167
Views
28
CrossRef citations to date
0
Altmetric
Review

Management of epilepsy in tuberous sclerosis complex

, , &
Pages 457-467 | Published online: 10 Jan 2014

References

  • van Slegtenhorst M, de Hoogt R, Hermans C et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science277(5327), 805–808 (1997).
  • Consortium ECTS. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell75(7), 1305–1315 (1993).
  • Dabora SL, Jozwiak S, Franz DN et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet.68(1), 64–80 (2001).
  • Jones AC, Shyamsundar MM, Thomas MW et al. Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet.64(5), 1305–1315 (1999).
  • Choi JE, Chae JH, Hwang YS, Kim KJ. Mutational analysis of TSC1 and TSC2 in Korean patients with tuberous sclerosis complex. Brain Dev.28(7), 440–446 (2006).
  • Hung CC, Su YN, Chien SC et al. Molecular and clinical analyses of 84 patients with tuberous sclerosis complex. BMC Med. Genet.7, 72 (2006).
  • Langkau N, Martin N, Brandt R et al. TSC1 and TSC2 mutations in tuberous sclerosis, the associated phenotypes and a model to explain observed TSC1/TSC2 frequency ratios. Eur. J. Pediatr.161(7), 393–402 (2002).
  • Sancak O, Nellist M, Goedbloed M et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur. J. Hum. Genet.13(6), 731–741 (2005).
  • Devlin LA, Shepherd CH, Crawford H, Morrison PJ. Tuberous sclerosis complex: clinical features, diagnosis, and prevalence within Northern Ireland. Dev. Med. Child. Neurol.48(6), 495–499 (2006).
  • Lendvay TS, Marshall FF. The tuberous sclerosis complex and its highly variable manifestations. J. Urol.169(5), 1635–1642 (2003).
  • O’Callaghan FJ, Shiell AW, Osborne JP, Martyn CN. Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet351(9114), 1490 (1998).
  • Shepherd CW, Beard CM, Gomez MR, Kurland LT, Whisnant JP. Tuberous sclerosis complex in Olmsted County, Minnesota, 1950–1989. Arch. Neurol.48(4), 400–401 (1991).
  • Webb DW, Thomas RD, Osborne JP. Cardiac rhabdomyomas and their association with tuberous sclerosis. Arch. Dis. Child.68(3), 367–370 (1993).
  • Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann. NY Acad. Sci.615, 125–127 (1991).
  • Curatolo P. Tuberous Sclerosis Complex: From Basic Science To Clinical Phenotypes. Mac Keith Press for the International Child Neurology Association, London, UK (2003).
  • Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: a review of neurological aspects. Eur. J. Paediatr. Neurol.6(1), 15–23 (2002).
  • Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N. Engl. J. Med.355(13), 1345–1356 (2006).
  • Curatolo P, Bombardieri R, Verdecchia M, Seri S. Intractable seizures in tuberous sclerosis complex: from molecular pathogenesis to the rationale for treatment. J. Child Neurol.20(4), 318–325 (2005).
  • Chan JA, Zhang H, Roberts PS et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. Exp. Neurol.63(12), 1236–1242 (2004).
  • Crino PB. Molecular pathogenesis of tuber formation in tuberous sclerosis complex. J. Child Neurol.19(9), 716–725 (2004).
  • Scheidenhelm DK, Gutmann DH. Mouse models of tuberous sclerosis complex. J. Child Neurol.19(9), 726–733 (2004).
  • de Vries PJ, Howe CJ. The tuberous sclerosis complex proteins – a GRIPP on cognition and neurodevelopment. Trends Mol. Med.13(8), 319–326 (2007).
  • DiMario FJ Jr. Brain abnormalities in tuberous sclerosis complex. J. Child Neurol.19(9), 650–657 (2004).
  • Sakuma H, Iwata O, Sasaki M. Longitudinal MR findings in a patient with hemimegalencephaly associated with tuberous sclerosis. Brain Dev.27(6), 458–461 (2005).
  • Sarnat HB, Flores-Sarnat L. Integrative classification of morphology and molecular genetics in central nervous system malformations. Am. J. Med. Genet. A126(4), 386–392 (2004).
  • Ridler K, Suckling J, Higgins N, Bolton P, Bullmore E. Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J. Child Neurol.19(9), 658–665 (2004).
  • Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia49(1), 8–21 (2007).
  • Luat AF, Makki M, Chugani HT. Neuroimaging in tuberous sclerosis complex. Curr. Opin. Neurol.20(2), 142–150 (2007).
  • Garaci FG, Floris R, Bozzao A et al. Increased brain apparent diffusion coefficient in tuberous sclerosis. Radiology232(2), 461–465 (2004).
