65
Views
21
CrossRef citations to date
0
Altmetric
Perspective

Stabilizing dendritic structure as a novel therapeutic approach for epilepsy

Pages 907-915 | Published online: 09 Jan 2014

References

  • Dodrill CB. Progressive cognitive decline in adolescents and adults with epilepsy. Prog. Brain Res.135, 399–407 (2002).
  • Elger CE, Helmstaedter C, Kurthen M. Chronic epilepsy and cognition. Lancet Neurol.3, 663–677 (2004).
  • Helmstaedter C. Effects of chronic epilepsy on declarative memory systems. Prog. Brain Res.135, 439–453 (2002).
  • Williams J. Learning and behavior in children with epilepsy. Epilepsy Behav.4, 107–111 (2003).
  • Austin JK, Dunn DW. Progressive behavioral changes in children with epilepsy. Prog. Brain Res.135, 419–427 (2002).
  • Kwan P, Brodie MJ. Refractory epilepsy: mechanisms and solutions. Expert Rev. Neurother.6, 397–406 (2006).
  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N. Engl. J. Med.342, 314–319 (2000).
  • Berg AT, Vickrey BG, Testa FM et al. How long does it take for epilepsy to become intractable? A prospective investigation. Ann. Neurol.60, 73–79 (2006).
  • Walker MC, Sander JW. The impact of new antiepileptic drugs on the prognosis of epilepsy: seizure freedom should be the ultimate goal. Neurology46, 912–914 (1996).
  • Schmidt D. The clinical impact of new antiepileptic drugs after a decade of use in epilepsy. Epilepsy Res.50, 21–32 (2002).
  • Wilby J, Kainth A, Hawkins N et al. Clinical effectiveness, tolerability and cost-effectiveness of newer drugs for epilepsy in adults: a systematic review and economic evaluation. Health Technol. Assess.9, 1–157 (2005).
  • Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol.6, 793–804 (2007).
  • Temkin NR, Dikmen SS, Wilensky AJ et al. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med.323, 497–502 (1990).
  • Mussico M, Beghi E, Solari A, Viani F. Treatment of first tonic-clonic seizure does not improve the prognosis of epilepsy. First Seizure Trial Group (FIRST Group). Neurology49, 991–998 (1997).
  • Marson A, Jacoby A, Johnson A et al. Immediate versus deferred antiepileptic drug treatment for early epilepsy and single seizures: a randomized controlled trial. Lancet365, 2005–2013 (2005).
  • Devinsky O. Therapy for neurobehavioral disorders in epilepsy. Epilepsia45(Suppl. 2), 34–40 (2004).
  • Loscher W, Schmidt D. New horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res.69, 183–272 (2006).
  • Stefan H, Lopes da Silva FH, Loscher W et al. Epileptogenesis and rational therapeutic strategies. Acta Neurol. Scand.113, 139–155 (2006).
  • Dichter MA. Models of epileptogenesis in adult animals available for antiepileptogenesis drug screening. Epilepsy Res.68, 31–35 (2006).
  • Nimchinsky EA, Sabatini BL, Svoboda K. Structure and function of dendritic spines. Ann. Rev. Physiol.64, 313–353 (2002).
  • Tsay D, Yuste R. On the electrical function of dendritic spines. Trends Neurosci.27, 77–83 (2004).
  • Koch C, Zador A. The function of dendritic spines – devices subserving biochemical rather than electrical compartmentalization. J. Neurosci.13, 413–422 (1993).
  • Matsuzaki M, Ellis-Davis GC, Nemoto T, Miyashita Y, Iino M, Kasai H. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci.4, 1086–1092 (2001).
  • Yuste R, Majewska A, Holthoff K. From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci.3, 653–659 (2000).
  • Majewska A, Brown E, Ross J, Yuste R. Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci.20, 1722–1734 (2000).
  • Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H. Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron46, 609–622 (2005).
  • Segal M. Dendritic spines and long-term plasticity. Nat. Rev. Neurosci.6, 277–284 (2005).
  • Carlise HJ, Kennedy MB. Spine architecture and synaptic plasticity. Trends Neurosci.28, 182–187 (2005).
  • Desmond NL, Levy WB. Synaptic interface surface area increases with long-term potentiation in the hippocampal dentate gyrus. Brain Res.453, 308–314 (1988).
  • Trommald M, Hulleberg G, Andersen P. Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. Learn. Mem.3, 218–228 (1996).
  • Maletic-Savatic M, Malinow R, Svoboda K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science283, 1923–1926 (1999).
  • Engert F, Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature399, 66–70 (1999).
  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. Structural basis of long-term potentiation in single dendritic spines. Nature429, 761–766 (2004).
  • Lang C, Barco A, Zablow L, Kandel ER, Siegelbaum SA, Zakharenko SS. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc. Natl Acad. Sci. USA47, 16665–16670 (2004).
  • Moser MB, Trommald M, Andersen P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl Acad. Sci. USA91, 12673–12675 (1994).
