94
Views
51
CrossRef citations to date
0
Altmetric
Review

Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA

, &
Pages 205-217 | Published online: 09 Jan 2014

References

  • Czerkinsky C, Holmgren J. The mucosal immune system and prospects for anti-infectious and anti-inflammatory vaccines. hnmunologist 3,97–103 (1995).
  • Czerkinsky C, Anjuere F, McGhee JR etal. Mucosal immunity and tolerance: relevance to vaccine development. hnmunol Rev 170, 197–222 (1999).
  • Faria AM, Weiner HL. Oral tolerance: mechanisms and therapeutic applications. Ack Immunol. 73,153–264 (1999).
  • •Excellent overview of the field.
  • de Haan L, Hirst TR. Cholera toxin and related enterotoxins: a cell biological and immunological perspective. J. Nat. Toxins 9, 281–297 (2000).
  • Holmgren J, Svennerholm A-M. Vaccines against diarrheal diseases. In: Handbook of Experimental Pharmacology Volume 133: Vaccines. Perlmann P, Wigzell H (Eds). Springer, NY, USA, 291–328 (1998).
  • Cholera vaccines, WHO position paper. In: Wekly epidemiological record World Health Organization, Geneva, Switzerland, 76, 117–124 (2001).
  • de Fijter JW, Eijgenraarn JW, Braarn CA et al Deficient IgAl immune response to nasal cholera toxin subunit B in primary IgA nephropathy. lOckey Int. 50,952–961 (1996).
  • Rudin A, Johansson E-L, Bergquist C, Holmgren J. Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination in humans. Infect. hnmun. 66, 3390–3396 (1998).
  • Johansson E-L, Wasson L, Holmgren J, Jertbom M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. infect. krimutz 69, 7481–7486 (2001).
  • Jertbom M, Nordstrom I, Kilander A, Czerkinsky C, Holmgren J. Local and systemic immune responses to rectal administration of recombinant cholera toxin B subunit in humans. Infect. hnmun. 69, 4125–4128 (2001).
  • Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector system. Vaccine 11, 1179–1184 (1993).
  • Lycke N. The mechanism of cholera toxin adjuvanticity. Res. hirmunol. 148, 504–520 (1997).
  • Gagliardi M, Sallusto F, Mannar° M, Vendetti S, Riccomi A, De Magistris M. Effects of the adjuvant cholera toxin on dendritic cells: stimulatory and inhibitory signals that result in the amplification of immune responses. hit. j Merl Mavbiol. 291, 571–575 (2002).
  • Eriksson K, Fredriksson M, Nordstrom I, Holmgren J. Cholera toxin and its B subunit promote dendritic cell vaccination with different influences on Thl and Th2 development. Ittect hnmun. 71, 1740–1747 (2003).
  • Staats HF, Ennis FA Jr. IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunogens. hrtmunol 162, 6141–6147 (1999).
  • Haan L, Verweij W Holtrop M etal. Nasal or intramuscular immunization of mice with influenza subunit antigen and the B subunit of Escherichia cal/heat-labile toxin induces IgA- or IgG-mediated protective mucosal immunity. Vaccine 19, 2898–2907 (2001).
  • George-Chandy A, Eriksson K, Lebens M, Nordshum I, Schon E, Holmgren J. Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells. Infect. hnmun. 69, 5716–5725 (2001).
  • Pizza M, Giuliani M, Fontana M et al. Mucosal vaccines: non-toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534–2541 (2001).
  • •Good description of site-specific mutagenesis in toxic-active enterotoxin subunits and the effects of different mutations on toxicity and adjuvant properties of the modified toxins.
  • Agren LC, Ekman L, Lowenadler B, Nedrud JG. Adjuvanticity of the cholera toxin Al-based gene fusion protein, CTA1 -DD, is critically dependent on the ADP-ribosyltransferase and Ig-binding activity. I Immunol 162, 2432–2440 (1999).
  • Mowat AM, Donachie AM, Jagewall S et al CTA1 -DD-immune stimulating complexes: a novel, rationally designed combined mucosal vaccine adjuvant effective with nanogram doses of antigen. Immunol 167, 3398–3405 (2001).
  • Sanchez J, Wallerstrom G, Fredriksson M, Angstrom J, Holmgren J. Detoxification of cholera toxin without removal of its immunoadjuvanticity by the addition of (STa-related) peptides to the catalytic subunit. A potential new strategy to generate immunostimulants for vaccination. J. Biol. Chem. 277, 33369–33377 (2002).