  • Curatolo P, Cusmai R, Cortesi F, Chiron C, Jambaque I, Dulac O. Neuropsychiatric aspects of tuberous sclerosis. Ann. NY Acad. Sci.615, 8–16 (1991).
  • Cusmai R, Chiron C, Curatolo P, Dulac O, Tran-Dinh S. Topographic comparative study of magnetic resonance imaging and electroencephalography in 34 children with tuberous sclerosis. Epilepsia31(6), 747–755 (1990).
  • Seri S, Cerquiglini A, Pisani F, Michel CM, Pascual Marqui RD, Curatolo P. Frontal lobe epilepsy associated with tuberous sclerosis: electroencephalographic-magnetic resonance image fusioning. J. Child Neurol.13(1), 33–38 (1998).
  • O’Callaghan FJ, Harris T, Joinson C et al. The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch. Dis. Child.89(6), 530–533 (2004).
  • Jambaque I, Chiron C, Dumas C, Mumford J, Dulac O. Mental and behavioural outcome of infantile epilepsy treated by vigabatrin in tuberous sclerosis patients. Epilepsy Res.38(23), 151–160 (2000).
  • Curatolo P, Bombardieri R, Cerminara C. Current management for epilepsy in tuberous sclerosis complex. Curr. Opin. Neurol.19(2), 119–123 (2006).
  • Bruni O, Cortesi F, Giannotti F, Curatolo P. Sleep disorders in tuberous sclerosis: a polysomnographic study. Brain Dev.17(1), 52–56 (1995).
  • White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann. Neurol.49(1), 67–78 (2001).
  • Wolf HK, Birkholz T, Wellmer J, Blumcke I, Pietsch T, Wiestler OD. Neurochemical profile of glioneuronal lesions from patients with pharmacoresistant focal epilepsies. J. Exp. Neurol.54(5), 689–697 (1995).
  • Calcagnotto ME, Paredes MF, Tihan T, Barbaro NM, Baraban SC. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia. J. Neurosci.25(42), 9649–9657 (2005).
  • Valencia I, Legido A, Yelin K, Khurana D, Kothare SV, Katsetos CD. Anomalous inhibitory circuits in cortical tubers of human tuberous sclerosis complex associated with refractory epilepsy: aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex. J. Child Neurol.21(12), 1058–1063 (2006).
  • Levitt P. Disruption of interneuron development. Epilepsia,46(Suppl. 7), 22–28 (2005).
  • Levitt P, Eagleson KL, Powell EM. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci.27(7), 400–406 (2004).
  • Concas A, Follesa P, Barbaccia ML, Purdy RH, Biggio G. Physiological modulation of GABA(A) receptor plasticity by progesterone metabolites. Eur. J. Pharmacol.375(1–3), 225–235 (1999).
  • di Michele F, Verdecchia M, Dorofeeva M et al. GABA(A) receptor active steroids are altered in epilepsy patients with tuberous sclerosis. J. Neurol. Neurosurg Psychiatry74(5), 667–670 (2003).
  • Hancock E, Osborne JP. Vigabatrin in the treatment of infantile spasms in tuberous sclerosis: literature review. J. Child Neurol.14(2), 71–74 (1999).
  • Parisi P, Bombardieri R, Curatolo P. Current role of vigabatrin in infantile spasms. Eur. J. Paediatr. Neurol.11(6), 331–336 (2007).
  • Wong M, Ess KC, Uhlmann EJ et al. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann. Neurol.54(2), 251–256 (2003).
  • Wang Y, Greenwood JS, Calcagnotto ME, Kirsch HE, Barbaro NM, Baraban SC. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1. Ann. Neurol.61(2), 139–152 (2007).
  • Gong R, Park CS, Abbassi NR, Tang SJ. Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J. Biol. Chem.281(27), 18802–18815 (2006).
  • Wang Y, Barbaro MF, Baraban SC. A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci. Lett.401(1–2), 35–39 (2006).
  • Lortie A, Plouin P, Chiron C, Delalande O, Dulac O. Characteristics of epilepsy in focal cortical dysplasia in infancy. Epilepsy Res.51(1–2), 133–145 (2002).
  • Eltze CM, Chong WK, Bhate S, Harding B, Neville BG, Cross JH. Taylor-type focal cortical dysplasia in infants: some MRI lesions almost disappear with maturation of myelination. Epilepsia46(12), 1988–1992 (2005).
  • Tassi L, Colombo N, Garbelli R et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain125(Pt 8), 1719–1732 (2002).
  • Xavier M, Bento MS, Pereira DP, De Almeida JM. Acute psychotic disorder associated with vigabatrin. Acta. Med. Port.13(3), 111–114 (2000).
