192
Views
12
CrossRef citations to date
0
Altmetric
Review

PTEN in brain tumors

&
Pages 599-610 | Published online: 09 Jan 2014

References

  • James CD, Carlbom E, Dumanski JP et al. Clonal genomic alterations in glioma malignancy stages. Cancer Res.48(19), 5546–5551 (1988).
  • Rasheed BK, Fuller GN, Friedman AH, Bigner DD, Bigner SH. Loss of heterozygosity for 10q loci in human gliomas. Genes Chromosomes Cancer5(1), 75–82 (1992).
  • Steck PA, Pershouse MA, Jasser SA et al. Identification of a candidate tumour supressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet.15, 356–362 (1997).
  • Li J, Yen C, Liaw D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer [see comments]. Science275(5308), 1943–1947 (1997).
  • Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res.64(19), 6892–6899 (2004).
  • Eng C. PTEN: one gene, many syndromes. Hum. Mutat.22(3), 183–198 (2003).
  • Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat. Rev. Cancer7(1), 35–45 (2007).
  • Myers MP, Stolarov JP, Eno C et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl Acad. Sci. USA94, 9052–9057 (1997).
  • Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem.273(22), 13375–13378 (1998).
  • Kaplan DR, Whitman M, Schaffhausen B et al. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell50(7), 1021–1029 (1987).
  • Lee JO, Yang H, Georgescu M-M et al. Crystal structure of the PTEN tumor supressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell99, 323–334 (1999).
  • Downes CP, Walker S, McConnachie G et al. Acute regulation of the tumour suppressor phosphatase, PTEN, by anionic lipids and reactive oxygen species. Biochem. Soc. Trans.32(Pt 2), 338–342 (2004).
  • Hawkins PT, Anderson KE, Davidson K, Stephens LR. Signalling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans.34(Pt 5), 647–662 (2006).
  • Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet.7(8), 606–619 (2006).
  • Stokoe D. The phosphoinositide 3-kinase pathway and cancer. Expert Rev. Mol. Med.7(10), 1–22 (2005).
  • Lemmon MA. Pleckstrin homology (PH) domains and phosphoinositides. Biochem. Soc. Symp.74, 81–93 (2007).
  • Stokoe D, Stephens LR, Copeland T et al. Dual eole of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science277, 567–570 (1997).
  • Alessi DR, James SR, Downes CP et al. Characterisation of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Ba. Curr. Biol.7, 261–269 (1997).
  • Yang ZZ, Tschopp O, Baudry A et al. Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans.32(Pt 2), 350–354 (2004).
  • Hawkins PT, Eguinoa A, Qiu R-G et al. PDGF stimulates an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr. Biol.5, 393–403 (1995).
  • Han J, Luby-Phelps K, Das B et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science279, 558–560 (1998).
  • Welch HC, Coadwell WJ, Ellson CD et al. P-Rex1, a PtdIns(3,4,5)P3- and GbgHregulated guanine-nucleotide exchange factor for Rac. Cell108(6), 809–821 (2002).
  • Walker SM, Downes CP, Leslie NR. TPIP: a novel phosphoinositide 3-phosphatase. Biochem. J.360(Pt 2), 277–283 (2001).
  • Haas-Kogan D, Shalev N, Wong M et al. PKB/akt activity is elevated in glioblastoma cells due to mutation of PTEN/MMAC1. Curr. Biol.8, 1195–1198 (1998).
  • Stambolic V, Suzuki A, de la Pomps JL et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor supressor PTEN. Cell95, 29–39 (1998).
  • Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu. Rev. Biochem.70, 247–279 (2001).
  • Kita D, Yonekawa Y, Weller M, Ohgaki H. PIK3CA alterations in primary (de novo) and secondary glioblastomas. Acta Neuropathol. (Berl.)113(3), 295–302 (2007).
  • Broderick DK, Di C, Parrett TJ et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res.64(15), 5048–5050 (2004).
