56
Views
4
CrossRef citations to date
0
Altmetric
Review

Advancement of therapies for neuroprotection in multiple sclerosis

Pages 1355-1366 | Published online: 09 Jan 2014

References

  • Frohman EM, Stuve O, Havrdova E et al. Therapeutic considerations for disease progression in multiple sclerosis: evidence, experience, and future expectations. Arch. Neurol.62(10), 1519–1530 (2005).
  • Frohman EM, Filippi M, Stuve O et al. Characterizing the mechanisms of progression in multiple sclerosis: evidence and new hypotheses for future directions. Arch. Neurol.62(9), 1345–1356 (2005).
  • De Stefano N, Bartolozzi ML, Guidi L, Stromillo ML, Federico A. Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. J. Neurol. Sci.233(1–2), 203–208 (2005).
  • Fisher E, Rudick RA, Simon JH et al. Eight-year follow-up study of brain atrophy in patients with MS. Neurology59(9), 1412–1420 (2002).
  • Rovaris M, Confavreux C, Furlan R, Kappos L, Comi G, Filippi M. Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol.5(4), 343–354 (2006).
  • Filippini G, Munari L, Incorvaia B et al. Interferons in relapsing remitting multiple sclerosis: a systematic review. Lancet361(9357), 545–552 (2003).
  • Lassmann H. Multiple sclerosis: is there neurodegeneration independent from inflammation? J. Neurol. Sci.259(1–2), 3–6 (2007).
  • Koch M, Mostert J, Heersema D, De Keyser J. Progression in multiple sclerosis: further evidence of an age dependent process. J. Neurol. Sci.255(1–2), 35–41 (2007).
  • Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler.9(4), 323–331 (2003).
  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol.47(6), 707–717 (2000).
  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338(5), 278–285 (1998).
  • Chard DT, Griffin CM, Parker GJ, Kapoor R, Thompson AJ, Miller DH. Brain atrophy in clinically early relapsing–remitting multiple sclerosis. Brain125(Pt 2), 327–337 (2002).
  • Coles AJ, Wing MG, Molyneux P et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann. Neurol.46(3), 296–304 (1999).
  • Parry A, Corkill R, Blamire AM et al. β-interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J. Neurol.250(2), 171–178 (2003).
  • Palace J. Inflammation versus neurodegeneration: consequences for treatment. J. Neurol. Sci.259(1–2), 46–49 (2007).
  • Hardmeier M, Wagenpfeil S, Freitag P et al. Rate of brain atrophy in relapsing MS decreases during treatment with IFNβ-1a. Neurology64(2), 236–240 (2005).
  • Hickman SJ, Kapoor R, Jones SJ, Altmann DR, Plant GT, Miller DH. Corticosteroids do not prevent optic nerve atrophy following optic neuritis. J. Neurol. Neurosurg. Psychiatry74(8), 1139–1141 (2003).
  • O’Connor P. Natalizumab and the role of α 4-integrin antagonism in the treatment of multiple sclerosis. Expert Opin. Biol. Ther.7(1), 123–136 (2007).
  • Bradl M, Hohlfeld R. Molecular pathogenesis of neuroinflammation. J. Neurol. Neurosurg. Psychiatry74(10), 1364–1370 (2003).
  • Leary SM, Miller DH, Stevenson VL, Brex PA, Chard DT, Thompson AJ. Interferon β-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology60(1), 44–51 (2003).
  • Montalban X. Overview of European pilot study of interferon β-Ib in primary progressive multiple sclerosis. Mult. Scler.10Suppl. 1, S62; discussion 62–64 (2004).
  • Wolinsky JS. The PROMiSe trial: baseline data review and progress report. Mult. Scler.40(Suppl. 1), S65–S71 discussion S71–S62 (2004).
  • Ramsaransing G, Zwanikken C, De Keyser J. Worsening of symptoms of multiple sclerosis associated with carbamazepine. BMJ320(7242), 1113 (2000).
  • Poliak S, Peles E. The local differentiation of myelinated axons at nodes of Ranvier. Nat. Rev. Neurosci.4(12), 968–980 (2003).
  • Stys PK. General mechanisms of axonal damage and its prevention. J. Neurol. Sci.233(1–2), 3–13 (2005).
  • Smith KJ, Lassmann H. The role of nitric oxide in multiple sclerosis. Lancet Neurol.1(4), 232–241 (2002).
