214
Views
169
CrossRef citations to date
0
Altmetric
Review

Microparticles as vaccine adjuvants and delivery systems

&
Pages 269-283 | Published online: 09 Jan 2014

References

  • Ramon G. Sur la toxine et surranatoxine diphtheriques. Ann. Inst. Pasteur38,1 (1924).
  • Vogel FR, Powell MF. A compendium of vaccine adjuvants and excipients. In: Vaccine Design: the Subunit anti Acljuvant Appmach. Powell MF, Newman MJ, (Eds). Plenum Press, NY, USA, 141–228 (1995).
  • Gupta RK. Aluminum compounds as vaccine adjuvants. Acv Drug- Del Rev 32,155–172 (1998).
  • Relyveld EH, Bizzini B, Gupta RK. Rational approaches to reduce adverse reactions in man to vaccines containing tetanus and diphtheria toxoids. Vaccine16(9-10), 1016–1023 (1998).
  • Gupta RK, Chang AC, Griffin P et al. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing MC-labeled tetanus toxoid. Vaccine 14(15), 1412–1416 (1996).
  • Ulanova M, Tarkowski A, Hahn-Zoric M et al. The common vaccine adjuvant aluminum hydroxide upregulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect. human. 69(2), 1151–1159 (2001).
  • Shi Y, HogenEsch H, Regnier FE et al. Detoxification of endotoxin by aluminum hydroxide adjuvant. Vaccine 19(13-14), 1747–1752 (2001).
  • Edelman R. Adjuvants for the future. In: New Generation Vaccines. Levine MM, Woodrow GC, Kaper JB, Cobon GS (Eds). Marcel Dekker, Inc., NY, USA, 173–192 (1997).
  • Zinkernagel RM, Ehl S, Aichele P et al Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity. Immunol Rev. 156,199–209. (1997).
  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring- Harbor Symposium on Quantitative Biology54\(Pt 1) Ch 1–13 (1989).
  • Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Ce1191 (3), 295–298 (1997).
  • Fearon DT Seeking wisdom in innate immunity. Nature 388 (6640), 323–324 (1997).
  • Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 272(5258), 50–53 (1996).
  • Yip HC, Karulin AY, Tary-Lehmann M et al. Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response. Immunol 162(7), 3942–3949 (1999).
  • Gustafson GL, Rhodes MJ. Bacterial cell wall products as adjuvants: early interferon y as a marker for adjuvants that enhance protective immunity. Res. Immunol 143(5), 483–488, discussion 573–574 (1992).
  • Ulrich JT, Myers KR. Monophosphoryl lipid A as an adjuvant: Past experiences and new directions. Pharm. Biotechnol 6, 495–524 (1995).
  • Ulrich JT. MPLr immunostimulant: adjuvant formulations. In: Vaccine Adjuvants: Preparation Methods and Research Protocols. O'Hagan DT (Ed.). Humana Press, Inc., NJ, USA, 273–282 (2000).
  • Wheeler AW, Marshall JS, Ulrich JT. A Thl-inducing adjuvant, MPL, enhances antibody profiles in experimental animals suggesting it has the potential to improve the efficacy of allergy vaccines. int. Arch. Allergy Immund 126(2), 135–139 (2001).
  • Messina JP, Gilkeson GS, Pisetsky DS. Stimulation of in vitro murine lymphocyte proliferation by bacterial DNA. I Immunol 147(6), 1759–1764 (1991).
  • Tokunaga T, Yamamoto H, Shimada S et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. I Nat! Cancer Inst. 72(4), 955–962 (1984).
  • Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374(6522), 6546–6549 (1995).
  • Bird AP CpG islands as gene markers in the vertebrate nucleus. 7iends Genet. 3,342–347 (1987).
  • Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Natum 408(6813), 740–745 (2000).
  • Sparwasser T, Koch ES, Vabulas RM et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur Immunol. 28(6), 2045–2054 (1998).
