491
Views
77
CrossRef citations to date
0
Altmetric
Review

Postural instability in Parkinson’s disease: the adrenergic hypothesis and the locus coeruleus

, , &
Pages 279-290 | Published online: 09 Jan 2014

References

  • Langston JW. The Parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann. Neurol.59(4), 591–596 (2006).
  • Hoehn MM, Yahr MD. Parkinsonism – onset progression and mortality. Neurology17(5), 427–442 (1967).
  • Bloem BR, Grimbergen YAM, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson’s disease. J. Neurol.248(11), 950–958 (2001).
  • Horak FB, Macpherson JM. Postural orientation and equilibrium. In: Handbook of Physiology – Section 12: Exercise: Regulation and Integration of Multiple Systems. Rowell LB, Shepherd JP (Eds). Oxford University Press, NY, USA 255–292 (1996).
  • Bloem BR, Bhatia KP. Gait and balance in basal ganglia disorders. In: Clinical Disorders of Balance, Posture and Gait. Bronstein AM, Brandt T, Nutt JG, Woollacott MH (Eds). Arnold, London, UK 173–206 (2004).
  • Bloem BR, Visser JE, Allum JH. Posturography. In: Handbook of Clinical Neurophysiology. Hallet M (Ed.). Elsevier Science BV, Amsterdam, The Netherlands 295–336 (2003).
  • Bakker M, Allum JHJ, Visser JE et al. Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp. Neurol.202(1), 21–35 (2006).
  • Horak FB, Dimitrova D, Nutt JG. Direction-specific postural instability in subjects with Parkinson’s disease. Exp. Neurol.193(2), 504–521 (2005).
  • Bloem BR, Beckley DJ, van Dijk JG et al. Medium latency stretch reflexes in young-onset parkinsons-disease and MPTP-induced Parkinsonism. J. Neurol. Sci.123(1–2), 52–58 (1994).
  • Nardone A, Schieppati M. Balance in Parkinson’s disease under static and dynamic conditions. Mov. Disord.21(9), 1515–1520 (2006).
  • Brooks DJ, Ibanez V, Sawle GV et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann. Neurol.28(4), 547–555 (1990).
  • Davidson DL, Yates CM, Mawdsley C, Pullar IA, Wilson H. CSF studies on the relationship between dopamine and 5-hydroxytryptamine in Parkinsonism and other movement disorders. J. Neurol. Neurosurg. Psychiatr.40(12), 1136–1141 (1977).
  • Vingerhoets FJG, Schulzer M, Caine DB, Snow BJ. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann. Neurol.41(1), 58–64 (1997).
  • Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ. Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology60(4), 601–605 (2003).
  • Bloem BR, Beckley DJ, Vanvugt JPP et al. Long-latency postural reflexes are under supraspinal dopaminergic control. Mov. Disord.10(5), 580–588 (1995).
  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl Acad. Sci. USA80(14), 4546–4550 (1983).
  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science219(4587), 979–980 (1983).
  • Tetrud JW, Langston JW, Garbe PL, Ruttenber AJ. Mild Parkinsonism in persons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurology39(11), 1483–1487 (1989).
  • Ballard PA, Tetrud JW, Langston JW. Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) – 7 cases. Neurology35(7), 949–956 (1985).
  • Agid Y, Graybiel AM, Ruberg M et al. The efficacy of levodopa treatment declines in the course of Parkinson’s disease: do nondopaminergic lesions play a role? Adv. Neurol.53, 83–100 (1990).
  • Bonnet AM, Loria Y, Sainthilaire MH, Lhermitte F, Agid Y. Does long-term aggravation of Parkinson’s-disease result from nondopaminergic lesions. Neurology37(9), 1539–1542 (1987).
  • Klawans HL. Individual manifestations of Parkinson’s disease after ten or more years of levodopa. Mov. Disord.1(3), 187–192 (1986).
  • Bloem BR, Beckley DJ, van Dijk JG, Zwinderman AH, Remler MP, Roos RAC. Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson’s disease. Mov. Disord.11(5), 509–521 (1996).
