167
Views
50
CrossRef citations to date
0
Altmetric
Review

GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability

, , , , , , , , , & show all
Pages 87-98 | Published online: 09 Jan 2014

References

  • Gray JA, Roth BL. The pipeline and future of drug development in schizophrenia. Mol. Psychiatry12(10), 904–922 (2007).
  • Costa E, Davis JM, Grayson DR, Guidotti A, Pappas G, Pesold C. Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol. Dis.8(5), 723–742 (2001).
  • Akbarian S, Kim JJ, Potkin SG et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. Gen. Psychiatry52(4), 258–266 (2000).
  • Guidotti A, Davis JM, Auta J et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder, a postmortem brain study. Arch. Gen. Psychiatry57(11), 1061–1069 (2000).
  • Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci.6(4), 312–324 (2005).
  • Benes FM, Beretta S. GABAergic interneurons, implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology25(1), 1–27 (2001).
  • Woo TU, Walsh JP, Benes FM. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch. Gen. Psychiatry61(7), 649–657 (2004).
  • Breese CR, Lee MJ, Adams CE. Abnormal regulation of high affinity nicotinic receptors in subjects with schizophrenia. Neuropsychopharmacology23(4), 351–364 (2000).
  • Huang HS, Matevossian A, Whittle C et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J. Neurosci.27(42), 11254–11262 (2007).
  • Mill J, Tang T, Kaminsky Z et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet.82(3), 696–711 (2008).
  • Veldic M, Kadriu B, Maloku E et al. Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schiz. Res.91(1–3), 51–61 (2007).
  • Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol. Psychiatry12(4), 385–397 (2007)
  • Grayson DR, Jia X, Chen Y et al. Reelin promoter hypermethylation in schizophrenia. Proc. Natl Acad. Sci. USA102(26), 9341–9346 (2005).
  • Grayson DR, Chen Y, Costa E et al. The human reelin gene, transcription factors (+), repressors (-) and the methylation switch (+/-) in schizophrenia. Pharmacol. Ther.111(1), 272–286 (2006).
  • Abdolmaleky HM, Cheng RH, Russo A et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenia patients; a preliminary report. Am. J. Med. Genet. B Neuropsychiatric Genet.134, 60–66 (2005).
  • Pesold C, Liu WS, Guidotti A, Costa E, Caruncho HF. Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. Proc. Natl Acad. Sci. USA96(6), 3217–3222 (1999).
  • Levenson JM, Qiu S, Weeber EJ. The role of reelin in adult synaptic function and the genetic and epigenetic regulation of the reelin gene. Biochim. Biophys. Acta.1779(8), 422–431 (2008).
  • Dong E, Caruncho HS, Liu WS et al. A reelin–integrin receptor interaction regulates Arc mRNA translation in synaptoneurosomes. Proc. Natl Acad. Sci. USA100(9), 5479–5484 (2003).
  • Liu WS, Pesold C, Rodriguez MA et al. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc. Natl Acad. Sci. USA98(6), 3477–3482 (2001).
  • Noh JS, Sharma RP, Veldic M et al. DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures. Proc. Natl. Acad. Sci. USA102(5), 1749–1754 (2005).
  • Costa E, Dong E, Grayson DR, Guidotti A, Ruzicka W, Veldic M. Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics2(1), 29–36 (2007).
  • Ptak C, Petronis A. Epigenetics and complex disease, from etiology to new therapeutics. Annu. Rev. Pharmacol. Toxicol.48, 257–276 (2008).
  • DeSilva U, D’Arcangelo G, Braden VV et al. The human reelin gene, isolation, sequencing, and mapping on chromosome 7. Genome Res.7(2), 157–164 (1997).
  • Bu DF, Tobin AJ. The exon–intron organization of the genes (GAD1 and GAD2) encoding two human glutamate decarboxylases (GAD67 and GAD65) suggests that they derive from a common ancestral GAD. Genomics21(1), 222–228 (1994).
  • Straub RE, Lipska BK, Egan MF et al. Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol. Psychiatry12(9), 854–869 (2007).
  • Wedenoja J, Loukola A, Tuulio-Henriksson A et al. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol. Psychiatry13(7), 673–684 (2008).
  • Shifman S, Johannesson M, Bronstein M et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet.4(2), e28 (2008).
  • Crow TJ. How and why genetic linkage has not solved the problem of psychosis, review and hypothesis. Am. J. Psychiatry164(1), 13–21 (2007).
  • Sullivan PF, Lin D, Tzeng JY et al. Genomewide association for schizophrenia in the CATIE study, results of stage 1. Mol. Psychiatry13(6), 570–584 (2008).