  • Klinman DM, Barnhart KM, Conover J. CpG motifs as immune adjuvants. Vaccine 17(1), 19–25 (1999).
  • Broide D, Schwarz e Tighe, J. H et al. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation and airway hyperresponsiveness in mice. I hrimunol 161(12), 7054–7062 (1998).
  • Kensil CR. Saponins as vaccine adjuvants. On. Rev Ther Drug Carrier Syst. 13(1-2), 1–55 (1996).
  • Glaueri AM, Dingle JT, Lucy JA. Action of saponins on biological membranes. Nature 196,953 (1962).
  • Kensil CR, Kammer R. QS-21: a water-soluble triterpene glycoside adjuvant. Exp. Opin. Invest. Drugs 7(9), 1475–1482 (1998).
  • Heath AW. Cytokines as immunological adjuvants. Phann Biotechnol. 6,645–658 (1995).
  • Salgaller ML, Lodge PA. Use of cellular and cytokine adjuvants in the immunotherapy of cancer. J SUrg, Oncol. 68(2), 122–138 (1998).
  • Pettit DK, Lawter JR, Huang WJ et al. Characterization of poly(glycolide-co-D,L-lactide)/poly(D,L-lactide) miul_bpheres for controlled release of GM-CSE Pharm. Res. 14(10), 1422–1430 (1997).
  • Egilmez NK, Jong YS, Sabel MS et al. In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res. 60(14), 3832–3837 (2000).
  • Allison AC, Byars NE. An adjuvant formulation that selectively elicits the formation of antibodies of protective isotypes and of cell-mediated immunity. J. hnmunol. Method 95 (2), 157–168 (1986).
  • Lindblad EB. Freund's Adjuvants. In: Vaccine Adjuvants: Preparation methods and msemrh protocols. O'Hagan D, (Ed.). Humana Press, NJ, USA,49–64 (2000).
  • Ott G, Barchfeld GL, Chernoff D et al MF59: Design and evaluation of a safe and potent adjuvant for human vaccines. In: Vaccine Design: the Subunit and Adjuvant Approach. Powell MF, Newman MJ (Eds). Plenum Press, NY, USA, 277–296 (1995).
  • Cataldo DM, Van Nest G. The adjuvant MF59 increases the immunogenicity and protective efficacy of subunit influenza vaccine in mice. Vaccine 15(16), 1710–1715 (1997).
  • Higgins DA, Carlson JR, Van Nest G. MF59 adjuvant enhances the immunogenicity of influenza vaccine in both young and old mice. Vaccine 14 (6), 478–484 (1996).
  • O'Hagan DT, Ott GS, Van Nest G. Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mal Med. Today 3, 69–75 (1997).
  • Traquina P, Morandi M, Contorni M et al. MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. I Infect. Dis. 174(6), 1168–1175 (1996).
  • Heineman TC, Clements-Mann ML, Poland GA et al. A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant. Vaccine 17(22), 2769–2778 (1999).
  • Menegon T, Baldo V, Bonello C et al. Influenza vaccines: antibody responses to split virus and MF59-adjuvanted subunit virus in an adult population. Eur j Epidemiol. 15(6), 573–576 (1999).
  • De Donato S, Granoff D, Minutello M et al. Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly. Vaccine 17 (23–24), 3094–3101 (1999).
  • Cunningham CK, Wara DW, Kang M et al. Safety of 2 recombinant human immunodeficiency virus Type 1 (HIV-1) envelope vaccines in neonates born to HIV-1-infected women. Clin. Infect. Dis. 32(5), 801–807 (2001).
  • Cellular and humoral immune responses to a canarypox vaccine containing human immunodeficiency virus type 1 Env, Gag, and Pro in combination with rgp120. AIDS Vaccine Evaluation Group 022 Protocol Team. I Infect. Dis. 183(4), 563–570 (2001). Biodegradable and biocompatible poly(IDL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect. Immun. 59(9), 2978–2986 (1991).