  • Myers MP, Pass I, Batty IH et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA95(23), 13513–13518 (1998).
  • Hlobilkova A, Guldberg P, Thullberg M et al. Cell cycle arrest by the PTEN tumor suppressor is target cell specific and may require protein phosphatase activity. Exp. Cell Res.256(2), 571–577 (2000).
  • Weng LP, Brown JL, Eng C. PTEN coordinates G1 arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum. Mol. Genet.10(6), 599–604 (2001).
  • Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science303(5661), 1179–1181 (2004).
  • Cai XM, Tao BB, Wang LY et al. Protein phosphatase activity of PTEN inhibited the invasion of glioma cells with epidermal growth factor receptor mutation type III expression. Int. J. Cancer117(6), 905–912 (2005).
  • Gildea JJ, Herlevsen M, Harding MA et al. PTEN can inhibit in vitro organotypic and in vivo orthotopic invasion of human bladder cancer cells even in the absence of its lipid phosphatase activity. Oncogene23(40), 6788–6797 (2004).
  • Tamura M, Gu J, Matsumoto K et al. Inhibition of cell migration, spreading, and focal adhesions by tumor supressor PTEN. Science280, 1614–1617 (1998).
  • Tang Y, Eng C. PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer Res.66(2), 736–742 (2006).
  • Freeman DJ, Li AG, Wei G et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell3(2), 117–130 (2003).
  • Li AG, Piluso LG, Cai X et al. Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol. Cell23(4), 575–587 (2006).
  • Mayo LD, Donner DB. The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem. Sci.27(9), 462–467 (2002).
  • Stambolic V, MacPherson D, Sas D et al. Regulation of PTEN transcription by p53. Mol. Cell8(2), 317–325 (2001).
  • Wang J, Ouyang W, Li J et al. Loss of tumor suppressor p53 decreases PTEN expression and enhances signaling pathways leading to activation of activator protein 1 and nuclear factor κB induced by UV radiation. Cancer Res.65(15), 6601–6611 (2005).
  • Tang Y, Eng C. p53 down-regulates phosphatase and tensin homologue deleted on chromosome 10 protein stability partially through caspase-mediated degradation in cells with proteasome dysfunction. Cancer Res.66(12), 6139–6148 (2006).
  • Kim JS, Lee C, Bonifant CL, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol. Cell Biol.27(2), 662–677 (2007).
  • Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol.64(6), 479–489 (2005).
  • Kolasa IK, Rembiszewska A, Janiec-Jankowska A et al. PTEN mutation, expression and LOH at its locus in ovarian carcinomas. Relation to TP53, K-RAS and BRCA1 mutations. Gynecol. Oncol.103(2), 692–697 (2006).
  • Kurose K, Gilley K, Matsumoto S et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat. Genet.32(3), 355–357 (2002).
  • Chen Z, Trotman LC, Shaffer D et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature436(7051), 725–730 (2005).
  • Okumura K, Zhao M, Depinho RA, Furnari FB, Cavenee WK. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc. Natl Acad. Sci. USA102(8), 2703–2706 (2005).
  • Bader AG, Schneider ML, Bister K, Hartl M. TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene20(51), 7524–7535 (2001).
  • Virolle T, Adamson ED, Baron V et al. The Egfr-1 transcription factor directly activates PTEN during irradiation-induced signaling. Nat. Cell Biol.3, 1124–1128 (2001).
  • Shen YH, Zhang L, Gan Y et al. UpHregulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J. Biol. Chem.281(12), 7727–7736 (2006).
  • Patel L, Pass I, Coxon P et al. Tumour suppressor and anti-inflammatory actions of PPARg agonists are mediated via upregulation of PTEN. Curr. Biol.11, 764–768 (2001).
  • Ferraro B, Bepler G, Sharma S, Cantor A, Haura EB. EGR1 predicts PTEN and survival in patients with non-small-cell lung cancer. J. Clin. Oncol.23(9), 1921–1926 (2005).
