147
Views
42
CrossRef citations to date
0
Altmetric
Review

Role of homocysteine in the treatment of Parkinson's disease

Pages 957-967 | Published online: 09 Jan 2014

References

  • Fahn S, Oakes D, Shoulson I et al. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med.351(24), 2498–2508 (2004).
  • Müller T, Erdmann C, Muhlack S, Bremen D, Przuntek H, Woitalla D. Inhibition of catechol-O-methyltransferase contributes to more stable levodopa plasma levels. Mov. Disord.21(3), 332–336 (2006).
  • Olanow CW, Obeso JA. Pulsatile stimulation of dopamine receptors and levodopa-induced motor complications in Parkinson’s disease: implications for the early use of COMT inhibitors. Neurology55(11 Suppl. 4), S72–S77 (2000).
  • Agid Y. Levodopa: is toxicity a myth? Neurology50(4), 858–863 (1998).
  • Kann PH. Growth hormone in anti-aging medicine: a critical review. Aging Male6(4), 257–263 (2003).
  • Lanfranco F, Gianotti L, Giordano R, Pellegrino M, Maccario M, Arvat E. Ageing, growth hormone and physical performance. J. Endocrinol. Invest.26(9), 861–872 (2003).
  • Miller JW, Shukitt-Hale B, Villalobos-Molina R, Nadeau MR, Selhub J, Joseph JA. Effect of L-dopa and the catechol-O-methyltransferase inhibitor Ro 41- 0960 on sulfur amino acid metabolites in rats. Clin. Neuropharmacol.20(1), 55–66 (1997).
  • Müller T, Kuhn W, Przuntek H. Therapy with central active catechol-O-methyltransferase (COMT)-inhibitors: is addition of monoamine oxidase (MAO)-inhibitors necessary to slow progress of neurodegenerative disorders? J. Neural Transm. Gen. Sect.92(2–3), 187–195 (1993).
  • Zhu BT. Catechol-O-methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis. Curr. Drug Metab.3(3), 321–349 (2002).
  • Ceravolo R, Piccini P, Bailey DL, Jorga KM, Bryson H, Brooks DJ. 18F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease. Synapse43(3), 201–207 (2002).
  • Russ H, Müller T, Woitalla D, Rahbar A, Hahn J, Kuhn W. Detection of tolcapone in the cerebrospinal fluid of parkinsonian subjects. Naunyn Schmiedebergs Arch. Pharmacol.360(6), 719–720 (1999).
  • Müller T, Erdmann C, Bremen D et al. Impact of gastric emptying on levodopa pharmacokinetics in Parkinson disease patients. Clin. Neuropharmacol.29(2), 61–67 (2006).
  • Müller T, Russ H. Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin. Pharmacother.7(13), 1715–1730 (2006).
  • Müller T, Erdmann C, Muhlack S et al. Pharmacokinetic behaviour of levodopa and 3-O-methyldopa after repeat administration of levodopa/carbidopa with and without entacapone in patients with Parkinson’s disease. J. Neural Transm.114(11), 1457–1462 (2007).
  • Nyholm D. Pharmacokinetic optimisation in the treatment of Parkinson’s disease: an update. Clin. Pharmacokinet.45(2), 109–136 (2006).
  • Olanow CW, Stocchi F. COMT inhibitors in Parkinson’s disease: can they prevent and/or reverse levodopa-induced motor complications? Neurology62(1 Suppl. 1), S72–S81 (2004).
  • Smith LA, Jackson MJ, Al Barghouthy G et al. Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov. Disord.20(3), 306–314 (2005).
  • Stocchi F, Vacca L, Ruggieri S, Olanow CW. Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch. Neurol.62(6), 905–910 (2005).
  • Jenner P. Avoidance of dyskinesia: preclinical evidence for continuous dopaminergic stimulation. Neurology62(1 Suppl. 1), S47–S55 (2004).
  • Nissinen E, Nissinen H, Larjonmaa H et al. The COMT inhibitor, entacapone, reduces levodopa-induced elevations in plasma homocysteine in healthy adult rats. J. Neural Transm.112(9), 1213–1221 (2005).