  • Cherpelis S, Srivastava I, Gettie A et al. DNA vaccination with the human immunodeficiency virus Type 1 SF1628V2 envelope elicits immune responses that offer partial protection from simian/human immunodeficiency virus infection to CD8(+) T-cell-depleted rhesus macaques. Viral. 75(3), 1547–1550 (2001).
  • Alving CR. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim Biophys Acta. 1113(3-4), 307–322 (1992).
  • Gregoriadis G. Immunological adjuvants: a role for liposomes. Immunol Todayll (3), 89–97 (1990).
  • Ambrosch F, Wiedermann G, Jonas S et al. Immunogenicity and protectivity of a new liposomal hepatitis A vaccine. Vaccine 15(11), 1209–1213 (1997).
  • Barr IG, Sjolander A, Cox JC. ISCOMs and other saponin-based adjuvants. Adv Drug Del. Rev 32,247–271 (1998).
  • Rimmelzwaan GF, Baars M, van Beek R et al Induction of protective immunity against influenza virus in a macaque model: comparison of conventional and ISCOM vaccines. 78(Pt 4), 757–765 (1997).
  • Ennis FA, Cruz J, Jameson J et al. Augmentation of human influenza A virus-specific cytotoxic T-lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS) . Vimlogy 259 (2), 256–261 (1999).
  • Soltysik S, Wu JY, Recchia J et al. Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 13(15), 1403–1410 (1995).
  • Lovgren-Bengtsson K, Morein B. The ISCONFm Technology. In: !!!!!!Vaccine Adjuvants: Pmparation methods and msearrh protocols. OHagan D (Ed.). Humana Press Totowa, NJ, USA, 239–258 (2000).
  • OHagan DT Microparticles as oral vaccines. In: Novel Deliver), Systems for Oral Vaccine. OHagan DT (Ed.). CRC Press Inc., FL, USA 175–205 (1994).
  • Kovacsovics-Bankowski M, Clark K, Benacerraf B et al. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Pmc. Nail Acad. Li. USA 90(11), 4942–4946 (1993).
  • Okada H, Toguchi H. Biodegradable microspheres in drug delivery. Grit. Rev The Drug Carrier Syst. 12(1), 1–99 (1995).
  • Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16(2), 153–157 (1998). Published erratum appears in Nat. Biotechnol. 16(5), 478 (1998).
  • Eldridge JH, Staas JK, Meulbroek JA et al. Biodegradable and biocompatible poly(DLlactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxinneutralizing antibodies. Infect. Immun. 59(9), 2978–2986 (1991).
  • O'Hagan DT, Rahman D, McGee JP et al. Biodegradable microparticles as controlled release antigen delivery systems. Immunology73(2), 239–242 (1991).
  • O'Hagan DT, Jeffery H, Roberts MJ et al. Controlled release microparticles for vaccine development. Vaccine 9(10), 768–771 (1991).
  • O'Hagan DT, Jeffery H, Davis SS. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccinell(9), 965–969 (1993).
  • Maloy KJ, Donachie AM, OHagan DT et al. Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunol 81(4), 661–667 (1994).
  • Moore A, McGuirk P, Adams S et al. Immunization with a soluble recombinant HIV protein entrapped in biodegradable microparticles induces HIV-specific CD8+ cytotoxic T-lymphocytes and CD4+ Thl cells. Vaccine 13(18), 1741–1749 (1995).
  • Nixon DF, Hioe C, Chen PD et al. Synthetic peptides entrapped in microparticles can elicit cytotoxic T-cell activity. Vaccine 14(16), 1523–1530 (1996).
  • Kanke M, Sniecinski I, DeLuca PP Interaction of microspheres with blood constituents: I. Uptake of polystyrene spheres by monocytes and granulocytes and effect on immune responsiveness of lymphocytes. .1. Parente Sci Technol 37 (6), 210–217 (1983).
  • Tabata Y, Ilcada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and co-polymers. .1. Biomed Mater Res. 22 (10), 837–858 (1988).
