54
Views
5
CrossRef citations to date
0
Altmetric
Special Report

Frontiers in the surgical treatment of Parkinson’s disease

, &
Pages 897-906 | Published online: 09 Jan 2014

References

  • Limousin P, Krack P, Pollak P et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med.339(16), 1105–1111 (1998).
  • Krack P, Batir A, Van Blercom N et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N. Engl. J. Med.349(20), 1925–1934 (2003).
  • Deuschl G, Schade-Brittinger C, Krack P et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med.355(9), 896–908 (2006).
  • Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol.50(1–6), 344–346 (1987).
  • Siegfried J. [Effect of stimulation of the sensory nucleus of the thalamus on dyskinesia and spasticity]. Rev. Neurol. (Paris)142(4), 380–383 (1986).
  • Siegfried J, Lippitz B. Bilateral chronic electrostimulation of ventroposterolateral pallidum: a new therapeutic approach for alleviating all Parkinsonian symptoms. Neurosurgery35(6), 1126–1129; discussion 1129–1130 (1994).
  • Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot study. Neurosurgery45(6), 1375–1382; discussion 1382–1384 (1999).
  • Limousin P, Pollak P, Benazzouz A et al. Effect of Parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet345(8942), 91–95 (1995).
  • Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat. Disord.12(5), 265–272 (2006).
  • Peppe A, Pierantozzi M, Bassi A et al. Stimulation of the subthalamic nucleus compared with the globus pallidus internus in patients with Parkinson disease. J. Neurosurg.101(2), 195–200 (2004).
  • Rodriguez-Oroz MC, Obeso JA, Lang AE et al. Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain128(Pt 10), 2240–2249 (2005).
  • Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain123(Pt 9), 1767–1783 (2000).
  • Zweig RM, Jankel WR, Hedreen JC, Mayeux R, Price DL. The pedunculopontine nucleus in Parkinson’s disease. Ann. Neurol.26(1), 41–46 (1989).
  • Nandi D, Liu X, Winter JL, Aziz TZ, Stein JF. Deep brain stimulation of the pedunculopontine region in the normal non-human primate. J. Clin. Neurosci.9(2), 170–174 (2002).
  • Nandi D, Aziz TZ, Giladi N, Winter J, Stein JF. Reversal of akinesia in experimental parkinsonism by GABA antagonist microinjections in the pedunculopontine nucleus. Brain125(Pt 11), 2418–2430 (2002).
  • Jenkinson N, Nandi D, Miall RC, Stein JF, Aziz TZ. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey. Neuroreport15(17), 2621–2624 (2004).
  • Mazzone P, Lozano A, Stanzione P et al. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport16(17), 1877–1881 (2005).
  • Stefani A, Lozano AM, Peppe A et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain130(Pt 6), 1596–1607 (2007).
  • Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport16(17), 1883–1887 (2005).
  • Plaha P, Ben-Shlomo Y, Patel NK, Gill SS. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain129(Pt 7), 1732–1747 (2006).
  • Jiménez F, Velasco F, Velasco M et al. Subthalamic prelemniscal radiation stimulation for the treatment of Parkinson’s disease: electrophysiological characterization of the area. Arch. Med. Res.31(3), 270–281 (2000).
  • Kitagawa M, Murata J, Uesugi H et al. Two-year follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant Parkinson’s disease. Neurosurgery56(2), 281–289 (2005).
  • Katayama Y, Fukaya C, Yamamoto T. Control of poststroke involuntary and voluntary movement disorders with deep brain or epidural cortical stimulation. Stereotact. Funct. Neurosurg.69(1–4 Pt 2), 73–79 (1997).
  • García-Larrea L, Peyron R, Mertens P et al. Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain83(2), 259–273 (1999).
  • Canavero S, Paolotti R, Bonicalzi V et al. Extradural motor cortex stimulation for advanced Parkinson disease. Report of two cases. J. Neurosurg.97(5), 1208–1211 (2002).
  • Cioni B. Motor cortex stimulation for Parkinson’s disease. Acta Neurochir. Suppl.97(Pt 2), 233–238 (2007).
  • Pagni CA, Altibrandi MG, Bentivoglio A et al. Extradural motor cortex stimulation (EMCS) for Parkinson’s disease. History and first results by the study group of the Italian neurosurgical society. Acta Neurochir. Suppl.93, 113–119 (2005).