  • Horak FB, Frank J, Nutt J. Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone. J. Neurophysiol.75(6), 2380–2396 (1996).
  • Bloem BR, van Vugt JP, Beckley DJ. Postural instability and falls in Parkinson’s disease. Adv. Neurol.87, 209–223 (2001).
  • Beckley DJ, Bloem BR, Singh J, Remler MP, Wolfe NS, Roos RA. Postural reflexes in patients on long-term neuroleptic medication. Clin. Neurol. Neurosurg.93(2), 119–122 (1991).
  • Schieppati M, Nardone A. Free and supported stance in Parkinson’s disease. The effect of posture and ‘postural set’ on leg muscle responses to perturbation, and its relation to the severity of the disease. Brain114(3), 1227–1244 (1991).
  • Scholz E, Diener HC, Noth J, Friedemann H, Dichgans J, Bacher M. Medium and long latency EMG responses in leg muscles: Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr.50(1), 66–70 (1987).
  • Braak H, Bohl JR, Muller CM, Rub U, De Vos RAI, Del Tredici K. Stanley Fahn Lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson’s disease reconsidered. Mov. Disord.21(12), 2042–2051 (2006).
  • Jellinger KA. Pathology of Parkinsons-disease – changes other than the nigrostriatal pathway. Mol. Chem. Neuropathol.14(3), 153–197 (1991).
  • Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport16(17), 1883–1887 (2005).
  • Stefani A, Lozano AM, Peppe A et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain130, 1596–1607 (2007).
  • Strafella AP, Lozano AM, Ballanger B, Poon YY, Lang AE, Moro E. rCBF changes associated with PPN stimulation in a patient with Parkinson’s disease: a PET study. Mov. Disord.23(7), 1051–1054 (2008).
  • Kuo SH, Kenney C, Jankovic J. Bilateral pedunculopontine nuclei strokes presenting as freezing of gait. Mov. Disord.23(4), 616–619 (2008).
  • Pahapill PA, Lozano AM. The pedunculopontine nucleus and Parkinson’s disease. Brain123, 1767–1783 (2000).
  • Mann DMA. The locus coeruleus and its possible role in aging and degenerative disease of the human central nervous-system. Mech. Ageing Dev.23(1), 73–94 (1983).
  • Singewald N, Philippu A. Release of neurotransmitters in the locus coeruleus. Prog. Neurobiol.56(2), 237–267 (1998).
  • Baker KG, Tork I, Hornung JP, Halasz P. The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp. Brain Res.77(2), 257–270 (1989).
  • Chan-Palay V, Asan E. Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. J. Comp. Neurol.287(3), 357–372 (1989).
  • German DC, Walker BS, Manaye K, Smith WK, Woodward DJ, North AJ. The human locus coeruleus: computer reconstruction of cellular distribution. J. Neurosci.8(5), 1776–1788 (1988).
  • Vijayashankar N, Brody H. Quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. J. Neuropathol. Exp. Neurol.38(5), 490–497 (1979).
  • Loughlin SE, Foote SL, Grzanna R. Efferent projections of nucleus locus-coeruleus – morphological subpopulations have different efferent targets. Neuroscience18(2), 307–319 (1986).
  • Mason ST, Fibiger HC. Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase. J. Comp. Neurol.187(4), 703–724 (1979).
  • Björklund A, Skagerberg G. Descending monoaminergic projections to the spinal cord. In: Brain Stem Control of Spinal Mechanisms. Sjölund B, Björklund A (Eds). Elsevier, Amsterdam, The Netherlands 55–88 (1982).
  • Barbeau H, Rossignol S. Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res.546(2), 250–260 (1991).
  • Kiehn O, Hultborn H, Conway BA. Spinal locomotor-activity in acutely spinalized cats induced by intrathecal application of noradrenaline. Neurosci. Lett.143(1–2), 243–246 (1992).
  • Bloem BR, Hausdorff JA, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord.19(8), 871–884 (2004).
  • Aston-Jones G, Rajkowski J, Cohen J. Locus coeruleus and regulation of behavioral flexibility and attention. Prog. Brain Res.126, 165–182 (2000).