  • Pan L, Lu J, Wang X et al. Histone deacetylase inhibitor trichostatin a potentiates doxorubicin-induced apoptosis by up-regulating PTEN expression. Cancer109(8), 1676–1688 (2007).
  • Grommes C, Landreth GE, Sastre M et al. Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor g agonist treatment. Mol. Pharmacol.70(5), 1524–1533 (2006).
  • Demetri GD, Fletcher CD, Mueller E et al. Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-γ ligand troglitazone in patients with liposarcoma. Proc. Natl Acad. Sci. USA96(7), 3951–3956 (1999).
  • Saez E, Tontonoz P, Nelson MC et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nat. Med.4(9), 1058–1061 (1998).
  • Ramos-Nino ME, MacLean CD, Littenberg B. Association between cancer prevalence and use of thiazolidinediones: results from the Vermont Diabetes Information System. BMC Med.5, 17 (2007).
  • Xia D, Srinivas H, Ahn YH et al. Mitogen-activated protein kinase kinase-4 promotes cell survival by decreasing PTEN expression through an NF κ B-dependent pathway. J. Biol. Chem.282(6), 3507–3519 (2007).
  • Hettinger K, Vikhanskaya F, Poh MK et al. cHJun promotes cellular survival by suppression of PTEN. Cell Death Differ.14(2), 218–229 (2007).
  • Miller SJ, Lou DY, Seldin DC, Lane WS, Neel BG. Direct identification of PTEN phosphorylation sites. FEBS Lett.528(1–3), 145–153 (2002).
  • Al-Khouri AM, Ma Y, Togo SH, Williams S, Mustelin T. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3β. J. Biol. Chem.280(42), 35195–35202 (2005).
  • Odriozola L, Singh G, Hoang T, Chan AM. Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J. Biol. Chem.282(32), 23306–23315 (2007).
  • Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J. Biol. Chem.276(52), 48627–48630 (2001).
  • Li Z, Dong X, Wang Z et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol.7(4), 399–404 (2005).
  • Lee SR, Yang KS, Kwon J et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem.277(23), 20336–20342 (2002).
  • Leslie NR. The redox regulation of PI 3-kinase-dependent signaling. Antioxid. Redox Signal.8(9–10), 1765–1774 (2006).
  • Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP. The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem. J.379(Pt 2), 301–307 (2004).
  • Das S, Dixon JE, Cho W. Membrane-binding and activation mechanism of PTEN. Proc. Natl Acad. Sci. USA100(13), 7491–7496 (2003).
  • Bonifant CL, Kim JS, Waldman T. NHERFs, NEP, MAGUKs, and more: interactions that regulate PTEN. J. Cell Biochem.102(4), 878–885 (2007).
  • Lachyankar MB, Sultana N, Schonhoff CM et al. A role for nuclear PTEN in neuronal differentiation. J. Neurosci.20(4), 1404–1413 (2000).
  • Deichmann M, Thome M, Benner A et al. PTEN/MMAC1 expression in melanoma resection specimens. Br. J. Cancer87(12), 1431–1436 (2002).
  • Gimm O, Perren A, Weng LP et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol.156(5), 1693–1700 (2000).
  • Vazquez F, Matsuoka S, Sellers WR et al. Tumor suppressor PTEN acts through dynamic interaction with the plasma membrane. Proc. Natl Acad. Sci. USA103(10), 3633–3638 (2006).
  • Chung JH, Ginn-Pease ME, Eng C. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res.65(10), 4108–4116 (2005).
  • Mossink MH, van Zon A, Scheper RJ, Sonneveld P, Wiemer EA. Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene22(47), 7458–7467 (2003).
  • Perren A, Weng LP, Boag AH et al. Immunohistochemical evidence of loss of PTEN expression in primary ductal adenocarcinomas of the breast. Am. J. Pathol.155(4), 1253–1260 (1999).
  • Trotman LC, Wang X, Alimonti A et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell128(1), 141–156 (2007).