  • Medzhitov R, Janeway C Jr. The toll receptor family and microbial recognition. Trends Nlicrobiol. 8, 452–456 (2000).
  • Aderem A, Ulevitch R. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).
  • Tokunaga T, Yamamoto H, Shimada S et al Antitumor acitivity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization and antitumor activity. J. Nat! Cancer Inst. 72, 955–962 (1984).
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Ann. Rev. Immunol 20, 709–760 (2002).
  • ••Authorative overview of the mechanismsof action, immune properties, and potential therapeutic applications of imrnunostimulatory CpG DNA.
  • Wagner H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. C1117: Opin. Immunol 5, 62–69 (2002).
  • Harandi AM, Eriksson K, Holmgren J. A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection. J. Viral 77, 953–962 (2003).
  • •The first report showing that vaginal-mucosal delivery of CpG DNA stimulates strong innate immune response in the female genital tract mucosa.
  • Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-la and MIP-10 as the major HIV-suppressive factors produced by CD8* T-cells. Science 270, 1811–1815 (1995).
  • Dumais N, Patrick A, Moss RB, Davis HL, Rosenthal KL. Mucosal immunization with inactivated human immunodeficiency virus plus CpG oligodeoxynucleotides induces genital immune responses and protection against intravaginal challenge. Infect. Dis. 186, 1098–1105 (2002).
  • Gallichan W, Woolstencroft R, Guarasci T, McCluskie M, Davis H, Rosenthal K. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J. Immunol 166, 3451–3457 (2001).
  • McCluskie MJ, Weeratna RD, Krieg AM, Davis HL. CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine 19, 950–957 (2000).
  • Moldoveanu Z, Love-Homan L, Huang WQ, Krieg AM. CpG DNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 16,1216–1224 (1998).
  • Krieg A, Davis H. Enhancing vaccine with immune stimulatory CpG DNA. C1117: Opin. Mal Ther. 3, 15–24 (2001).
  • Hemmi H, Kaisho T, Takeuchi O et al. Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signalling pathway. Nat. Immunol 3, 196–200 (2002).
  • •First description of recognition of non-PAMP imidazoquinoline compunds by TLR7.
  • Dockrell D, Kinghom G. Imiquimod and resiquimod as novel immunomodulators. Antimicrob. Chemoth. 48,751–755 (2001).
  • Miller R, Imbertson L, Reiter M, Gerster J. Treatment of primary herpes simplex virus infection in guinea-pigs by imiquimod. Antiviral Res. 44, 31–42 (1999).
  • Stanley MA. Imiquimod and the imidazoguinolones: mechanism of action and therapeutic potential. Clin. Exp. Dermatol 27, 571–577 (2002).
  • Harrison CJ, Miller RL, Bernstein DI. Reduction of recurrent HSV disease using imiquimod alone or combined with a glycoprotein vaccine. Vaccine 19, 1820–1826 (2001).
  • Choy EH. Oral toleragens in rheumatoid arthritis. Cun: Opin. Investig Drugs 1, 58–62 (2000).
  • Sun J-B, Holmgren J, Czerkinsky C. Cholera toxin B subunit: an efficient transmucosal carrier-delivery system for induction of peripheral immunological tolerance. Proc. Nati Acad. Sc]. USA 91, 10795–10799 (1994).
  • ••Original description of the surprisingstrong propoerty of cholera toxin B subunit to induce/enhance "oral tolerance".
  • Sun JB, Rask C, Olsson T, Holmgren J, Czerkinsky C. Treatment of experiment al autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc. Natl Acad. Sc]. USA 93,7196–7201 (1996).
  • Sun J-B, Xiao B-G, Lindblad M et al. Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing transforming growth factor-3-secreting cells and suppressing chemokine expression. Int. Immunol 12,1449–1457 (2000).
  • Bergerot, I, Ploix, C, Petersen, J et al. A cholera toxoid—insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc. Natl Acad. Sc]. USA 94, 4610–4614 (1997).
  • Arakawa T, Yu J, Chong DK, Hough J, Engen PC, Langridge WH. A plant-based cholera toxin B subunit—insulin fusion protein protects against the development of autoimmune diabetes. Nat. Biotechnol 16,934–938 (1998).
  • Tarkowski A, Sun J-B, Holmdahl R, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune arthritis by nasal administration of a Type II collagen—cholera toxoid conjugate vaccine. Arthritis Rheum. 42,1628–1634 (1999).