  • Tabata Y, Ikada Y. Phagocytosis of polymer microspheres by macrophages. Adv. Polymer Sci. 94,107–141 (1990).
  • Randolph GJ, Inaba K, Robbiani DF et al. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity11(6), 753–761 (1999).
  • Lutsiak ME, Robinson DR, Coester C et al. Analysis of poly(D,L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in Wm. Pharm. Res. 19(10), 1480–1487 (2002).
  • Newman KD, Elamanchili P, Kwon GS et al. Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo. I Domed Mater. Res. 60(3), 480–486 (2002).
  • O'Hagan DT, Ugozzoli M, Barackman J et al. Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1. Vaccine 18(17), 1793–1801 (2000).
  • Vordermeier HM, Coombes AG, Jenkins P et al. Synthetic delivery system for tuberculosis vaccines: immunological evaluation of the M tuberulosis 38 kDa protein entrapped in biodegradable PLG microparticles. Vaccine 13 (16), 1576–1582 (1995).
  • Kazzaz J, Neidleman J, Singh M et al. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T-lymphocytes against recombinant p55 gag from HIV-1.j Control Release 67(2–3), 347–356 (2000).
  • Jung T, Kamm W, Breitenbach A et al. Tetanus toxoid loaded nanoparticles from sulfobutylated poly (vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm. Res. 18(3), 352–360 (2001).
  • O'Hagan DT, Jeffery H, Davis SS. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine 11(9), 965–969 (1993).
  • Seder RA, Gurunathan S. DNA vaccines —designer vaccines for the 21st century. N. Engl. Med 341(4), 277–278 (1999).
  • Wang R, Doolan DL, Le TP et al. Induction of antigen-specific cytotoxic T-lymphocytes in humans by a malaria DNA vaccine. Science 282(5388), 476–480 (1998).
  • Calarota S, Bratt G, Nordlund S et al. Cellular cytotoxic response induced by DNA vaccination in HIV-1-infected patients. Lancet 351(9112), 1320–1325 (1998).
  • Schneider J, Gilbert SC, Blanchard TJ et al. Enhanced immunogenicity for CD8+ T-cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 4(4), 397–402 (1998).
  • Sullivan NJ, Sanchez A, Rollin PE et al. Development of a preventive vaccine for Ebola virus infection in primates. Nature408(6812), 605–609 (2000).
  • Amara RR, Villinger F, Altman JD et al. Control of a mucosal challenge and prevention of AIDS by a multi-protein DNA/MVA vaccine. Sc1ence292(5514), 69–74. (2001).
  • Hedley ML, Curley J, Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med 4(3), 365–368 (1998).
  • Singh M, Briones M, Ott G et al. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl Acad. Sc]. USA 97(2), 811–816 (2000).
  • Walter E, Moelling K, Pavlovic J al Microencapsulation of DNA using poly(DL-lactide-co-glycolide): stability issues and release characteristics. 61,361–374 (1999).
  • Ando S, Putnam D, Pack DW al PLGA microspheres containing plasmid DNA: preservation of supercoiled DNA via cryopreparation and carbohydrate stabilization. j Phatm. Sci. 88(1), 126–130 (1999).
  • Tinsley-Bown AM, Fretwell R, Dowsett AB et al. Formulation of poly(D,L-lactic-co-glycolic acid) microparticles for rapid plasmid DNA delivery j Control Release 66(2–3), 229–241 (2000).
  • Briones M, Singh M, Ugozzoli M al The preparation, characterization and evaluation of cationic microparticles for DNA vaccine delivery. Phatm. Res. 18(5), 709–711 (2001).
  • O'Hagan D, Singh M, Ugozzoli M al Induction of potent immune responses by cationic microparticles with adsorbed HIV DNA vaccines. j Vim]. 75(19), 9037–9043 (2001).90Denis-Mize KS, Dupuis M, MacKichan ML et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther 7(24), 2105–2112 (2000).
  • Denis-Mize KS, Dupuis M, MacKichan ML et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther. 7(24), 2105–2112 (2000).