  • Wang X, Trotman LC, Koppie T et al. NEDD4–1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell128(1), 129–139 (2007).
  • Lindsay Y, McCoull D, Davidson L et al. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J. Cell Sci.119(Pt 24), 5160–5168 (2006).
  • Wiencke JK, Zheng S, Jelluma N et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro. Oncol.9(3), 271–279 (2007).
  • Smith JS, Tachibana I, Passe SM et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J. Natl Cancer Inst.93(16), 1246–1256 (2001).
  • Lin H, Bondy ML, Langford LA et al. Allelic deletion analyses of MMAC/PTEN and DMBT1 loci in gliomas: relationship to prognostic significance. Clin. Cancer Res.4(10), 2447–2454 (1998).
  • Balesaria S, Brock C, Bower M et al. Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br. J. Cancer81(8), 1371–1377 (1999).
  • Schmidt MC, Antweiler S, Urban N et al. Impact of genotype and morphology on the prognosis of glioblastoma. J. Neuropathol. Exp. Neurol.61(4), 321–328 (2002).
  • Tada K, Shiraishi S, Kamiryo T et al. Analysis of loss of heterozygosity on chromosome 10 in patients with malignant astrocytic tumors: correlation with patient age and survival. J. Neurosurg.95(4), 651–659 (2001).
  • Abe T, Terada K, Wakimoto H et al. PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res.63(9), 2300–2305 (2003).
  • Pore N, Liu S, Haas-Kogan DA, O’Rourke DM, Maity A. PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res.63(1), 236–241 (2003).
  • Su JD, Mayo LD, Donner DB, Durden DL. PTEN and phosphatidylinositol 3´-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment. Cancer Res.63(13), 3585–3592 (2003).
  • Chakravarti A, Zhai G, Suzuki Y et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J. Clin. Oncol.22(10), 1926–1933 (2004).
  • Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell9(3), 157–173 (2006).
  • McBride S, Smith J, Zheng S et al. The prognostic significance of PTEN promoter hypermethylation in low-grade gliomas. Presented at: Society for Neuro-Oncology Twelfth Annual Scientific Meeting. Dallas, TX, USA, 15–18 November, 2007 (Abstract PA-07).
  • Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med.353(19), 2012–2024 (2005).
  • Haas-Kogan DA, Prados MD, Lamborn KR et al. Biomarkers to predict response to epidermal growth factor receptor inhibitors. Cell Cycle4(10), 1369–1372 (2005).
  • Haas-Kogan DA, Prados MD, Tihan T et al. Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J. Natl Cancer Inst.97(12), 880–887 (2005).
  • Prados M, Deboer R, Chang S et al. Phase II study of tarceva plus temodar during and following radiotherapy in patients newly diagnosed with glioblastoma or gliosarcoma. Presented at: Society for Neuro-Oncology Twelfth Annual Scientific Meeting. Dallas, TX, USA, 15–18 November, 2007 (Abstract MA-50).
  • Nagata Y, Lan KH, Zhou X et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell6(2), 117–127 (2004).
  • Fujita T, Doihara H, Kawasaki K et al. PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br. J. Cancer94(2), 247–252 (2006).
  • Shoman N, Klassen S, McFadden A et al. Reduced PTEN expression predicts relapse in patients with breast carcinoma treated by tamoxifen. Mod. Pathol.18(2), 250–259 (2005).
  • Milam MR, Soliman PT, Chung LH et al. Loss of phosphatase and tensin homologue deleted on chromosome 10 and phosphorylation of mammalian target of rapamycin are associated with progesterone refractory endometrial hyperplasia. Int. J. Gynecol. Cancer18(1), 146–151 (2008).
  • Yan X, Fraser M, Qiu Q, Tsang BK. Over-expression of PTEN sensitizes human ovarian cancer cells to cisplatin-induced apoptosis in a p53-dependent manner. Gynecol. Oncol.102(2), 348–355 (2006).