  • Brown GC, Borutaite V. Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic. Biol. Med.33(11), 1440–1450 (2002).
  • Lassmann H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J. Neurol. Sci.206(2), 187–191 (2003).
  • Stys PK, Waxman SG, Ransom BR. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J. Neurosci.12(2), 430–439 (1992).
  • Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG. Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain127(Pt 2), 294–303 (2004).
  • Levy LM, Warr O, Attwell D. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci.18(23), 9620–9628 (1998).
  • Micu I, Jiang Q, Coderre E et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature439(7079), 988–992 (2006).
  • Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature383(6601), 634–637 (1996).
  • Ragsdale DS, Avoli M. Sodium channels as molecular targets for antiepileptic drugs. Brain Res. Rev.26(1), 16–28 (1998).
  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl. Acad. Sci. USA93(17), 9270–9275 (1996).
  • Schwarz JR, Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia30(3), 286–294 (1989).
  • Fern R, Ransom BR, Stys PK, Waxman SG. Pharmacological protection of CNS white matter during anoxia: actions of phenytoin, carbamazepine and diazepam. J. Pharmacol. Exp. Ther.266(3), 1549–1555 (1993).
  • Lo AC, Black JA, Waxman SG. Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis. Neuroreport13(15), 1909–1912 (2002).
  • Lo AC, Saab CY, Black JA, Waxman SG. Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J. Neurophysiol.90(5), 3566–3571 (2003).
  • Black JA, Liu S, Hains BC, Saab CY, Waxman SG. Long-term protection of central axons with phenytoin in monophasic and chronic-relapsing EAE. Brain129(Pt 12), 3196–3208 (2006).
  • Kuo CC. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol. Pharmacol.54(4), 712–721 (1998).
  • Lang DG, Wang CM, Cooper BR. Lamotrigine, phenytoin and carbamazepine interactions on the sodium current present in N4TG1 mouse neuroblastoma cells. J. Pharmacol. Exp. Ther.266(2), 829–835 (1993).
  • Calabresi P, Centonze D, Marfia GA, Pisani A, Bernardi G. An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons. Br. J. Pharmacol.126(3), 689–696 (1999).
  • Stefani A, Spadoni F, Bernardi G. Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implications for neuroprotective strategies. Exp. Neurol.147(1), 115–122 (1997).
  • Wang SJ, Huang CC, Hsu KS, Tsai JJ, Gean PW. Inhibition of N-type calcium currents by lamotrigine in rat amygdalar neurones. Neuroreport7(18), 3037–3040 (1996).
  • Smith T, Groom A, Zhu B, Turski L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat. Med.6(1), 62–66 (2000).
  • Lagrue E, Chalon S, Bodard S, Saliba E, Gressens P, Castelnau P. Lamotrigine is neuroprotective in the energy deficiency model of MPTP intoxicated mice. Pediatr. Res.62(1), 14–19 (2007).
  • Garthwaite G, Brown G, Batchelor AM, Goodwin DA, Garthwaite J. Mechanisms of ischaemic damage to central white matter axons: a quantitative histological analysis using rat optic nerve. Neuroscience94(4), 1219–1230 (1999).
  • Bechtold DA, Miller SJ, Dawson AC et al. Axonal protection achieved in a model of multiple sclerosis using lamotrigine. J. Neurol.253(12), 1542–1551 (2006).
  • Kapoor R. Neuroprotection in multiple sclerosis: therapeutic strategies and clinical trial design. Curr. Opin. Neurol.19(3), 255–259 (2006).
  • Craner MJ, Damarjian TG, Liu S et al. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia49(2), 220–229 (2005).
  • Okamoto Y, Shimizu K, Tamura K et al. Effects of phenytoin on cell-mediated immunity. Cancer Immunol. Immunother.26(2), 176–179 (1988).
  • Black JA, Liu S, Carrithers M, Carrithers LM, Waxman SG. Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine. Ann. Neurol.62(1), 21–33 (2007).
  • Makowska A, Bechtold D, Sajic M, Gregson N, Hughes R, Smith S. Sodium channel blocking agents affect T cell activation. Presented at: International Society of Neuroimmunology: Seventh International Congress. J. Neuroimmunol. Venice, Italy, 88 (2004).
  • Waxman SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis – current status. Nat. Clin. Pract. Neurol.4(3), 159–169 (2008).