  • Ott G, Singh M, Kazzaz J et al. A cationic sub-micron emulsion (MF59/DOTAP) is an effective delivery system for DNA vaccines. j Control. Release 79 (1–3), 1–5 (2002).
  • Singh M, Ott G, Kazzaz J et al. Cationic microparticles are an effective delivery system for immune stimulatory CpG DNA. Pharm. Res. 18(10), 1476–1479 (2001).
  • Tabata Y, Ikada Y. Macrophage activation through phagocytosis of muramyl dipeptide encapsulated in gelatin microspheres. j Pharm. Pharmacol 39(9), 698–704 (1987).
  • Puri N, Sinko PJ. Adjuvancy enhancement of muramyl dipeptide by modulating its release from a physicochemically modified matrix of ovalbumin microspheres. II. In vivo investigation. j Control. Release 69(1), 69–80 (2000).
  • Cleland JL, Barron L, Daugherty A et al Development of a single-shot subunit vaccine for HIV-1.3. Effect of adjuvant and immunization schedule on the duration of the humoral immune response to recombinant MN gp120. Pharm. Sci. 85(12), 1350–1357 (1997).
  • Singh M, Li XM, Wang H et al Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine. Infect. Immun. 65(5), 1716–1721 (1997).
  • Singh M, Carlson JR, Briones M et al A comparison of biodegradable microparticles and MF59 as systemic adjuvants for recombinant gD from HSV-2. Vaccine 16(19), 1822–1827 (1998).
  • O'Hagan DT, Ugozzoli M, Barackman J etal. Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1, Vaccine 18(17), 1793–1801 (2000).
  • O'Hagan DT, Singh M, Gupta RK. Poly (lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv. Drug-Del. Rev. 32,225–246 (1998).
  • Schwendeman SP, Costantino HR, Gupta RK et al. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation. Proc. Natl Acad. Sci. USA 92(24), 11234–11238 (1995).
  • Xing DK, Crane DT, Bolgiano B, Corbel MJ, Jones C, Sesardic D. Physicochemical and immunological studies on the stability of free and microsphere-encapsulated tetanus toxoid in vitro. Vaccine 14(13), 1205–1213 (1996).
  • Johansen P, Gander B, Merkle HP et al. Ambiguities in the preclinical quality assessment of microparticulate vaccines. Trends Biotechnol 18(5), 203–211 (2000).
  • Sasiak AB, Bolgiano B, Crane DT et al. Comparison of in vitro and in vivo methods to study stability of PLGA microencapsulated tetanus toxoid vaccines. Vaccine 19(7-8), 694–705 (2001).
  • Boehm G, Peyre M, Sesardic D et al. On technological and immunological benefits of multivalent single-injection microsphere vaccines. Pharm. Res. 19(9), 1330–1336 (2002).
  • Men Y, Thomasin C, Merkle HP et al. A single administration of tetanus toxoid in biodegradable microspheres elicits T-cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine 13 (7), 683–689 (1995).
  • Preis I, Langer RS. A single-step immunization by sustained antigen release. Immunol Method 28(1-2), 193–197 (1979).
  • McGee JP, Davis SS, O'Hagan D. The immunogenicity of a model protein entrapped in poly (lactide-co-glycolide) microparticles prepared by a novel phase separation technique. j Control. Release 31, 55–60 (1994).
  • Johansen P, Estevez F, Zurbriggen R et al. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine 19(9-10), 1047–1054 (2000).
  • Newman MJ, Balusubramanian M, Todd CW Development of adjuvant-active nonionic block co-polymers. Adv. Drug Del. Rev. 32,199–223 (1998).
  • Payne LG, Jenkins SA, Woods AL et al. Poly [di (carboxylatophenoxy) phosphazend (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine 16(1), 92–98 (1998).
  • Valenzuela P, Medina A, Rutter WJ et al. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298(5872), 347–350 (1982).