  • Guidotti A, Ruzicka W, Grayson DR et al.S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. Neuroreport8(1), 57–60 (2007).
  • Razin A, Shemer R. DNA methylation in early development. Hum. Mol. Genet.4, 1751–1755 (1995).
  • Szyf M, McGowan P, Meaney MJ. The social environment and the epigenome. Environ. Mol. Mutagen.49(1), 46–60 (2008).
  • Dong E, Guidotti A, Grayson DR, Costa E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc. Natl Acad. Sci. USA104(11), 4676–4681 (2007).
  • Dong E, Agis-Balboa RC, Simonini MV, Grayson DR, Costa E, Guidotti A. Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia. Proc. Natl Acad. Sci. USA102(35), 12578–12583 (2005).
  • Tremolizzo L, Carboni G, Ruzicka WB et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl Acad. Sci. USA99(26), 17095–17100 (2002).
  • Tremolizzo L, Doueiri MS, Dong E et al. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol. Psychiatry57(5), 500–509 (2005).
  • Dong E, Nelson M, Grayson DR, Costa E, Guidotti A. Clozapine and sulpiride but not haloperidol or olanzapine activate nuclear DNA-demethylation in the brain. Proc. Natl Acad. Sci. USA105(36), 13614–13619 (2008).
  • Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron53(6), 857–869 (2007).
  • Meaney MJ, Szyf M. Maternal care as a model for experience-dependent chromatin plasticity? Trends Neurosci.28(9), 456–463 (2005).
  • Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J.12(11), 949–957 (1998).
  • Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr.32(Suppl.8), 2393S–2400S (2002).
  • Wyatt RJ, Benedict A, Davis J. Biochemical and sleep studies of schizophrenia: a review of the literature 1960–1970. Schiz. Bull.1(4), 10 (1971).
  • Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl Acad. Sci. USA103(9), 3480–3485 (2006).
  • Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J. Biol. Chem.278(30), 27586–927592 (2003).
  • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990), 457–463 (2004).
  • Kundakovic M, Chen Y, Costa E, Grayson DR. DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol. Pharm.71, 644–653 (2007).
  • Scheinbart LS, Johnson MA, Gross LA, Edelstein SR, Richardson BC. Procainamide inhibits DNA methyltransferase in a human T cell line. J. Rheumatol.18(4), 530–534 (1991).
  • Bigey P, Ramchandani S, Therberge J et al. Transcriptional regulation of the human DNA-methyltransferase (Dnmt1) gene. Gene242, 407 (2000).
  • Slack A, Pinar M, Aranjo FD et al. A novel regulatory element in the Dnmt1 gene that responds to co-activation by Rb and c-Jun. Gene269, 87–90 (2001).
  • Deng C, Lu Q, Zhang Z et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. J. Arthritis Rheum.48, 746–756 (2003).
  • Satta R, Maloku E, Zhubi A, Pibiri F, Hajos M, Costa E, Guidotti A. Nicotine targets epigenetic mechanisms in selected populations of mouse telencephalic GABAergic neurons. Proc. Natl Acad. Sci. USA105(42), 16356–16361 (2008).
  • Sharma RP, Rosen C, Kartan S et al. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from clinical population. Schiz. Res.88, 227–231 (2006).
  • DeRuijter A, vanGennip A, Caron H et al. Histone deacetylases: characterization of the classical HDAC family. Biochem. J.15, 737–749 (2003).
  • Simonini MV, Camargo LM, Dong E et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc. Natl Acad. Sci. USA103(5), 1587–1592 (2006).
  • Munro J, Matthiasson P, Osborne S et al. Amisulpride augmentation of clozapine, an open non-randomized study in patients with schizophrenia partially responsive to clozapine. Acta Psychiatr. Scand.110(4), 292–298 (2004).
  • Wassef AA, Dott SG, Harris A et al. Randomized, placebo-controlled pilot study of divalproex sodium in the treatment of acute exacerbations of chronic schizophrenia. J. Clin. Psychopharmacol.20(3), 357–361 (2000).
  • Citrome L, Casey DE, Daniel DG, Wozniak P, Kochan LD, Tracy KA. Adjunctive divalproex and hostility among patients with schizophrenia receiving olanzapine or risperidone. Psychiatr. Serv.55(3), 290–294 (2004).
  • Kelly DL, Conley RR, Feldman S, Yu Y, McMahon RP, Richardson CM. Adjunct divalproex or lithium to clozapine in treatment-resistant schizophrenia. Psychiatr. Q.77(1), 81–95 (2006).
  • Guidotti A, Auta J, Davis JM et al. GABAergic dysfunction in schizophrenia: a new treatment target on the horizon. Psychopharmacology (Berl.)180, 191–205 (2005).
  • Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA. Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J. Neurosci. Res.85, 2006–2016 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.