  • Sun GC, Werkman TR, Battefeld A, Clare JJ, Wadman WJ. Carbamazepine and topiramate modulation of transient and persistent sodium currents studied in HEK293 cells expressing the Nav1.3 α-subunit. Epilepsia48(4), 774–782 (2007).
  • Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med.330(9), 613–622 (1994).
  • Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor – still lethal after eight years. Trends Neurosci.18(2), 57–58 (1995).
  • Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain128(Pt 5), 1016–1025 (2005).
  • Stover JF, Pleines UE, Morganti-Kossmann MC, Kossmann T, Lowitzsch K, Kempski OS. Neurotransmitters in cerebrospinal fluid reflect pathological activity. Eur. J. Clin. Invest.27(12), 1038–1043 (1997).
  • Sarchielli P, Greco L, Floridi A, Gallai V. Excitatory amino acids and multiple sclerosis: evidence from cerebrospinal fluid. Arch. Neurol.60(8), 1082–1088 (2003).
  • Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med.6(1), 67–70 (2000).
  • Geurts JJ, Wolswijk G, Bo L et al. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain126(Pt 8), 1755–1766 (2003).
  • Stys PK, Lipton SA. White matter NMDA receptors: an unexpected new therapeutic target? Trends Pharmacol. Sci.28(11), 561–566 (2007).
  • Wallstrom E, Diener P, Ljungdahl A, Khademi M, Nilsson CG, Olsson T. Memantine abrogates neurological deficits, but not CNS inflammation, in Lewis rat experimental autoimmune encephalomyelitis. J. Neurol. Sci.137(2), 89–96 (1996).
  • Gilgun-Sherki Y, Panet H, Melamed E, Offen D. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res.989(2), 196–204 (2003).
  • Kalkers NF, Ameziane N, Bot JC, Minneboo A, Polman CH, Barkhof F. Longitudinal brain volume measurement in multiple sclerosis: rate of brain atrophy is independent of the disease subtype. Arch. Neurol.59(10), 1572–1576 (2002).
  • Killestein J, Kalkers NF, Polman CH. Glutamate inhibition in MS: the neuroprotective properties of riluzole. J. Neurol. Sci.233(1–2), 113–115 (2005).
  • Kino T, Hatanaka H, Hashimoto M et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot.40(9), 1249–1255 (1987).
  • Starzl TE, Todo S, Fung J, Demetris AJ, Venkataramman R, Jain A. FK 506 for liver, kidney, and pancreas transplantation. Lancet2(8670), 1000–1004 (1989).
  • Gold BG, Voda J, Yu X, McKeon G, Bourdette DN. FK506 and a nonimmunosuppressant derivative reduce axonal and myelin damage in experimental autoimmune encephalomyelitis: neuroimmunophilin ligand-mediated neuroprotection in a model of multiple sclerosis. J. Neurosci. Res.77(3), 367–377 (2004).
  • Gold BG, Zhong YP. FK506 requires stimulation of the extracellular signal-regulated kinase 1/2 and the steroid receptor chaperone protein p23 for neurite elongation. Neurosignals13(3), 122–129 (2004).
  • Sanchez ER. Hsp56: a novel heat shock protein associated with untransformed steroid receptor complexes. J. Biol. Chem.265(36), 22067–22070 (1990).
  • Tai PK, Albers MW, Chang H, Faber LE, Schreiber SL. Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science256(5061), 1315–1318 (1992).
  • Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology65(6), 812–819 (2005).
  • Zajicek J, Fox P, Sanders H et al. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet362(9395), 1517–1526 (2003).
  • Croxford JL, Pryce G, Jackson SJ et al. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. J. Neuroimmunol.193(1–2), 120–129 (2008).
  • Jackson SJ, Baker D, Cuzner ML, Diemel LT. Cannabinoid-mediated neuroprotection following interferon-γ treatment in a three-dimensional mouse brain aggregate cell culture. Eur. J. Neurosci.20(9), 2267–2275 (2004).
  • Bilsland LG, Dick JR, Pryce G et al. Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. FASEB J.20(7), 1003–1005 (2006).
  • Zajicek JP, Sanders HP, Wright DE et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. J. Neurol. Neurosurg. Psychiatry76(12), 1664–1669 (2005).