  • Schirmbeck R, Bohm W, Ando K etal. Nucleic-acid vaccination primes hepatitis-B virus surface antigen-specific cytotoxic T-lymphocytes in nonresponder mice. j Viral. 69 (10), 5 92 9–5 934 (1995).
  • Gilbert SC. Virus-like particles as vaccine adjuvants. In: !!!!!!Vaccine Acijuvantr Preparation method and researrh protocols. O'Hagan D (Ed.). Humana Press. Totowa, NJ, USA, 197–210 (2000).
  • Gilbert SC, Plebanski M, Harris SJ et al. A protein particle vaccine containing multiple malaria epitopes. Nat. Biotechnol. 15(12), 1280–1284 (1997).
  • KLavinskis LS, Beigmeier LA, Gao L et al. Mucosal or targeted lymph node immunization of macaques with a particulate SIVp27 protein elicits virus-specific CTL in the genito-rectal mucosa and draining lymph nodes. hrimund 157(6), 2521–2527 (1996).
  • Martin SJ, Vyakarnam A, Cheingsong-Popov Ral. Immunization of human HIV-seronegative volunteers with recombinant p17/p24:Ty virus-like particles elicits HIV-1 p24-specific cellular and humoral immune responses. A/DS7(10), 1315–1323 (1993).
  • Levine MM, Dougan G. Optimism over vaccines administered via mucosal surfaces. Lancet351, 1375–1376 (1998).
  • O'Hagan D. Microparticles and polymers for the mucosal delivery of vaccines. Ack Drug Deliv Rev 34(2,3), 305–320 (1998).
  • Vajdy M, O'Hagan DT Micropartides for intranasal immunization. Aclv Drug- Deliv Rev 51(1-3), 127–141 (2001).
  • Challacombe SJ, Rahman D, Jeffery H et al. Enhanced secretory IgA and systemic IgG antibody responses after oral immunization with biodegradable microparticles containing antigen. hnmunology76(1), 164–168 (1992).
  • Challacombe SJ, Rahman D, O'Hagan DT Salivary, gut, vaginal and nasal antibody responses after oral immunization with biodegradable microparticles. Vaccine 15 (2), 169–175 (1997).
  • Eldridge JH, Hammond CJ, Meulbroek JA et al. Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable miuuspheres target the Peyer's patches. I Control Re1.11, 205–214 (1990).
  • Cahill ES, O'Hagan DT Illum L et al. Immune responses and protection against Bordete//apertussis infection after intranasal immunization of mice with filamentous haemagglutinin in solution or incorporated in biodegradable microparticles. Vaccine 13(5), 455–462 (1995).
  • Jones DH, McBride BW Thornton C et al. Orally administered microencapsulated Botyletella pertuffis fimbriae protect mice from B. pettussis respiratory infection. infect. hizmun. 64(2), 489–494 (1996).
  • Shahin R, Leef M, Eldridge J al. Adjuvanticity and protective immunity elicited by Barietellapertussis antigens encapsulated in poly(DL-lactide-co-glycolide) miul_bpheres. Infect. hnmun. 63(4), 1195–1200 (1995).
  • Conway MA, Madrigal-Estebas L, McClean S et al. Protection against Botyletella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Thl and Th2 cells. Vaccine 19(15–16), 1940-1950 (2001).
  • Whittum-Hudson JA, An LL, Saltzman WIVI et al. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamyclia trachomatis infection. Nat. Merl 2(10), 1116–1121 (1996).
  • Allaoui-Attarki K, Pecquet S, Fattal E et al. Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(DL-lactide-co-glycolide) miul_bpheres. hurt [11711711t7. 65(3), 853–857 (1997).
  • Seo JY, Seong SY, Ahn BY et al. Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin a encapsulated in miul_bpheres. Infect. hnmun. 70(3), 1143–1149 (2002).
  • Kende M, Yan C, Hewetson J et al. Oral immunization of mice with ricin toxoid vaccine encapsulated in polymeric miul_bpheres against aerosol challenge. Vaccine 20(11-12), 1681–1691 (2002).