  • Ascaso FJ, Lopez MJ, Mauri JA, Cristobal JA. Visual field defects in pediatric patients on vigabatrin monotherapy. Doc. Ophthalmol.107(2), 127–130 (2003).
  • Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. Br. Med. J.314(7075), 180–181 (1997).
  • Gaily E, Jonsson H, Lippi M. Visual fields in children treated with vigabatrin in infancy. Epilepsia47(S4), 179–180 (2006).
  • Giordano L, Valseriati D, Vignoli A, Morescalchi F, Gandolfo E. Another case of reversibility of visual-field defect induced by vigabatrin monotherapy: is young age a favorable factor? Neurol. Sci.21(3), 185–186 (2000).
  • Gross-Tsur V, Banin E, Shahar E, Shalev RS, Lahat E. Visual impairment in children with epilepsy treated with vigabatrin. Ann. Neurol.48(1), 60–64 (2000).
  • Iannetti P, Spalice A, Perla FM, Conicella E, Raucci U, Bizzarri B. Visual field constriction in children with epilepsy on vigabatrin treatment. Pediatrics106(4), 838–842 (2000).
  • Luchetti A, Amadi A, Gobbi G. Visual field defects associated with vigabatrin monotherapy in children. J. Neurol. Neurosurg. Psychiatr.67(6), 716–722 (1999).
  • Pelosse B, Momtchilova M, Roubergue A, Doummar D, Billette de Villemeur T, Laroche L. Study of visual field and vigabatrin treatment in children. J. Fr. Ophtalmol.24(10), 1075–1080 (2001).
  • Russell-Eggitt IM, Mackey DA, Taylor DS, Timms C, Walker JW. Vigabatrin-associated visual field defects in children. Eye14(Pt 3A), 334–339 (2000).
  • Spencer EL, Harding GF. Examining visual field defects in the paediatric population exposed to vigabatrin. Doc. Ophthalmol.107(3), 281–287 (2003).
  • Vanhatalo S, Nousiainen I, Eriksson K et al. Visual field constriction in 91 Finnish children treated with vigabatrin. Epilepsia43(7), 748–756 (2002).
  • Versino M, Veggiotti P. Reversibility of vigabratin-induced visual-field defect. Lancet354(9177), 486 (1999).
  • Vanhatalo S, Alen R, Riikonen R et al. Reversed visual field constrictions in children after vigabatrin withdrawal – true retinal recovery or improved test performance only? Seizure10(7), 508–511 (2001).
  • Frisen L, Malmgren K. Characterization of vigabatrin-associated optic atrophy. Acta Ophthalmol. Scand.81(5), 466–473 (2003).
  • Wild JM, Martinez C, Reinshagen G, Harding GF. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia40(12), 1784–1794 (1999).
  • Ravindran J, Blumbergs P, Crompton J, Pietris G, Waddy H. Visual field loss associated with vigabatrin: pathological correlations. J. Neurol. Neurosurg. Psychiatr.70(6), 787–789 (2001).
  • Frisen L. Vigabatrin-associated loss of vision: rarebit perimetry illuminates the dose-damage relationship. Acta Ophthalmol. Scand.82(1), 54–58 (2004).
  • Krauss GL, Johnson MA, Miller NR. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology50(3), 614–618 (1998).
  • Shields D, Collins SD, Elterman RD, Nakagawa J, Karen A. AES and safety of Vigabatrin in subject with infantile spasms. Epilepsia46(S8), 161 (2005).
  • Kinirons P, Cavalleri GL, O’Rourke D et al. Vigabatrin retinopathy in an Irish cohort: lack of correlation with dose. Epilepsia47(2), 311–317 (2006).
  • Best JL, Acheson JF. The natural history of Vigabatrin associated visual field defects in patients electing to continue their medication. Eye19(1), 41–44 (2005).
  • Miller NR, Johnson MA, Paul SR et al. Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology53(9), 2082–2087 (1999).
  • Buncic JR, Westall CA, Panton CM, Munn JR, MacKeen LD, Logan WJ. Characteristic retinal atrophy with secondary “inverse” optic atrophy identifies vigabatrin toxicity in children. Ophthalmology111(10), 1935–1942 (2004).
  • Harding GF, Spencer EL, Wild JM, Conway M, Bohn RL. Field-specific visual-evoked potentials: identifying field defects in vigabatrin-treated children. Neurology58(8), 1261–1265 (2002).
  • Harding GF, Wild JM, Robertson KA et al. Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia41(11), 1420–1431 (2000).
  • Harding GF, Wild JM, Robertson KA, Rietbrock S, Martinez C. Separating the retinal electrophysiologic effects of vigabatrin: treatment versus field loss. Neurology55(3), 347–352 (2000).