  • Berridge CW, Waterhouse BD. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev.42(1), 33–84 (2003).
  • Clark CR, Geffen GM, Geffen LB. Catecholamines and attention. I: animal and clinical studies. Neurosci. Biobehav. Rev.11(4), 341–352 (1987).
  • Valentino RJ, Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur. J. Pharmacol.583(2–3), 194–203 (2008).
  • Bloem BR, Overeem S, van Dijk JG. Syncopal falls, drop attacks and their mimics. In: Clinical Disorders of Balance, Posture and Gait. Bronstein AM, Brandt T, Nutt JG, Woollacott MH (Eds). Arnold, London, UK 286–316 (2004).
  • Walberg F. Paths descending from the brain stem – an overview. In: Brain Stem Control of Spinal Mechanisms. Sjölund B, Björklund A (Eds). Elsevier, Amsterdam, The Netherlands 1–27 (1982).
  • Pompeiano O. Relationship of noradrenergic locus coeruleus neurones to vestibulospinal reflexes. Prog. Brain Res.80, 329–343 (1989).
  • Pompeiano O, Horn E, d’Ascanio P. Locus coeruleus and dorsal pontine reticular influences on the gain of vestibulospinal reflexes. Prog. Brain Res.88, 435–462 (1991).
  • Barnes CD, Manzoni D, Pompeiano O, Stampacchia G. Responses of locus coeruleus and subcoeruleus neurons to sinusoidal neck rotation in decerebrate cat. Neuroscience31(2), 371–392 (1989).
  • Horak FB, Shupert CL, Dietz V, Horstmann G. Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp. Brain Res.100(1), 93–106 (1994).
  • Beckley DJ, Bloem BR, Remler MP, Roos RA, van Dijk JG. Long latency postural responses are functionally modified by cognitive set. Electroencephalogr. Clin. Neurophysiol.81(5), 353–358 (1991).
  • Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing35, 7–11 (2006).
  • Carpenter MG, Allum JH, Honegger F, Adkin AL, Bloem BR. Postural abnormalities to multidirectional stance perturbations in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr.75(9), 1245–1254 (2004).
  • Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J. Neurophysiol.72(2), 479–493 (1994).
  • Timmann D, Horak FB. Prediction and set-dependent scaling of early postural responses in cerebellar patients. Brain120, 327–337 (1997).
  • Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol.6(1), 63–74 (2007).
  • Chan-Palay V, Asan E. Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J. Comp. Neurol.287(3), 373–392 (1989).
  • Hoogendijk WJG, Pool CW, Troost D, Vanzwieten E, Swaab DF. Image analyzer-assisted morphometry of the locus coeruleus in alzheimers disease, parkinsons disease and amyotrophic lateral sclerosis. Brain118, 131–143 (1995).
  • German DC, Manaye KF, White CL 3rd et al. Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol.32(5), 667–676 (1992).
  • Zarow C, Lyness SA, Mortimer JA, Chui HC. Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch. Neurol.60(3), 337–341 (2003).
  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res.318(1), 121–134 (2004).
  • Bloem BR, Munneke M, Mazibrada G et al. The nature of falling in progressive supranuclear palsy. Mov. Disord.19, 359–360 (2004).
  • Mann DM, Yates PO, Hawkes J. The pathology of the human locus ceruleus. Clin. Neuropathol.2(1), 1–7 (1983).
  • Tohgi H, Abe T, Takahashi S, Ueno M, Nozaki Y. Cerebrospinal fluid dopamine, norepinephrine, and epinephrine concentrations in Parkinson’s disease correlated with clinical symptoms. Adv. Neurol.53, 277–282 (1990).
  • Tohgi H, Abe T, Saheki M, Yamazaki K, Murata T. Concentration of catecholamines and indoleamines in the cerebrospinal fluid of patients with vascular parkinsonism compared to Parkinson’s disease patients. J. Neural Transm.104(4–5), 441–449 (1997).
  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res.275(2), 321–328 (1983).