  • Marx PA, Compans RW, Gettie A et al. Protection against vaginal SW transmission with microencapsulated vaccine. Science 260(5112), 1323–1327 (1993).
  • Tseng J, Komisar JL, Trout RN et al. Humoral immunity to aerosolized staphylococcal enterotoxin B (SEB), a superantigen, in monkeys vaccinated with SEB toxoid-containing microspheres. infect. hizmun. 63(8), 2880–2885 (1995).
  • Ugozzoli M, O'Hagan DT, Ott GS. Intranasal immunization of mice with herpes simplex virus Type 2 recombinant gD2: the effect of adjuvants on mucosal and serum antibody responses. Immunology 93(4), 563–571 (1998).
  • Jones DH, Corns S, McDonald S et al. Poly (DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 15 (8), 814–817 (1997).
  • Mathiowitz E, Jacob JS, Jong YS et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386(6623), 410–414 (1997).
  • O'Hagan DT The intestinal uptake of particles and the implications for drug and antigen delivery. Anat. 189 (Pt 3), 477–482 (1996).
  • Eyles JE, Spiers ID, Williamson ED et al. Tissue distribution of radioactivity following intranasal administration of radioactive microspheres. Phan?. Pharmacol. 53(5), 601–607 (2001).
  • Michalek SM, O'Hagan DT, Gould-Fogerite S et al. Antigen delivery systems: nonliving microparticles, liposomes, cochleates and ISCOMS. In: Mucosa' Immunology Second edition. Ogra PL, Mestecky J, Lamm ME, Strober W Bienenstrock J, McGhee JR (Eds). Academic Press San Diego, CA, USA, 759–778 (1999).
  • Tacket CO, Reid RII, Boedeker EC et al. Enteral immunization and challenge of volunteers given enterotoxigenic E coil CFATII encapsulated in biodegradable microspheres. Vaccine 12 (14), 1270–1274 (1994).
  • Lambert JS, Keefer M, Mulligan MJ et al. A Phase I safety and immunogenicity trial of UBI microparticulate monovalent HIV-1 MN oral peptide immunogen with parenteral boost in HIV-1 seronegative human subjects. Vaccine 19(23–24), 3033–3042 (2001).
  • Brayden DJ. Oral vaccination in man using antigens in particles: current status. Eur. j Pharm. Sci. 14(3), 183–189 (2001).
  • Dickinson BL, Clements JD. Dissociation of Escherichia col/heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect Immun. 63(5), 1617–1623 (1995).
  • Douce G, Turcotte C, Cropley I et al. Mutants of Ercherichia cal/heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc. Nat/Acad. Acad.Li USA 92(5), 1644–1648 (1995).
  • Douce G, Fontana M, Pizza M et al. Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect. Irnmun. 65(7), 2821–2828 (1997).
  • Di Tommaso A, Saletti G, Pizza M et al. Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infect. Immun. 64(3), 974–979 (1996).
  • Giannelli V, Fontana MR, Giuliani MM et al. Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop. Infect. Immun. 65(1), 331–334 (1997).
  • Giuliani MM, Del Giudice G, Giannelli V et al. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia cal/heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. Exp. Med. 187, 1123–1132 (1998).
  • Marchetti M, Rossi M, Giannelli V et al. Protection against Hlicobacter pyloriinfection in mice by intragastric vaccination with H pylon antigens is achieved using a non-toxic mutant of E cal/heat-labile enterotoxin (LT) as adjuvant. Vaccine 16(1), 33–37 (1998).
  • Barackman JD, Ott G, Pine S et al. Oral Administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. Glitz Diagn. Lab. humunol 8(3), 652–657 (2001).
  • Douce G, Giannelli V, Pizza M et al. Genetically detoxified mutants of heat-labile toxin from Ercherichia cal/ are able to act as oral adjuvants. Infect. [117MUti. 67(9), 4400–4406 (1999).