  • Docagne F, Mestre L, Loria F, Hernangomez M, Correa F, Guaza C. Therapeutic potential of CB2 targeting in multiple sclerosis. Expert Opin. Ther. Targets12(2), 185–195 (2008).
  • Docagne F, Muneton V, Clemente D et al. Excitotoxicity in a chronic model of multiple sclerosis: neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Mol. Cell Neurosci.34(4), 551–561 (2007).
  • Nessler S, Dodel R, Bittner A et al. Effect of minocycline in experimental autoimmune encephalomyelitis. Ann. Neurol.52(5), 689–690; author reply 690 (2002).
  • Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol.51(2), 215–223 (2002).
  • Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM. The promise of minocycline in neurology. Lancet Neurol.3(12), 744–751 (2004).
  • Metz LM, Zhang Y, Yeung M et al. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann. Neurol.55(5), 756 (2004).
  • Zabad RK, Metz LM, Todoruk TR et al. The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Mult. Scler.13(4), 517–526 (2007).
  • Wang J, Wei Q, Wang CY, Hill WD, Hess DC, Dong Z. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J. Biol. Chem.279(19), 19948–19954 (2004).
  • Zhu S, Stavrovskaya IG, Drozda M et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature417(6884), 74–78 (2002).
  • Gabler WL, Smith J, Tsukuda N. Comparison of doxycycline and a chemically modified tetracycline inhibition of leukocyte functions. Res. Commun. Chem. Pathol. Pharmacol.78(2), 151–160 (1992).
  • Maier K, Merkler D, Gerber J et al. Multiple neuroprotective mechanisms of minocycline in autoimmune CNS inflammation. Neurobiol. Dis.25(3), 514–525 (2007).
  • Gordon PH, Moore DH, Miller RG et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a Phase III randomised trial. Lancet Neurol.6(12), 1045–1053 (2007).
  • Aktas O, Prozorovski T, Smorodchenko A et al. Green tea epigallocatechin-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J. Immunol.173(9), 5794–5800 (2004).
  • Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis19(10), 1771–1776 (1998).
  • Pisters KM, Newman RA, Coldman B et al. Phase I trial of oral green tea extract in adult patients with solid tumors. J. Clin. Oncol.19(6), 1830–1838 (2001).
  • Brown AM, Tekkok SB, Ransom BR. Glycogen regulation and functional role in mouse white matter. J. Physiol.549>(Pt 2), 501–512 (2003).
  • De Keyser J, Zeinstra E, Mostert J, Wilczak N. β2-adrenoceptor involvement in inflammatory demyelination and axonal degeneration in multiple sclerosis. Trends Pharmacol. Sci.25(2), 67–71 (2004).
  • Kong EK, Peng L, Chen Y, Yu AC, Hertz L. Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem. Res.27(1–2), 113–120 (2002).
  • Mostert JP, Sijens PE, Oudkerk M, De Keyser J. Fluoxetine increases cerebral white matter NAA/Cr ratio in patients with multiple sclerosis. Neurosci. Lett.402(1–2), 22–24 (2006).
  • Cambray-Deakin M, Pearce B, Morrow C, Murphy S. Effects of neurotransmitters on astrocyte glycogen stores in vitro. J. Neurochem.51(6), 1852–1857 (1988).
  • Mercier G, Lennon AM, Renouf B et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J. Mol. Neurosci.24(2), 207–216 (2004).
  • Stadelmann C, Kerschensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain125(Pt 1), 75–85 (2002).
  • Ehrenreich H, Fischer B, Norra C et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain130(Pt 10), 2577–2588 (2007).
  • Ehrenreich H, Hasselblatt M, Dembowski C et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol. Med.8(8), 495–505 (2002).
  • Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined Phase I and II clinical trial. N. Engl. J. Med.316(2), 73–78 (1987).
  • Sattler MB, Merkler D, Maier K et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ11(Suppl. 2), S181–S192 (2004).
  • Celik M, Gokmen N, Erbayraktar S et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc. Natl Acad. Sci. USA99(4), 2258–2263 (2002).
  • Keswani SC, Buldanlioglu U, Fischer A et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann. Neurol.56(6), 815–826 (2004).
  • Konishi Y, Chui DH, Hirose H, Kunishita T, Tabira T. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res.609(1–2), 29–35 (1993).
  • Whitacre CC. Sex differences in autoimmune disease. Nat. Immunol.2(9), 777–780 (2001).
  • Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. J. Med.339(5), 285–291 (1998).
  • Offner H, Adlard K, Zamora A, Vandenbark AA. Estrogen potentiates treatment with T-cell receptor protein of female mice with experimental encephalomyelitis. J. Clin. Invest.105(10), 1465–1472 (2000).
  • Offner H, Polanczyk M. A potential role for estrogen in experimental autoimmune encephalomyelitis and multiple sclerosis. Ann. NY Acad. Sci.1089, 343–372 (2006).
  • Bebo BF Jr, Fyfe-Johnson A, Adlard K, Beam AG, Vandenbark AA, Offner H. Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J. Immunol.166(3), 2080–2089 (2001).
  • Ito A, Bebo BF Jr, Matejuk A et al. Estrogen treatment down-regulates TNF-α production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J. Immunol.167(1), 542–552 (2001).
  • Tiwari-Woodruff S, Morales LB, Lee R, Voskuhl RR. Differential neuroprotective and antiinflammatory effects of estrogen receptor (ER)α and ERβ ligand treatment. Proc. Natl Acad. Sci. USA104(37), 14813–14818 (2007).
  • Sicotte NL, Liva SM, Klutch R et al. Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann. Neurol.52(4), 421–428 (2002).
  • Sicotte NL, Giesser BS, Tandon V et al. Testosterone treatment in multiple sclerosis: a pilot study. Arch. Neurol.64(5), 683–688 (2007).
  • Czlonkowska A, Ciesielska A, Joniec I. Influence of estrogens on neurodegenerative processes. Med. Sci. Monit.9(10), RA247–RA256 (2003).
  • McEwen BS. Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J. Appl. Physiol.91(6), 2785–2801 (2001).
  • Toran-Allerand CD, Singh M, Setalo G Jr. Novel mechanisms of estrogen action in the brain: new players in an old story. Front. Neuroendocrinol.20(2), 97–121 (1999).
  • Ernfors P. Local and target-derived actions of neurotrophins during peripheral nervous system development. Cell Mol. Life Sci.58(8), 1036–1044 (2001).
  • Teng KK, Hempstead BL. Neurotrophins and their receptors: signaling trios in complex biological systems. Cell Mol. Life Sci.61(1), 35–48 (2004).
  • Giess R, Maurer M, Linker R et al. Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch. Neurol.59(3), 407–409 (2002).
  • Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H. The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J. Neuroimmunol.107(2), 161–166 (2000).
  • Azoulay D, Urshansky N, Karni A. Low and dysregulated BDNF secretion from immune cells of MS patients is related to reduced neuroprotection. J. Neuroimmunol.195(1–2), 186–193 (2008).
  • Kuhlmann T, Remington L, Cognet I et al. Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis. Am. J. Pathol.169(2), 584–598 (2006).
  • Miller D, Briggs J. Reliability of trans-cervical recovery of placental cells from the lower uterine pole using a minimally invasive procedure. Evidence based on fetal sexing and analysis of recovered cell populations. Early Hum. Dev.47(Suppl.), S99–S102 (1996).
  • Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J. Neurol. Sci.270(1–2), 70–76 (2008).
  • Frank JA, Richert N, Lewis B et al. A pilot study of recombinant insulin-like growth factor-1 in seven multiple sclerosis patients. Mult. Scler.8(1), 24–29 (2002).
  • Lin X, Blumhardt LD, Constantinescu CS. The relationship of brain and cervical cord volume to disability in clinical subtypes of multiple sclerosis: a three-dimensional MRI study. Acta Neurol. Scandinavica108(6), 401–406 (2003).
  • Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol.5(2), 158–170 (2006).
  • Khan O. Can clinical outcomes be used to detect neuroprotection in multiple sclerosis? Neurology68(22 Suppl. 3), S64–S71; discussion S91–96 (2007).
  • Zivadinov R, Cox JL. Neuroimaging in multiple sclerosis. Int. Rev. Neurobiol.79, 449–474 (2007).
  • Frohman EM, Costello F, Stuve O et al. Modeling axonal degeneration within the anterior visual system: implications for demonstrating neuroprotection in multiple sclerosis. Arch. Neurol.65(1), 26–35 (2008).
  • Eikelenboom MJ, Petzold A, Lazeron RH et al. Multiple sclerosis: neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology60(2), 219–223 (2003).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.