  • Airey DC, Kroodsma DE, DeVoogd TJ. Differences in the complexity of song tutoring cause differences in the amount learned and in dendritic spine density in a songbird telencephalic song control nucleus. Neurobiol. Learn. Mem.73, 274–281 (2000).
  • Leuner B, Falduto J, Shors TJ. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci.23, 659–665 (2003).
  • Knafo S, Grossman Y, Barkai E, Benshalom G. Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex. Eur. J. Neurosci.13, 633–638 (2001).
  • Knafo S, Ariav G, Barkai E, Libersat F. Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons. Hippocampus14, 819–825 (2005).
  • Lowndes M, Stewart MG. Dendritic spine density in the lobus parolfactorius of the domestic chick is increased 24 h after one-trial passive avoidance training. Brain Res.654, 129–136 (1994).
  • Hongpaisan J, Alkon DL. A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proc. Natl Acad. Sci. USA104, 19571–19576 (2007).
  • Kaufmann WE, Moser HW. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex10, 981–991 (2000).
  • Purpura DP. Dendritic spine ‘dysgenesis’ and mental retardation. Science186, 1126–1128 (1974).
  • Huttenlocher PR. Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology24, 203–210 (1974).
  • Marin-Padilla M. Pyramidal cell abnormalities in the motor cortex of a child with Down syndrome. A Golgi study. J. Comp. Neurol.167, 63–81 (1976).
  • Takashima S, Becker DL, Armstrong DL, Chan FW. Abnormal neuronal development in the visual cortex of the human fetus and infant with Down’s syndrome. A quantitative and qualitative Golgi study. Brain Res.225, 1–21 (1981).
  • Armstrong D, Dunn JK, Antalffy B, Triveldi R. Selective dendritic alterations in the cortex of Rett syndrome. J. Neuropathol. Exp. Neurol.54, 195–201 (1995).
  • Hinton VJ, Brown WT, Wisniewski K, Rudelli RD. Analysis of neocortex in three males with the fragile X syndrome. Am. J. Med. Genet.41, 289–294 (1991).
  • Swann JW, Al-Noori S, Jiang M, Lee CL. Spine loss and other dendritic abnormalities in epilepsy. Hippocampus10, 617–625 (2000).
  • Wong M. Modulation of dendritic spines in epilepsy: cellular mechanisms and functional implications. Epilepsy Behav.7, 569–577 (2005).
  • Scheibel ME, Crandall PH, Scheibel AB. The hippocampal-dentate complex in temporal lobe epilepsy. Epilepsia15, 55–80 (1974).
  • Belichenko PV, Dahlstrom A. Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J. Neurosci. Methods57, 55–61 (1995).
  • Isokawa M, Levesque MF. Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices. Neurosci. Lett.132, 212–216 (1991).
  • Blumcke I, Zuschratter W, Schewe JC et al. Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J. Comp. Neurol.414, 437–453 (1999).
  • von Campe G, Spencer DD, Lanerolle NC. Morphology of dentate granule cells in the human epileptogenic hippocampus. Hippocampus7, 472–488 (1997).
  • Multani P, Myers RH, Blume HW, Schomer DL, Sotrel A. Neocortical dendritic pathology in human partial epilepsy: a quantitative Golgi study. Epilepsia35, 728–736 (1994).
  • Belichenko PV, Sourander P, Malmgren K et al. Dendritic morphology in epileptogenic cortex from TRPE patients, revealed by intracellular Lucifer Yellow microinjection and confocal laser scanning microscopy. Epilepsy Res.18, 233–247 (1994).
  • Isokawa M. Preservation of dendrites with the presence of reorganized mossy fiber collaterals in hippocampal dentate granule cells in patients with temporal lobe epilepsy. Brain Res.744, 339–343 (1997).
  • Isokawa M. Remodeling dendritic spines in the rat pilocarpine model of temporal lobe epilepsy. Neurosci. Lett.258, 73–76 (1998).
  • Jiang M, Lee CL, Smith KL, Swann JW. Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J. Neurosci.18, 8356–8368 (1998).
  • Willmore LJ, Ballinger WE Jr, Boggs W, Sypert GW, Rubin JJ. Dendritic alterations in rat isocortex within an iron-induced chronic epileptic focus. Neurosurgery7, 142–146 (1980).
  • Nishizuka M, Okada R, Seki K, Arai Y, Ilizuka R. Loss of dendritic synapses in the medial amygdala associated with kindling. Brain Res.552, 351–355 (1991).
  • Gonzalez-Burgos I, Lopez-Vazquez MA, Beas-Zarate C. Density, but not shape, of hippocampal dendritic spines varies after a seizure-inducing acute dose of monosodium glutamate in rats. Neurosci. Lett.363, 22–24 (2004).
  • Ampuero E, Dagnino-Subiabre A, Sandoval R et al. Status epilepticus induces region-specific changes in dendritic spines, dendritic length and TrkB protein content of rat brain cortex. Brain Res.1150, 225–228 (2007).
