genet.15(1), 1–6 (2005).
  • Matsubara T, Funato H, Kobayashi A, Nobumoto M, Watanabe Y. Reduced glucocorticoid receptor α expression in mood disorder patients and first-degree relatives. Biol. Psychiatry59(8), 689–695 (2006).
  • Gladkevich A, Kauffman HF, Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry28(3), 559–576 (2004).
  • Burczynski ME, Dorner AJ. Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics7(2), 187–202 (2006).
  • Le W, Pan T, Huang M et al. Decreased NURR1 gene expression in patients with Parkinson’s disease. J. Neurol. Sci.273(1–2), 29–33 (2008).
  • Scherzer CR, Eklund AC, Morse LJ et al. Molecular markers of early Parkinson’s disease based on gene expression in blood. Proc. Natl Acad. Sci. USA104(3), 955–960 (2007).
  • Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression in blood and brain. Am. J. Med. Genet. B Neuropsychiatr. Genet.141(3), 261–268 (2006).
  • Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J. Lab. Clin. Med.147(3), 126–132 (2006).
  • Roses AD, Saunders AM, Huang Y, Strum J, Weisgraber KH, Mahley RW. Complex disease-associated pharmacogenetics: drug efficacy, drug safety, and confirmation of a pathogenetic hypothesis (Alzheimer’s disease). Pharmacogenomics J.7(1), 10–28 (2007).
  • Pearson JV, Huentelman MJ, Halperin RF et al. Identification of the genetic basis for complex disorders by use of pooling-based genomewide single-nucleotide-polymorphism association studies. Am. J. Hum. Genet.80(1), 126–139 (2007).
  • Evangelou E, Maraganore DM, Ioannidis JP. Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease. PLoS ONE2(2), e196 (2007).
  • Coon KD, Myers AJ, Craig DW et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J. Clin. Psychiatry68(4), 613–618 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.