  • Müller T, Kuhn W. Tolcapone decreases plasma levels of S-adenosyl-L-homocysteine and homocysteine in treated Parkinson’s disease patients. Eur. J. Clin. Pharmacol.62(6), 447–450 (2006).
  • Brosnan JT, Jacobs RL, Stead LM, Brosnan ME. Methylation demand: a key determinant of homocysteine metabolism. Acta Biochim. Pol.51(2), 405–413 (2004).
  • Huang G, Dragan M, Freeman D, Wilson JX. Activation of catechol-O-methyltransferase in astrocytes stimulates homocysteine synthesis and export to neurons. Glia51(1), 47–55 (2005).
  • Kang SS. Treatment of hyperhomocyst(e)inemia: physiological basis. J. Nutr.126(4 Suppl.), 1273S–1275S (1996).
  • Kuhn W, Hummel T, Woitalla D, Müller T. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology56(2), 281–282 (2001).
  • Miller JW, Selhub J, Nadeau MR, Thomas CA, Feldman RG, Wolf PA. Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology60(7), 1125–1129 (2003).
  • Nakaso K, Yasui K, Kowa H et al. Hypertrophy of IMC of carotid artery in Parkinson’s disease is associated with L-DOPA, homocysteine, and MTHFR genotype. J. Neurol. Sci.207(1–2), 19–23 (2003).
  • Beal MF. Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol.44(3 Suppl. 1), S110–S114 (1998).
  • Chambers JC, McGregor A, Jean-Marie J, Kooner JS. Acute hyperhomocysteinaemia and endothelial dysfunction. Lancet351(9095), 36–37 (1998).
  • Gerlach M, Blum-Degen D, Lan J, Riederer P. Nitric oxide in the pathogenesis of Parkinson’s disease. Adv. Neurol.80, 239–245 (1999).
  • Stamler JS, Osborne JA, Jaraki O et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J. Clin. Invest.91(1), 308–318 (1993).
  • Lipton SA, Kim WK, Choi YB et al. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA94(11), 5923–5928 (1997).
  • Parsons RB, Waring RH, Ramsden DB, Williams AC. in vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology19(4–5), 599–603 (1998).
  • Cheng H, Gomes-Trolin C, Aquilonius SM et al. Levels of L-methionine S-adenosyltransferase activity in erythrocytes and concentrations of S-adenosylmethionine and S-adenosylhomocysteine in whole blood of patients with Parkinson’s disease. Exp. Neurol.145(2 Pt 1), 580–585 (1997).
  • Miller AL. The methionine-homocysteine cycle and its effects on cognitive diseases. Altern. Med. Rev.8(1), 7–19 (2003).
  • Siniscalchi A, Mancuso F, Gallelli L, Ferreri IG, Biagio MN, De SG. Increase in plasma homocysteine levels induced by drug treatments in neurologic patients. Pharmacol. Res.52(5), 367–375 (2005).
  • Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J. Neurochem.67(3), 1328–1331 (1996).
  • Mulder C, Schoonenboom NS, Jansen EE et al. The transmethylation cycle in the brain of Alzheimer patients. Neurosci. Lett.386(2), 69–71 (2005).
  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and β-amyloid production. Mol. Cell Neurosci.28(1), 195–204 (2005).
  • Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett.541(1–3), 145–148 (2003).
  • Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health Aging6(1), 39–42 (2002).
  • Selley ML. A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer’s disease. Neurobiol. Aging28(12), 1834–1839 (2007).
  • Sontag E, Nunbhakdi-Craig V, Sontag JM et al. Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J. Neurosci.27(11), 2751–2759 (2007).
  • Tchantchou F. Homocysteine metabolism and various consequences of folate deficiency. J. Alzheimers Dis.9(4), 421–427 (2006).
  • Zhao WQ, Latinwo L, Liu XX, Lee ES, Lamango N, Charlton CG. L-dopa upregulates the expression and activities of methionine adenosyl transferase and catechol-O-methyltransferase. Exp. Neurol.171(1), 127–138 (2001).