  • Bundman MC, Pico RM, Gall CM. Ultrastructural plasticity of the dentate gyrus granule cells following recurrent limbic sesizures: I. Increase in somatic spines. Hippocampus4, 601–610 (1994).
  • Suzuki F, Makiura Y, Guilhem D, Sorensen J-C, Onteniente B. Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice. Exp. Neurol.145, 203–213 (1997).
  • Spigelman I, Yan XX, Obenaus A, Lee EYS, Wasterlain CG, Ribak CE. Dentate granule cells form novel basal dendrites in a rat model of temporal lobe epilepsy. Neuroscience86, 109–120 (1998).
  • Muller M, Gahwiler BH, Rietschin L, Thompson SM. Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures. Proc. Natl Acad. Sci. USA90, 257–261 (1993).
  • Thompson SM, Fortunato C, McKinney RA, Muller M, Gahwiler BH. Mechanisms underlying the neuropathological consequences of epileptic activity in the rat hippocampus in vitro. J. Comp. Neurol.372, 515–528 (1996).
  • Zha XM, Green SH, Dailey ME. Regulation of hippocampal synapse remodeling by epileptiform activity. Mol. Cell. Neurosci.29, 494–506 (2005).
  • Nishimura M, Owens J, Swann JW. Effects of chronic network hyperexcitability on the growth of hippocampal dendrites. Neurobiol. Dis.29, 267–277 (2008).
  • Mizrahi A, Crowley JC, Shtoyerman E, Katz LC. High-resolution in vivo imaging of hippocampal dendrites and spines. J. Neurosci.24, 3147–3151 (2004).
  • Rensing NR, Ouyang Y, Yang XF, Yamada KA, Rothman SM, Wong M. In vivo imaging of dendritic spines during electrographic seizures. Ann. Neurol.58, 888–898 (2005).
  • Zeng LH, Xu, L, Rensing NR, Sinatra PM, Rothman SM, Wong M. Kainate seizures cause acute dendritic spine loss and actin depolymerization in vivo. J. Neurosci.27, 11604–11613 (2007).
  • Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K. Hippocampal LTP is accompanied by enhanced F-actin content with the dendritic spine that is essential for late LTP maintenance in vivo. Neuron38, 447–460 (2003).
  • Okamoto KI, Nagai T, Miyawaki A, Hayashi Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci.7, 1104–1112 (2004).
  • Lin B, Kramar EA, Bi X, Brucher FA, Gall CM, Lynch G. Theta stimulation polymerizes actin in dendritic spines of hippocampus. J. Neurosci.25, 2062–2069 (2005).
  • Kim CH, Lisman JE. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci.19, 4314–4324 (1999).
  • Ouyang Y, Wong M, Capani F et al. A transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur. J. Neurosci.22, 2995–3005 (2005).
  • Halpain S, Hipolito A, Saffer L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci.18, 9835–9844 (1998).
  • Meng Y, Zhang Y, Tregoubov V et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron35, 121–133 (2002).
  • Chen LY, Rex CS, Casale MS, Gall CM, Lynch G. Changes in synaptic morphology accompany actin signaling during LTP. J. Neurosci.27, 5363–5372 (2007).
  • Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy. Pharmacol. Ther.105, 229–266 (2005).
  • McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci. STKE Sci. Signal.10, 356 (2006).
  • Kurz JE, Sheets D, Parsons JT, Rana A, Delorenzo RJ, Churn SB. A significant increase in both basal and maximal calcineurin activity in the rat pilocarpine model of status epilepticus. J. Neurochem.78, 304–315 (2001).
  • Roth, SU, Sommer C, Mundel P, Kiessling M. Expression of synaptopodin, an actin-associated protein, in the rat hippocampus after limbic epilepsy. Brain Path.11, 169–181, (2001).
  • Ferhat L, Esclapez M, Represa A, Fattoum ‘A, Shirao T, Ben-Ari Y. Increased levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced seizures. Hippocampus12, 845–858 (2003).
  • Ryu J, Liu L, Wong TP et al. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron49, 175–182 (2006).
  • Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J. Neurosci.22, 920–930 (2002).
  • Bilousova TV, Rusakov DA, Ethell DW, Ethell IM. Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J. Neurochem.97, 44–56 (2006).
  • Klettner A, Herdegen T. FK506 and its analogs – therapeutic potential for neurological disorders. Curr. Drug Targets CNS Neurol. Disord.2, 153–162 (2003).
  • Macleod MR, O’Collins T, Horky LL, Howells DW, Donnan GA. Systemic review and metaanalysis of the efficacy of FK506 in experimental stroke. J. Cereb. Blood Flow Metab.25, 713–721 (2005).
  • Sierra-Paredes G, Orieoro-Garcia T, Nunez-Rodriguez A, Vazquez-Lopez A, Sierra-Marcuno G. Seizures induced in vivo by latruculin a and jasplakinolide microperfusion in the rat hippocampus. J. Mol. Neurosci.28, 151–160 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.