  • Phipps PA, Stanford MR, Sun JB et al. Prevention of mucosally induced uveitis with a HSP60-derived peptide linked to cholera toxin B subunit. Eur. j Immunol 33,224–232 (2003).
  • •Important precfinical proof-of-principle study leading to the first human trial of the same CTB—Hsp60 peptide conjugate for treatment of patients with Bechet's disease (M Stanford etal., In Press).
  • Sun J-B, Li B-L, Czerkinsky C, Holmgren J. Enhanced immunological tolerance against allograft rejection by oral administration of allogeneic antigen linked to cholera toxin B subunit. j Clin. Immunol 97,130–139 (2000).
  • Ma D, Mellon J, Niederkom JY. Conditions affecting enhanced corneal allograft survival by oral immunization. Invest. Ophthalmol Vis. Sc]. 39,1835–1846 (1998).
  • Tamura S, Hatori E, Tsuruhara T, Aizawa C, Kurata T Suppression of delayed-type hypersensitivity and IgE antibody responses to ovalbumin by intranasal administration of Escherichia cal/heat-labile enterotoxin B subunit-conjugated ovalbumin. Vaccine 15,225–229 (1997).
  • Rask C, Holmgren J, Fredriksson M et al. Prolonged oral treatment with low doses of allergen conjugated to cholera toxin B subunit suppresses immonoglobulin E antibody responses in sensitized mice. Cl/n. Exp. Allergy 30,1024–1032 (2000).
  • Li B-L, Sun J-B, Holmgren J. Adoptive transfer of mucosal T-cells or dendritic cells from animals fed with cholera toxin B subunit alloantigen conjugate induces allogeneic T-cell tolerance. Adv Exp. Med. Biol. 495,271–275 (2001).
  • Boirivant M, Fuss U, Ferroni L, De Pascale M, Strober W Oral administration of recombinant cholera toxin subunit B inhibits IL-12-mediated murine experimental (trinitrobenzene sulfonic acid) colitis. Immund 166,3522–3532 (2001).
  • McSorley SJ, Rask C, Pichot R, Julia V, Czerkinsky C, Glaichenhaus N. Selective tolerization of Thl-like cells after nasal administration of a cholera toxoid—LACK conjugate. Eur j Immunol 28,44–430 (1998).
  • Sun J-B, Mielcarek N, Lakew M et al. Intranasal administration of a Schistosoma mansoni glutathione 5-transferase—cholera toxoid conjugate vaccine evokes antiparasitic and antipathological immunity in mice. Immund 163,1045–1052 (1999).
  • Lebens M, Sun J-B, Mielcarek N et al. A mucosally administered recombinant fusion protein vaccine against schistosomiasis protecting against immunopathology and infection. Vaccine 3435,1–7 (2001).
  • Sun J-B, Stadecker MJ, Mielcarek N et al. Nasal administration of Schistosoma mat2soni egg antigen—cholera B subunit conjugate suppresses hepatic granuloma formation and reduces mortality in S mansoni-infected mice. Scam/. j Immunol 54,440–447 (2001).
  • Chong C, Friberg M, Clements JD. LT(R192G), a non-toxic mutant of the heat-labile enterotoxin of Escherichia coA elicits enhanced humoral and cellular immune responses associated with protection against lethal oral challenge with Sa/mone//aspp. Vaccine 16,732–740 (1998).
  • McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory and genital tissues. J. hrimunol 122,1892–1898 (1979).
  • Freidag B, Melton G, Collins F, Klinman D, Cheever A, Stobie L, Suen W Seder R. CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M tubeirulosis. Infect. ithinun. 68, 2948–2953 (2000).
  • McCluskie MJ, Davis HL. Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynudeotides as adjuvants. Vaccine 19,413–422 (2000).
  • Mariotti S, Teloni R, von Hunolstein C, Romagnoli G, Orefici G, Nisini R Immunogenicity of antil-Lemophilus influenzaetype b CRM197 conjugate following mucosal vaccination with oligodeoxynucleotide containing immunostimulatory sequences as adjuvant. Vaccine 20,2229–2239 (2002).
  • McCluskie M, Davis HL CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. Immuno1161,4463–4466 (1998).
  • Olszewska W Partidos CD, Steward MW Antipeptide antibody responses following intranasal immunization: effectiveness of mucosal adjuvants. infect. hnmun. 68, 4923–4929 (2000).
  • Choi AH, McNeal MM, Flint JA et al. The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine 20,1733–1740 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.