  • Ponjavic V, Granse L, Kjellstrom S, Andreasson S, Bruun A. Alterations in electroretinograms and retinal morphology in rabbits treated with vigabatrin. Doc. Ophthalmol.108(2), 125–133 (2004).
  • Parisi P, Tommasini P, Piazza G, Manfredi M. Scotopic threshold response changes after vigabatrin therapy in a child without visual field defects: a new electroretinographic marker of early damage? Neurobiol. Dis.15(3), 573–579 (2004).
  • Thiele EA. Managing epilepsy in tuberous sclerosis complex. J. Child Neurol.19(9), 680–686 (2004).
  • Jansen FE, van Huffelen AC, Bourez-Swart M, van Nieuwenhuizen O. Consistent localization of interictal epileptiform activity on EEGs of patients with tuberous sclerosis complex. Epilepsia46(3), 415–419 (2005).
  • Lachhwani DK, Pestana E, Gupta A, Kotagal P, Bingaman W, Wyllie E. Identification of candidates for epilepsy surgery in patients with tuberous sclerosis. Neurology64(9), 1651–1654 (2005).
  • Iida K, Otsubo H, Mohamed IS et al. Characterizing magnetoencephalographic spike sources in children with tuberous sclerosis complex. Epilepsia46(9), 1510–1517 (2005).
  • Chugani DC, Chugani HT, Muzik O et al. Imaging epileptogenic tubers in children with tuberous sclerosis complex using a-[11C]methyl-L-tryptophan positron emission tomography. Ann. Neurol.44(6), 858–866 (1998).
  • Kagawa K, Chugani DC, Asano E et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with a-[11C]methyl-L-tryptophan positron emission tomography (PET). J. Child Neurol.20(5), 429–438 (2005).
  • Yapici Z, Dincer A, Eraksoy M. Proton spectroscopic findings in children with epilepsy owing to tuberous sclerosis complex. J. Child Neurol.20(6), 517–522 (2005).
  • Jarrar RG, Buchhalter JR, Raffel C. Long-term outcome of epilepsy surgery in patients with tuberous sclerosis. Neurology62(3), 479–481 (2004).
  • Romanelli P, Verdecchia M, Rodas R, Seri S, Curatolo P. Epilepsy surgery for tuberous sclerosis. Pediatr. Neurol.31(4), 239–247 (2004).
  • Weiner HL, Ferraris N, LaJoie J, Miles D, Devinsky O. Epilepsy surgery for children with tuberous sclerosis complex. J. Child Neurol.19(9), 687–689 (2004).
  • Romanelli P, Najjar S, Weiner HL, Devinsky O. Epilepsy surgery in tuberous sclerosis: multistage procedures with bilateral or multilobar foci. J. Child Neurol.17(9), 689–692 (2002).
  • Weiner HL. Tuberous sclerosis and multiple tubers: localizing the epileptogenic zone. Epilepsia45(Suppl. 4), 41–42 (2004).
  • Jansen FE, van Huffelen AC, Algra A, van Nieuwenhuizen O. Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia48(8), 1477–1484 (2007).
  • Kossoff EH, Thiele EA, Pfeifer HH, McGrogan JR, Freeman JM. Tuberous sclerosis complex and the ketogenic diet. Epilepsia46(10), 1684–1686 (2005).
  • Rychlicki F, Zamponi N, Trignani R, Ricciuti RA, Iacoangeli M, Scerrati M. Vagus nerve stimulation: clinical experience in drug-resistant pediatric epileptic patients. Seizure15(7), 483–490 (2006).
  • Parain D, Penniello MJ, Berquen P, Delangre T, Billard C, Murphy JV. Vagal nerve stimulation in tuberous sclerosis complex patients. Pediatr. Neurol.25(3), 213–216 (2001).
  • Kossoff EH, Pyzik PL, Rubenstein JE et al. Combined ketogenic diet and vagus nerve stimulation: rational polytherapy? Epilepsia48(1), 77–81 (2007).
  • Herry I, Neukirch C, Debray MP, Mignon F, Crestani B. Dramatic effect of sirolimus on renal angiomyolipomas in a patient with tuberous sclerosis complex. Eur. J. Intern. Med.18(1), 76–77 (2007).
  • Wienecke R, Fackler I, Linsenmaier U, Mayer K, Licht T, Kretzler M. Antitumoral activity of rapamycin in renal angiomyolipoma associated with tuberous sclerosis complex. Am. J. Kidney Dis.48(3), E27–E29 (2006).
  • Franz DN, Leonard J, Tudor C et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann. Neurol.59(3), 490–498 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.