  • Martignoni E, Blandini F, Petraglia F, Pacchetti C, Bono G, Nappi G. Cerebrospinal-fluid norepinephrine, 3-methoxy-4-hydroxyphenylglycol and neuropeptide-Y levels in Parkinson’s-disease, multiple system atrophy and dementia of the Alzheimer type. J. Neural Transm. Park. Dis. Dement. Sect.4(3), 191–205 (1992).
  • Kish SJ, Shannak KS, Rajput AH, Gilbert JJ, Hornykiewicz O. Cerebellar norepinephrine in patients with Parkinsons-disease and control subjects. Arch. Neurol.41(6), 612–614 (1984).
  • Cash R, Dennis T, Lheureux R, Raisman R, Javoyagid F, Scatton B. Parkinsons-disease and dementia – norepinephrine and dopamine in locus-ceruleus. Neurology37(1), 42–46 (1987).
  • Sofic E, Riederer P, Gsell W, Gavranovic M, Schmidtke A, Jellinger K. Biogenic amines and metabolites in spinal cord of patients with Parkinson’s disease and amyotrophic lateral sclerosis. J. Neural Transm. Park Dis. Dement. Sect.3(2), 133–142 (1991).
  • Chia LG, Cheng FC, Kuo JS. Monoamines and their metabolites in plasma and lumbar cerebrospinal fluid of Chinese patients with Parkinson’s disease. J. Neurol. Sci.116(2), 125–134 (1993).
  • Brooks DJ. Imaging non-dopaminergic function in Parkinson’s disease. Mol. Imaging Biol.9(4), 217–222 (2007).
  • Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain128(Pt 6), 1314–1322 (2005).
  • Colosimo C, Craus A. Noradrenergic drugs for levodopa-induced dyskinesia. Clin. Neuropharmacol.26(6), 299–305 (2003).
  • Boomsma F, van der Hoorn FA, Man in ‘t Veld AJ, Schalekamp MA. Determination of D,L-threo-3,4-dihydroxyphenylserine and of the D- and L-enantiomers in human plasma and urine. J. Chromatogr.427(2), 219–227 (1988).
  • Reches A. Noradrenergic influences on dopaminergic function and the pharmacology of dihydroxyphenylserine (DOPS): implication for Parkinson’s disease. Clin. Neuropharmacol.8(3), 249–259 (1985).
  • Freeman R, Young J, Landsberg L, Lipsitz L. The treatment of postprandial hypotension in autonomic failure with 3,4-DL-threo-dihydroxyphenylserine. Neurology47(6), 1414–1420 (1996).
  • Biaggioni I, Robertson D. Endogenous restoration of noradrenaline by precursor therapy in dopamine-β-hydroxylase deficiency. Lancet2(8569), 1170–1172 (1987).
  • Kaufmann H, Oribe E, Yahr MD. Differential effect of L-threo-3,4-dihydroxyphenylserine in pure autonomic failure and multiple system atrophy with autonomic failure. J. Neural Transm. Park Dis. Dement. Sect.3(2), 143–148 (1991).
  • Azuma T, Suzuki T, Sakoda S et al. Effect of long-term L-threo-3,4-dihydroxyphenylserine administration on α2-adrenergic receptors in platelet membranes in neurologic disorders. Acta Neurol. Scand.84(1), 46–50 (1991).
  • Suzuki T, Sakoda S, Ueji M et al. Treatment of parkinsonism with L-threo-3,4-dihydroxyphenylserine: a pharmacokinetic study. Neurology34(11), 1446–1450 (1984).
  • Teelken AW, van den Berg GA, Muskiet FA, Staal-Schreinemachers AL, Wolthers BG, Lakke JP. Catecholamine metabolism during additional administration of DL-threo-3,4-dihydroxyphenylserine to patients with Parkinson’s disease. J. Neural Transm. Park Dis. Dement. Sect.1(3), 177–188 (1989).
  • Yamamoto M, Ogawa N, Ujike H. Effect of L-threo-3,4-dihydroxyphenylserine chronic administration on cerebrospinal fluid and plasma free 3-methoxy-4-hydroxy-phenylglycol concentration in patients with Parkinson’s disease. J. Neurol. Sci.73(1), 39–44 (1986).