  • Muhlack S, Woitalla D, Welnic J, Twiehaus S, Przuntek H, Müller T. Chronic levodopa intake increases levodopa plasma bioavailability in patients with Parkinson’s disease. Neurosci. Lett.363(3), 284–287 (2004).
  • Müller T, Woitalla D, Saft C, Kuhn W. Levodopa in plasma correlates with body weight of parkinsonian patients. Parkinsonism Relat. Disord.6(3), 171–173 (2000).
  • Woitalla D, Goetze O, Kim JI et al. Levodopa availability improves with progression of Parkinson’s disease. J. Neurol.253(9), 1221–1226 (2006).
  • Zoccolella S, Iliceto G, deMari M, Livrea P, Lamberti P. Management of L-dopa related hyperhomocysteinemia: catechol-O-methyltransferase (COMT) inhibitors or B vitamins? Results from a review. Clin. Chem. Lab. Med.45(12), 1607–1613 (2007).
  • Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Müller T. Hyperhomocysteinaemia in Parkinson’s disease. J. Neurol.245(12), 811–812 (1998).
  • Kuhn W, Roebroek R, Blom H et al. Elevated plasma levels of homocysteine in Parkinson’s disease. Eur. Neurol.40(4), 225–227 (1998).
  • Blandini F, Fancellu R, Martignoni E et al. Plasma homocysteine and L-dopa metabolism in patients with Parkinson disease. Clin. Chem.47(6), 1102–1104 (2001).
  • Brattstrom L. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology56(2), 281–282 (2001).
  • Caccamo D, Gorgone G, Curro M et al. Effect of MTHFR polymorphisms on hyperhomocysteinemia in levodopa-treated Parkinsonian patients. Neuromolecular Med.9(3), 249–254 (2007).
  • Di RA, Werner P. Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology62(4), 676–677 (2004).
  • Hassin-Baer S, Cohen O, Vakil E et al. Plasma homocysteine levels and Parkinson disease: disease progression, carotid intima-media thickness and neuropsychiatric complications. Clin. Neuropharmacol.29(6), 305–311 (2006).
  • Lamberti P, Zoccolella S, Iliceto G et al. Effects of levodopa and COMT inhibitors on plasma homocysteine in Parkinson’s disease patients. Mov. Disord.20(1), 69–72 (2005).
  • Müller T, Woitalla D, Fowler B, Kuhn W. 3-OMD and homocysteine plasma levels in parkinsonian patients. J. Neural Transm.109(2), 175–179 (2002).
  • Müller T, Woitalla D, Hauptmann B, Fowler B, Kuhn W. Decrease of methionine and S-adenosylmethionine and increase of homocysteine in treated patients with Parkinson’s disease. Neurosci. Lett.308(1), 54–56 (2001).
  • Müller T, Kuhn W. Neurotoxicity of levodopa: treatment-associated homocysteine increase. Nat. Clin. Pract. Neurol.3(6), E1 (2007).
  • O’Suilleabhain PE, Sung V, Hernandez C et al. Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch. Neurol.61(6), 865–868 (2004).
  • O’Suilleabhain PE, Bottiglieri T, Dewey RB Jr, Sharma S, az-Arrastia R. Modest increase in plasma homocysteine follows levodopa initiation in Parkinson’s disease. Mov Disord.19(12), 1403–1408 (2004).
  • Ozer F, Meral H, Hanoglu L et al. Plasma homocysteine levels in patients treated with levodopa: motor and cognitive associations. Neurol. Res.28(8), 853–858 (2006).
  • Schroecksnadel K, Leblhuber F, Fuchs D. Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology62(4), 676–677 (2004).
  • Yasui K, Nakaso K, Kowa H, Takeshima T, Nakashima K. Levodopa-induced hyperhomocysteinaemia in Parkinson’s disease. Acta Neurol. Scand.108(1), 66–67 (2003).