  • Temel Y, Visser-Vandewalle V. Targets for deep brain stimulation in Parkinson’s disease. Expert Opin. Ther. Targets10(3), 355–362 (2006).
  • Rodriguez MC, Obeso JA, Olanow CW. Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann. Neurol.44(3 Suppl. 1), S175–S188 (1998).
  • Piallat B, Benazzouz A, Benabid AL. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur. J. Neurosci.8(7), 1408–1414 (1996).
  • Chen L, Liu Z, Tian Z, Wang Y, Li S. Prevention of neurotoxin damage of 6-OHDA to dopaminergic nigral neuron by subthalamic nucleus lesions. Stereotact. Funct. Neurosurg.75(2–3), 66–75 (2000).
  • Carvalho GA, Nikkhah G. Subthalamic nucleus lesions are neuroprotective against terminal 6-OHDA-induced striatal lesions and restore postural balancing reactions. Exp. Neurol.171(2), 405–417 (2001).
  • Paul G, Meissner W, Rein S et al. Ablation of the subthalamic nucleus protects dopaminergic phenotype but not cell survival in a rat model of Parkinson’s disease. Exp. Neurol.185(2), 272–280 (2004).
  • Nakao N, Nakai E, Nakai K, Itakura T. Ablation of the subthalamic nucleus supports the survival of nigral dopaminergic neurons after nigrostriatal lesions induced by the mitochondrial toxin 3-nitropropionic acid. Ann. Neurol.45(5), 640–651 (1999).
  • Maesawa S, Kaneoke Y, Kajita Y et al. Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J. Neurosurg.100(4), 679–687 (2004).
  • Temel Y, Visser-Vandewalle V, Kaplan S et al. Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res.1120(1), 100–105 (2006).
  • Wallace BA, Ashkan K, Heise CE et al. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain130(Pt 8), 2129–2145 (2007).
  • Luquin MR, Saldise L, Guillén J et al. Does increased excitatory drive from the subthalamic nucleus contribute to dopaminergic neuronal death in Parkinson’s disease? Exp. Neurol.201(2), 407–415 (2006).
  • Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE. Longjterm follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J. Neurosurg.99(3), 489–495 (2003).
  • Hilker R, Portman AT, Voges J et al. Disease progression continues in patients with advanced Parkinson’s disease and effective subthalamic nucleus stimulation. J. Neurol. Neurosurg. Psychiatry76(9), 1217–1221 (2005).
  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science260(5111), 1130–1132 (1993).
  • Schaar DG, Sieber BA, Dreyfus CF, Black IB. Regional and cell-specific expression of GDNF in rat brain. Exp. Neurol.124(2), 368–371 (1993).
  • Beck KD, Valverde J, Alexi T et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature373(6512), 339–341 (1995).
  • Tomac A, Lindqvist E, Lin LF et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo.. Nature373(6512), 335–339 (1995).
  • Gash DM, Zhang Z, Ovadia A et al. Functional recovery in Parkinsonian monkeys treated with GDNF. Nature380(6571), 252–255 (1996).
  • Olson L. Toward trophic treatment in parkinsonism: a primate step. Nat. Med.2(4), 400–401 (1996).
  • Lapchak PA, Gash DM, Collins F, Hilt D, Miller PJ, Araujo DM. Pharmacological activities of glial cell line-derived neurotrophic factor (GDNF): preclinical development and application to the treatment of Parkinson’s disease. Exp. Neurol.145(2 Pt 1), 309–321 (1997).
  • Lapchak PA, Gash DM, Jiao S, Miller PJ, Hilt D. Glial cell line-derived neurotrophic factor: a novel therapeutic approach to treat motor dysfunction in Parkinson’s disease. Exp. Neurol.144(1), 29–34 (1997).
  • Nutt JG, Burchiel KJ, Comella CL et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology60(1), 69–73 (2003).
  • Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat. Med.9(5), 589–595 (2003).
  • Lang AE, Gill S, Patel NK et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann. Neurol.59(3), 459–466 (2006).
  • Patel NK, Gill SS. GDNF delivery for Parkinson’s disease. Acta Neurochir. Suppl.97(Pt 2), 135–154 (2007).
  • Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat. Med.11(7), 703–704 (2005).
  • Kotzbauer PT, Lampe PA, Heuckeroth RO et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature384(6608), 467–470 (1996).
  • Horger BA, Nishimura MC, Armanini MP et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J. Neurosci.18(13), 4929–4937 (1998).
  • Oiwa Y, Yoshimura R, Nakai K, Itakura T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson’s disease. Brain Res.947(2), 271–283 (2002).
  • Quartu M, Serra MP, Manca A, Mascia F, Follesa P, Del Fiacco M. Neurturin, persephin, and artemin in the human pre- and full-term newborn and adult hippocampus and fascia dentata. Brain Res.1041(2), 157–166 (2005).
  • Masure S, Geerts H, Cik M et al. Enovin, a member of the glial cell-line-derived neurotrophic factor (GDNF) family with growth promoting activity on neuronal cells. Existence and tissue-specific expression of different splice variants. Eur. J. Biochem.266(3), 892–902 (1999).
  • Baloh RH, Tansey MG, Lampe PA et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRα3-RET receptor complex. Neuron21(6), 1291–1302 (1998).
  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science204(4393), 643–647 (1979).
  • Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Björklund A. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp. Brain Res.65(1), 235–240 (1986).
  • Bankiewicz KS, Plunkett RJ, Mefford I, Kopin IJ, Oldfield EH. Behavioral recovery from MPTP-induced parkinsonism in monkeys after intracerebral tissue implants is not related to CSF concentrations of dopamine metabolites. Prog. Brain Res.82, 561–571 (1990).
  • Freed CR, Breeze RE, Rosenberg NL et al. Transplantation of human fetal dopamine cells for Parkinson’s disease. Results at 1 year. Arch. Neurol.47(5), 505–512 (1990).
  • Lindvall O, Brundin P, Widner H et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science247(4942), 574–577 (1990).
  • Freed CR, Breeze RE, Rosenberg NL et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med.327(22), 1549–1555 (1992).
  • Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med.344(10), 710–719 (2001).
  • Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol.54(3), 403–414 (2003).
  • Piccini P, Pavese N, Hagell P et al. Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain128(Pt 12), 2977–2986 (2005).
  • Perrier AL, Tabar V, Barberi T et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101(34), 12543–12548 (2004).
  • Bjorklund LM, Sánchez-Pernaute R, Chung S et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA99(4), 2344–2349 (2002).
  • Takagi Y, Takahashi J, Saiki H et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest.115(1), 102–109 (2005).
  • Brederlau A, Correia AS, Anisimov SV et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells24(6), 1433–1440 (2006).
  • Ben-Hur T, Idelson M, Khaner H et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells22(7), 1246–1255 (2004).
  • Torres EM, Monville C, Lowenstein PR, Castro MG, Dunnett SB. Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson’s disease using adenoviral vectors increased yield of dopamine cells is dependent on embryonic donor age. Brain Res. Bull.68(1–2), 31–41 (2005).
  • Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in Parkinsonian rats. Nat. Neurosci.1(4), 290–295 (1998).
  • Wang X, Lu Y, Zhang H et al. Distinct efficacy of pre-differentiated versus intact fetal mesencephalon-derived human neural progenitor cells in alleviating rat model of Parkinson’s disease. Int. J. Dev. Neurosci.22(4), 175–183 (2004).
  • Parati EA, Bez A, Ponti D, Sala S, Pozzi S, Pagano SF. Neural stem cells. Biological features and therapeutic potential in Parkinson’s disease. J. Neurosurg. Sci.47(1), 8–17 (2003).
  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo. from bone marrow. Science290(5497), 1779–1782 (2000).
  • Toma JG, Akhavan M, Fernandes KJ et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol.3(9), 778–784 (2001).
  • Fu YS, Cheng YC, Lin MY et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells24(1), 115–124 (2006).
  • Rodríguez-Gómez JA, Lu JQ, Velasco I et al. Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells25(4), 918–928 (2007).
  • Li XK, Guo AC, Zuo PP. Survival and differentiation of transplanted neural stem cells in mice brain with MPTP-induced Parkinson disease. Acta Pharmacol. Sin.24(12), 1192–1198 (2003).