  • Wendel HG, Malina A, Zhao Z et al. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res.66(15), 7639–7646 (2006).
  • Fombonne E. The epidemiology of autism: a review. Psychol. Med.29(4), 769–786 (1999).
  • Goffin A, Hoefsloot LH, Bosgoed E, Swillen A, Fryns JP. PTEN mutation in a family with Cowden syndrome and autism. Am. J. Med. Genet.105(6), 521–524 (2001).
  • Pilarski R, Eng C. Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J. Med. Genet.41(5), 323–326 (2004).
  • Zori RT, Marsh DJ, Graham GE, Marliss EB, Eng C. Germline PTEN mutation in a family with Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. Am. J. Med. Genet.80(4), 399–402 (1998).
  • Butler MG, Dasouki MJ, Zhou XP et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet.42(4), 318–321 (2005).
  • Buxbaum JD, Cai G, Chaste P et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am. J. Med. Genet. B Neuropsychiatr. Genet.144(4), 484–491 (2007).
  • Kwon CH, Luikart BW, Powell CM et al. Pten regulates neuronal arborization and social interaction in mice. Neuron50(3), 377–388 (2006).
  • Zhao M, Song B, Pu J et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature442(7101), 457–460 (2006).
  • Chadborn NH, Ahmed AI, Holt MR et al. PTEN couples Sema3A signalling to growth cone collapse. J. Cell Sci.119(Pt 5), 951–957 (2006).
  • Griffin RJ, Moloney A, Kelliher M et al. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J. Neurochem.93(1), 105–117 (2005).
  • Wei W, Wang X, Kusiak JW. Signaling events in amyloid β-peptide-induced neuronal death and insulin-like growth factor I protection. J. Biol. Chem.277(20), 17649–17656 (2002).
  • Martin D, Salinas M, Lopez-Valdaliso R et al. Effect of the Alzheimer amyloid fragment Ab(25–35) on Akt/PKB kinase and survival of PC12 cells. J. Neurochem.78(5), 1000–1008 (2001).
  • Pei JJ, Khatoon S, An WL et al. Role of protein kinase B in Alzheimer’s neurofibrillary pathology. Acta Neuropathol.105(4), 381–392 (2003).
  • Zhang X, Li F, Bulloj A et al. Tumor-suppressor PTEN affects tau phosphorylation, aggregation, and binding to microtubules. FASEB J.20(8), 1272–1274 (2006).
  • Bradley A, Luo G. The Ptentative nature of mouse knockouts [news]. Nat. Genet.20(4), 322–323 (1998).
  • Backman SA, Stambolic V, Suzuki A et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat. Genet.29(4), 396–403 (2001).
  • Kwon CH, Zhu X, Zhang J et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat. Genet.29(4), 404–411 (2001).
  • Groszer M, Erickson R, Scripture-Adams DD et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294(5549), 2186–2189 (2001).
  • Marino S, Krimpenfort P, Leung C et al. PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development129(14), 3513–3522 (2002).
  • Fraser MM, Zhu X, Kwon CH et al. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res.64(21), 7773–7779 (2004).
  • Wei Q, Clarke L, Scheidenhelm DK et al. High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res.66(15), 7429–7437 (2006).
  • Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell1(2), 157–168 (2002).
  • Xiao A, Yin C, Yang C et al. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res.65(12), 5172–5180 (2005).
  • O’Neill RA, Bhamidipati A, Bi X et al. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc. Natl Acad. Sci. USA103(44), 16153–16158 (2006).
  • Saal LH, Johansson P, Holm K et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc. Natl Acad. Sci. USA104(18), 7564–7569 (2007).
  • Mehrian-Shai R, Chen CD, Shi T et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc. Natl Acad. Sci. USA104(13), 5563–5568 (2007).
  • Beloueche-Babari M, Jackson LE, Al-Saffar NM et al. Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Mol. Cancer Ther.5(1), 187–196 (2006).
  • Krutzik PO, Nolan GP. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods3(5), 361–368 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.