  • Zesiewicz TA, Wecker L, Sullivan KL, Merlin LR, Hauser RA. The controversy concerning plasma homocysteine in Parkinson disease patients treated with levodopa alone or with entacapone: effects of vitamin status. Clin. Neuropharmacol.29(3), 106–111 (2006).
  • Lamberti P, Zoccolella S, Armenise E et al. Hyperhomocysteinemia in L-dopa treated Parkinson’s disease patients: effect of cobalamin and folate administration. Eur. J. Neurol.12(5), 365–368 (2005).
  • Liu XX, Wilson K, Charlton CG. Effects of L-dopa treatment on methylation in mouse brain: implications for the side effects of L-dopa. Life Sci.66(23), 2277–2288 (2000).
  • Faucheux BA, Bonnet AM, Agid Y, Hirsch EC. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet353(9157), 981–982 (1999).
  • Martignoni E, Tassorelli C, Nappi G, Zangaglia R, Pacchetti C, Blandini F. Homocysteine and Parkinson’s disease: a dangerous liaison? J. Neurol. Sci.257(1–2), 31–37 (2007).
  • Siniscalchi A, Gallelli L, Mercuri NB, Ibbadu GF, De Sarro G. Role of lifestyle factors on plasma homocysteine levels in Parkinson’s disease patients treated with levodopa. Nutr. Neurosci.9(1–2), 11–16 (2006).
  • Todorovic Z, Dzoljic E, Novakovic I et al. Homocysteine serum levels and MTHFR C677T genotype in patients with Parkinson’s disease, with and without levodopa therapy. J. Neurol. Sci.248(1–2), 56–61 (2006).
  • Yasui K, Kowa H, Nakaso K, Takeshima T, Nakashima K. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology55(3), 437–440 (2000).
  • Ben Shlomo Y, Marmot MG. Survival and cause of death in a cohort of patients with parkinsonism: possible clues to aetiology? J. Neurol. Neurosurg. Psychiatry58(3), 293–299 (1995).
  • Gorell JM, Johnson CC, Rybicki BA. Parkinson’s disease and its comorbid disorders: an analysis of Michigan mortality data, 1970 to 1990. Neurology44(10), 1865–1868 (1994).
  • Lees AJ. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. Parkinson’s Disease Research Group of the United Kingdom. Br. Med. J.311(7020), 1602–1607 (1995).
  • Przuntek H, Welzel D, Blumner E et al. Bromocriptine lessens the incidence of mortality in L-dopa-treated parkinsonian patients: prado-study discontinued. Eur. J. Clin. Pharmacol.43(4), 357–363 (1992).
  • Rinne UK. [Combination therapy with lisuride and L-dopa in the early stages of Parkinson’s disease decreases and delays the development of motor fluctuations. Long-term study over 10 years in comparison with L-dopa monotherapy]. Nervenarzt70(Suppl. 1), S19–S25 (1999).
  • Hely MA, Morris JG, Traficante R, Reid WG, O’Sullivan DJ, Williamson PM. The Sydney multicentre study of Parkinson’s disease: progression and mortality at 10 years. J. Neurol. Neurosurg. Psychiatry67(3), 300–307 (1999).
  • Hely MA, Morris JG, Reid WG, Trafficante R. Sydney multicenter study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov. Disord.20(2), 190–199 (2005).
  • Zhao WQ, Williams Z, Shepherd KR et al. S-adenosyl-methionine-induced apoptosis in PC12 cells. J. Neurosci. Res.69(4), 519–529 (2002).
  • Müller T, Fowler B, Kuhn W. Levodopa intake increases plasma levels of S-adenosylmethionine in treated patients with Parkinson disease. Clin. Neuropharmacol.28(6), 274–276 (2005).
  • Charlton CG, Crowell B Jr. Striatal dopamine depletion, tremors, and hypokinesia following the intracranial injection of S-adenosylmethionine: a possible role of hypermethylation in parkinsonism. Mol. Chem. Neuropathol.26(3), 269–284 (1995).