  • Hovakimyan M, Haas SJ, Schmitt O, Gerber B, Wree A, Andressen C. Mesencephalic human neural progenitor cells transplanted into the neonatal hemiparkinsonian rat striatum differentiate into neurons and improve motor behaviour. J. Anat.209(6), 721–732 (2006).
  • Redmond DE, Bjugstad KB, Teng YD et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc. Natl Acad. Sci. USA104(29), 12175–12180 (2007).
  • Richardson RM, Broaddus WC, Holloway KL, Fillmore HL. Grafts of adult subependymal zone neuronal progenitor cells rescue hemiparkinsonian behavioral decline. Brain Res.1032(1–2), 11–22 (2005).
  • Yasuhara T, Matsukawa N, Hara K et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. J. Neurosci.26(48), 12497–12511 (2006).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858), 1917–1920 (2007).
  • Subramanian T, Marchionini D, Potter EM, Cornfeldt ML. Striatal xenotransplantation of human retinal pigment epithelial cells attached to microcarriers in hemiparkinsonian rats ameliorates behavioral deficits without provoking a host immune response. Cell Transplant.11(3), 207–214 (2002).
  • Subramanian T, Bakay RAE, Cornfeldt ME, Watts RL. Blinded placebo-controlled trial to assess the effects of striatal transplantation of human retinal pigmented epithelial cells attached to microcarriers (hRPE-M) in Parkinsonian monkeys. Parkinsonism Relat. Disord.5, S111 (1999).
  • Stover NP, Bakay RA, Subramanian T et al. Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch. Neurol.62(12), 1833–1837 (2005).
  • Betchen SA, Kaplitt M. Future and current surgical therapies in Parkinson’s disease. Curr. Opin. Neurol.16(4), 487–493 (2003).
  • Bensadoun JC, Déglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P. Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp. Neurol.164(1), 15–24 (2000).
  • Brizard M, Carcenac C, Bemelmans AP, Feuerstein C, Mallet J, Savasta M. Functional reinnervation from remaining DA terminals induced by GDNF lentivirus in a rat model of early Parkinson’s disease. Neurobiol. Dis.21(1), 90–101 (2006).
  • Fjord-Larsen L, Johansen JL, Kusk P et al. Efficient in vivo. protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified Neurturin construct. Exp. Neurol.195(1), 49–60 (2005).
  • Sun M, Kong L, Wang X, Lu XG, Gao Q, Geller AI. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Res.1052(2), 119–129 (2005).
  • Gasmi M, Brandon EP, Herzog CD et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol. Dis.27(1), 67–76 (2007).
  • Kordower JH, Emborg ME, Bloch J et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science290(5492), 767–773 (2000).
  • Palfi S, Leventhal L, Chu Y et al. Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J. Neurosci.22(12), 4942–4954 (2002).
  • Sánchez-Pernaute R, Harvey-White J, Cunningham J, Bankiewicz KS. Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxylase into the striatum of 6-OHDA-lesioned rats. Mol. Ther.4(4), 324–330 (2001).
  • Bencsics C, Wachtel SR, Milstien S, Hatakeyama K, Becker JB, Kang UJ. Double transduction with GTP cyclohydrolase I and tyrosine hydroxylase is necessary for spontaneous synthesis of L-DOPA by primary fibroblasts. J. Neurosci.16(14), 4449–4456 (1996).
  • Kang UJ, Nakamura K. Potential of gene therapy for pediatric neurotransmitter diseases: lessons from Parkinson’s disease. Ann. Neurol.54(Suppl. 6), S103–S109 (2003).
  • During MJ, Samulski RJ, Elsworth JD et al.In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated monkeys using an AAV vector. Gene Ther.5(6), 820–827 (1998).
  • Muramatsu S, Fujimoto K, Ikeguchi K et al. Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum. Gene Ther.13(3), 345–354 (2002).
  • During MJ, Kaplitt MG, Stern MB, Eidelberg D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum. Gene Ther.12(12), 1589–1591 (2001).
  • Lo Bianco C, Schneider BL, Bauer M et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson’s disease. Proc. Natl Acad. Sci. USA101(50), 17510–17515 (2004).
  • Luo J, Kaplitt MG, Fitzsimons HL et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science298(5592), 425–429 (2002).
  • Kaplitt MG, Feigin A, Tang C et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, Phase I trial. Lancet369(9579), 2097–2105 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.