  • Bartholini J, Constantinidis J, Puig M, Tissot R, Pletscher A. The stereoisomers of 3,4-dihydroxyphenylserine as precursors of norepinephrine. J. Pharmacol. Exp. Ther.193(2), 523–532 (1975).
  • Puig M, Bartholini G, Pletscher A. Formation of noradrenaline in the rat brain from the four stereoisomers of 3,4-dihydroxyphenylserine. Naunyn Schmiedebergs Arch. Pharmacol.281(4), 443–446 (1974).
  • Gibson CJ. Increase in norepinephrine turnover after tyrosine or DL-threo-3,4-dihydroxyphenylserine (DL-threo-DOPS). Life Sci.42(1), 95–102 (1988).
  • Karai N, Kato T, Katsuyama M, Nakamura M, Katsube J. Effect of L-threo-3,4-dihydroxyphenylserine(L-threo-DOPS) on brain and serum MHPG levels in mice: evidence for NE formation in CNS. Life Sci.40(23), 2261–2268 (1987).
  • Tohgi H, Abe T, Takahashi S, Takahashi J, Ueno M, Nozaki Y. Effect of a synthetic norepinephrine precursor, L-threo-3,4- dihydroxyphenylserine on the total norepinephrine concentration in the cerebrospinal fluid of parkinsonian patients. Neurosci. Lett.116(1–2), 194–197 (1990).
  • Tohgi H, Abe T, Takahashi S. The effects of L-threo-3,4-dihydroxyphenylserine on the total norepinephrine and dopamine concentrations in the cerebrospinal fluid and freezing gait in parkinsonian patients. J. Neural Transm. Park Dis. Dement. Sect.5(1), 27–34 (1993).
  • Quinn NP, Pelmutter JS, St.Louis M, Marsden D. Acute administration of DL-threo-DOPS does not affect the freezing phenomenon in Parkinson’s disease. Neurology34(Suppl. 1), 149 (1984) (Abstract).
  • Narabayashi H, Kondo T. Results of a double blind study of L-threo-DOPS in Parkinsonism. In: Recent Developments in Parkinson’s Disease. Fahn Sea (Ed.). Maxmillan, New Jersey, USA 279–291 (1987).
  • Narabayashi H, Yokochi F, Ogawa T, Igakura T. Analysis of L-threo-3, 4-dihydroxyphenylserine effect on motor and psychological symptoms in Parkinson’s disease. No To Shinkei43(3), 263–268 (1991).
  • Ogawa N, Kuroda H, Yamamoto M, Nukina I, Ota Z. Improvement in freezing phenomenon of Parkinson’s disease after DL-threo-3, 4-dihydroxyphenylserine. Acta Med. Okayama38(3), 301–304 (1984).
  • Freeman R, Landsberg L, Young J. The treatment of neurogenic orthostatic hypotension with 3,4-DL-threo-dihydroxyphenylserine: a randomized, placebo-controlled, crossover trial. Neurology53(9), 2151–2157 (1999).
  • Hasegawa Y, Mukai E, Matsusoka Y et al. Effect of oral L-threo-DOPS on orthostatic hypotension in Parkinson’s disease. Mov. Disord.12(Suppl. 1), 88 (1997) (Abstract).
  • Mizoguchi K, Tanaka M, Yokoo H, Yoshida M, Tsuda A. L-threo-3,4-dihydroxyphenylserine, a noradrenaline precursor, inhibits dopamine release and metabolism in the rat striatum in vivo. Experientia48(11–12), 1133–1134 (1992).
  • Man in ‘t Veld AJ, Boomsma F, van den Meiracker AH, Julien C, Lenders J, Schalekamp MA. D,L-threo-3,4-dihydroxyphenylserine restores sympathetic control and cures orthostatic hypotension in dopamine β-hydroxylase deficiency. J. Hypertens. Suppl.6(4), S547–S549 (1988).