  • Charlton CG. Depletion of nigrostriatal and forebrain tyrosine hydroxylase by S-adenosylmethionine: a model that may explain the occurrence of depression in Parkinson’s disease. Life Sci.61(5), 495–502 (1997).
  • Bottiglieri T, Hyland K, Reynolds EH. The clinical potential of ademetionine (S-adenosylmethionine) in neurological disorders. Drugs48(2), 137–152 (1994).
  • Williams AC, Ramsden DB. Autotoxicity, methylation and a road to the prevention of Parkinson’s disease. J. Clin. Neurosci.12(1), 6–11 (2005).
  • Witjas T, Kaphan E, Azulay JP et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology59(3), 408–413 (2002).
  • Matsubara K, Aoyama K, Suno M, Awaya T. N-methylation underlying Parkinson’s disease. Neurotoxicol. Teratol.24(5), 593–598 (2002).
  • Rogers JD, Sanchez-Saffon A, Frol AB, az-Arrastia R. Elevated plasma homocysteine levels in patients treated with levodopa: association with vascular disease. Arch. Neurol.60(1), 59–64 (2003).
  • Postuma RB, Lang AE. Homocysteine and levodopa: should Parkinson disease patients receive preventative therapy? Neurology63(5), 886–891 (2004).
  • Reutens S, Sachdev P. Homocysteine in neuropsychiatric disorders of the elderly. Int. J. Geriatr. Psychiatry17(9), 859–864 (2002).
  • Taly AB, Muthane UB. Involvement of peripheral nervous system in juvenile Parkinson’s disease. Acta Neurol. Scand.85(4), 272–275 (1992).
  • Okuma Y, Hattori N, Mizuno Y. Sensory neuropathy in autosomal recessive juvenile parkinsonism (PARK2). Parkinsonism Relat. Disord.9(5), 313–314 (2003).
  • Müller T. Dopaminergic substitution in Parkinson’s disease. Expert Opin. Pharmacother.3(10), 1393–1403 (2002).
  • Sachdev PS, Valenzuela M, Wang XL, Looi JC, Brodaty H. Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology58(10), 1539–1541 (2002).
  • Lee ES, Chen H, Soliman KF, Charlton CG. Effects of homocysteine on the dopaminergic system and behavior in rodents. Neurotoxicology26(3), 361–371 (2005).
  • Tissingh G, Berendse HW, Bergmans P et al. Loss of olfaction in de novo and treated Parkinson’s disease: possible implications for early diagnosis. Mov. Disord.16(1), 41–46 (2001).
  • Müller A, Mungersdorf M, Reichmann H, Strehle G, Hummel T. Olfactory function in parkinsonian syndromes. J. Clin. Neurosci.9(5), 521–524 (2002).
  • Sommer U, Hummel T, Cormann K et al. Detection of presymptomatic Parkinson’s disease: combining smell tests, transcranial sonography, and SPECT. Mov. Disord.19(10), 1196–1202 (2004).
  • Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J. Neurochem.80(1), 101–110 (2002).
  • Mattson MP. Will caloric restriction and folate protect against AD and PD? Neurology60(4), 690–695 (2003).
  • Müller T, Woitalla D, Kuhn W. Benefit of folic acid supplementation in parkinsonian patients treated with levodopa. J. Neurol. Neurosurg. Psychiatry74(4), 549 (2003).
  • Ostrem JL, Kang GA, Subramanian I et al. The effect of entacapone on homocysteine levels in Parkinson disease. Neurology64(8), 1482 (2005).
  • Valkovic P, Benetin J, Blazicek P, Valkovicova L, Gmitterova K, Kukumberg P. Reduced plasma homocysteine levels in levodopa/entacapone treated Parkinson patients. Parkinsonism Relat. Disord.11(4), 253–256 (2005).
  • Zoccolella S, Lamberti P, Armenise E et al. Plasma homocysteine levels in Parkinson’s disease: role of antiparkinsonian medications. Parkinsonism Relat. Disord.11(2), 131–133 (2005).
  • Müller T, Renger K, Kuhn W. Levodopa-associated increase of homocysteine levels and sural axonal neurodegeneration. Arch. Neurol.61(5), 657–660 (2004).