  • Rappuoli R, Pizza M, Douce G et al. Structure and mucosal adjuvanticity of cholera and Escherichia cal/heat-labile enterotoxins. humunol Toclay20(11), 493–500 (1999).
  • Ryan EJ, McNeela E, Murphy GA et al. Mutants of Ercherichia cal/heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the nontoxic AB complex and enzyme activity on Thl and Th2 cells. Infect. humun. 67(12), 6270–6280 (1999).
  • Jakobsen H, Schulz D, Pizza M et al. Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with nontoxic mutants of Escherichia call heat-labile enterotoxins as adjuvants protects mice against invasive pneumococcal infections. Infect. Immun. 67(11), 5892–5897 (1999).
  • O'Hagan D, Goldbeck C, Ugozzoli M et al. Intranasal immunization with recombinant gD2 reduces disease severity and mortality following genital challenge with herpu, simplex virus Type 2 in guinea-pigs. Vaccine 17(18), 2229–2236 (1999).
  • Simmons CP, Mastroeni P, Fowler R et al. MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. j Immunol 163(12), 6502–6510 (1999).
  • Neidleman JA, Ott G, O'Hagan D (Eds). Mutant heat-labile enterotoxins as adjuvants for CTL induction. Humana Press, Totowa, NJ, USA (2000).
  • Singh M, Briones M, O'Hagan DT A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. j Contd. Release 70(3), 267–276 (2001).
  • Ugozzoli M, Santos G, Donnelly J et al. Potency of a genetically toxoided mucosal adjuvant derived from the heat-labile enterotoxin of E. call (LTK63) is not adversely affected by the presence of pre-existing immunity to the adjuvant. j Infect. Dir. 183 (2), 351–354 (2001).
  • Klencke B, Matijevic M, Urban RG etal. Encapsulated plasmid DNA treatmentfor human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin. Cancer Res 8(5), 1028–1037 (2002).
  • Toda S, Ishii N, Okada E et al. HIV-1-specific cell-mediated immune responses induced by DNA vaccination were enhanced by mannan-coated liposomes and inhibited by anti-interferon-y antibody. Immunology92 (1), 111–117 (1997).
  • Giannasca PJ, Boden JA, Monath TF'. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins. Infect. hnmun. 65(10), 4288–4298 (1997).
  • Chen H, Torchilin V, Langer R Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Priam. Res. 13(9), 1378–1383 (1996).
  • Foster N, Clark MA, Jepson MA et al. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in Ova Vaccine 16(5), 536–541 (1998).
  • Hussain N, Jani PU, Florence AT Enhanced oral uptake of tomato lectin-conjugated nanoparticles in the rat. Phatm. Res. 14(5), 613–618 (1997).
  • Lo D, Hilbush B, Mah S et al. Catching target receptors for drug and vaccine delivery using TOGA gene expression profiling. Ark Drug- Deliv Rev 54(9), 1213–1223 (2002).
  • Agren LC, Ekman L, Lowenadler B et al. Genetically engineered nontoxic vaccine adjuvant that combines B-cell targeting with immunomodulation by cholera toxin Al subunit. Iramunol 158 (8), 3936–3946 (1997).
  • Agren LC, Ekman L, Lowenadler B et al. Adjuvanticity of the cholera toxin Al-based gene fusion protein, CTAl-DD, is critically dependent on the ADP-ribosyltransferase and Ig-binding activity. j hnmunol. 162(4), 2432–2440 (1999).
  • Agren L, Sverremark E, Ekman L et al. The ADP-ribosylating CTAl-DD adjuvant enhances T-cell-dependent and independent responses by direct action on B-cells involving anti-apoptotic Bc1-2- and germinal center-promoting effects. I humunol 164(12), 6276–6286 (2000).
  • Goletz TJ, KlimpelKR, Arora N et al. Targeting HIV proteins to the major histocompatibility complex class I processing pathway with a novel gp120-anthrax toxin fusion protein. Proc. Natl Acad. Sci. USA 94(22), 12059–12064 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.