  • Ghika J, Tennis M, Hoffman E, Schoenfeld D, Growdon J. Idazoxan treatment in progressive supranuclear palsy. Neurology41(7), 986–991 (1991).
  • Manson AJ, Iakovidou E, Lees AJ. Idazoxan is ineffective for levodopa-induced dyskinesias in Parkinson’s disease. Mov. Disord.15(2), 336–337 (2000).
  • Fox SH, Lang AE, Brotchie JM. Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to Phase IIa clinical studies: keys to success and roads to failure. Mov. Disord.21(10), 1578–1594 (2006).
  • Bymaster FP, Katner JS, Nelson DL et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology27(5), 699–711 (2002).
  • Ben Itzhak R, Giladi N, Gruendlinger L, Hausdorff JM. Can methylphenidate reduce fall risk in community-living older adults? A double-blind, single-dose cross-over study. J. Am. Geriatr. Soc.56(4), 695–700 (2008).
  • Auriel E, Hausdorff JM, Herman T, Simon ES, Giladi N. Effects of methylphenidate on cognitive function and gait in patients with Parkinson’s disease: a pilot study. Clin. Neuropharmacol.29(1), 15–17 (2006).
  • Pollak L, Dobronevsky Y, Prohorov T, Bahunker S, Rabey JM. Low dose methylphenidate improves freezing in advanced Parkinson’s disease during off-state. J. Neural Transm. Suppl.72, 145–148 (2007).
  • Devos D, Krystkowiak P, Clement F et al. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr.78(5), 470–475 (2007).
  • Nutt JG, Carter JH, Carlson NE. Effects of methylphenidate on response to oral levodopa: a double-blind clinical trial. Arch. Neurol.64(3), 319–323 (2007).
  • D’Amato RJ, Zweig RM, Whitehouse PJ et al. Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann. Neurol.22(2), 229–236 (1987).
  • Iacono RP, Kuniyoshi SM, Ahlman JR, Zimmerman GJ, Maeda G, Pearlstein RD. Concentrations of indoleamine metabolic intermediates in the ventricular cerebrospinal fluid of advanced Parkinson’s patients with severe postural instability and gait disorders. J. Neural Transm.104(4–5), 451–459 (1997).
  • Klein P, Lees A, Stern G. Consequences of chronic 5-hydroxy-tryptophan in parkinsonian instability of gait and balance and in other neurological disorders. Adv. Neurol.45, 603–604 (1987).
  • Bloem BR, Geurts AC, Hassin-Baer S, Giladi N. Treatment of gait and balance disorders. In: Therapeutics of Parkinson’s Disease and Other Mov. Disord. Hallet M, Poewe WH (Eds). John Wiley & Sons, Chichester, UK (2008).
  • Burns RS, LeWitt PA, Ebert MH, Pakkenberg H, Kopin IJ. The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med.312(22), 1418–1421 (1985).
  • Burleigh A, Horak F, Nutt J, Frank J. Levodopa reduces muscle tone and lower extremity tremor in Parkinson’s disease. Can. J. Neurol. Sci.22(4), 280–285 (1995).
  • Rocchi L, Chiari L, Horak FB. Effect of levodopa and DBS on anticipatory postural adjustments in subjects with Parkinson’s disease. Mov. Disord.19, S187–S188 (2004).
  • Beckley DJ, Panzer VP, Remler MP, Ilog LB, Bloem BR. Clinical correlates of motor performance during paced postural tasks in Parkinson’s disease. J. Neurol. Sci.132(2), 133–138 (1995).
  • Dick JP, Rothwell JC, Berardelli A et al. Associated postural adjustments in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr.49(12), 1378–1385 (1986).
  • Frank JS, Horak FB, Nutt J. Centrally initiated postural adjustments in parkinsonian patients on and off levodopa. J. Neurophysiol.84(5), 2440–2448 (2000).
  • Burleigh-Jacobs A, Horak FB, Nutt JG, Obeso JA. Step initiation in Parkinson’s disease: influence of levodopa and external sensory triggers. Mov. Disord.12(2), 206–215 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.