  • Heider I, Lehmensiek V, Lenk T, Müller T, Storch A. Dopaminergic neurotoxicity of homocysteine and its derivatives in primary mesencephalic cultures. J. Neural Transm. Suppl. (68), 1–13 (2004).
  • Storch A, Blessing H, Bareiss M et al. Catechol-O-methyltransferase inhibition attenuates levodopa toxicity in mesencephalic dopamine neurons. Mol. Pharmacol.57(3), 589–594 (2000).
  • Naoi M, Maruyama W, Nakao N, Ibi T, Sahashi K, Benedetti MS. (R)salsolinol N-methyltransferase activity increases in parkinsonian lymphocytes. Ann. Neurol.43(2), 212–216 (1998).
  • Aoyama K, Matsubara K, Okada K et al.N-methylation ability for azaheterocyclic amines is higher in Parkinson’s disease: nicotinamide loading test. J. Neural Transm.107(8–9), 985–995 (2000).
  • Aoyama K, Matsubara K, Kondo M et al. Nicotinamide-N-methyltransferase is higher in the lumbar cerebrospinal fluid of patients with Parkinson’s disease. Neurosci. Lett.298(1), 78–80 (2001).
  • Müller T, Sallstrom BS, Haussermann P et al. Plasma levels of R- and S-salsolinol are not increased in “de-novo” Parkinsonian patients. J. Neural Transm.105(2–3), 239–246 (1998).
  • Müller T, Sallstrom BS, Haussermann P, Przuntek H, Rommelspacher H, Kuhn W. R- and S-salsolinol are not increased in cerebrospinal fluid of Parkinsonian patients. J. Neurol. Sci.164(2), 158–162 (1999).
  • Kuhn W, Woitalla D, Gerlach M, Russ H, Müller T. Tolcapone and neurotoxicity in Parkinson’s disease. Lancet352(9136), 1313–1314 (1998).
  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and β-amyloid production. Mol. Cell. Neurosci.28(1), 195–204 (2005).
  • Nagatsu T. Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci. Res.29(2), 99–111 (1997).
  • Aarsland D, Tandberg E, Larsen JP, Cummings JL. Frequency of dementia in Parkinson disease. Arch. Neurol.53(6), 538–542 (1996).
  • Agnati LF, Genedani S, Rasio G et al. Studies on homocysteine plasma levels in Alzheimer’s patients. Relevance for neurodegeneration. J. Neural Transm.112(1), 163–169 (2005).
  • Andrich J, Saft C, Arz A et al. Hyperhomocysteinaemia in treated patients with Huntington’s disease homocysteine in HD. Mov. Disord.19(2), 226–228 (2004).
  • Isobe C, Murata T, Sato C, Terayama Y. Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci.77(15), 1836–1843 (2005).
  • Miller JW, Green R, Mungas DM, Reed BR, Jagust WJ. Homocysteine, vitamin B6, and vascular disease in AD patients. Neurology58(10), 1471–1475 (2002).
  • Cravo ML, Camilo ME. Hyperhomocysteinemia in chronic alcoholism: relations to folic acid and vitamins B(6) and B(12) status. Nutrition16(4), 296–302 (2000).
  • Miller JW. Homocysteine, Alzheimer’s disease, and cognitive function. Nutrition16(7–8), 675–677 (2000).
  • Almeida OP, Lautenschlager N, Flicker L et al. Association between homocysteine, depression, and cognitive function in community-dwelling older women from Australia. J. Am. Geriatr. Soc.52(2), 327–328 (2004).
  • Andres E, Perrin AE, Demangeat C et al. The syndrome of food-cobalamin malabsorption revisited in a department of internal medicine. A monocentric cohort study of 80 patients. Eur. J. Intern. Med.14(4), 221–226 (2003).
  • Elias MF, Robbins MA, Budge MM et al. Homocysteine, folate, and vitamins B6 and B12 blood levels in relation to cognitive performance: the Maine–Syracuse study. Psychosom. Med.68(4), 547–554 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.