3,646
Views
194
CrossRef citations to date
0
Altmetric
Special Focus: Vaccine Adjuvants - Review

The use of Toll-like receptor 7/8 agonists as vaccine adjuvants

&
Pages 809-819 | Published online: 09 Jan 2014

References

  • Singh M, Ugozzoli M, Kazzaz J et al. A preliminary evaluation of alternative adjuvants to alum using a range of established and new generation vaccine antigens. Vaccine 24(10), 1680–1686 (2006).
  • Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G. MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm. Biotechnol. 6, 277–296 (1995).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 33(4), 492–503 (2010).
  • Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S et al. Combination adjuvants: the next generation of adjuvants? Expert Rev. Vaccines 10(1), 95–107 (2011).
  • Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).
  • Medzhitov R, Janeway C Jr. Innate immunity. N. Engl. J. Med. 343(5), 338–344 (2000).
  • Medzhitov R, Janeway CA Jr. An ancient system of host defense. Curr. Opin. Immunol. 10(1), 12–15 (1998).
  • Groskreutz DJ, Monick MM, Powers LS, Yarovinsky TO, Look DC, Hunninghake GW. Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J. Immunol. 176(3), 1733–1740 (2006).
  • Hewson CA, Jardine A, Edwards MR, Laza-Stanca V, Johnston SL. Toll-like receptor 3 is induced by and mediates antiviral activity against rhinovirus infection of human bronchial epithelial cells. J. Virol. 79(19), 12273–12279 (2005).
  • Matsumoto M, Funami K, Tanabe M et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171(6), 3154–3162 (2003).
  • Matsumoto M, Kikkawa S, Kohase M, Miyake K, Seya T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293(5), 1364–1369 (2002).
  • Ueta M, Hamuro J, Kiyono H, Kinoshita S. Triggering of TLR3 by polyI:C in human corneal epithelial cells to induce inflammatory cytokines. Biochem. Biophys. Res. Commun. 331(1), 285–294 (2005).
  • Poulin LF, Salio M, Griessinger E et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207(6), 1261–1271 (2010).
  • Medzhitov R, Janeway CA Jr. On the semantics of immune recognition. Res. Immunol. 147(4), 208–214 (1996).
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2(8), 675–680 (2001).
  • Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5(10), 987–995 (2004).
  • Janeway CA Jr, Medzhitov R. Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10(5), 349–350 (1998).
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6), 973–983 (1996).
  • Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med. Scand. Suppl. 276, 1–103 (1953).
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5(6), 471–484 (2006).
  • Schreibelt G, Benitez-Ribas D, Schuurhuis D et al. Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells. Blood 116(4), 564–574 (2010).
  • Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol. 9(10), 741–747 (2009).
  • Querec T, Bennouna S, Alkan S et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203(2), 413–424 (2006).
  • Diebold SS. Recognition of viral single-stranded RNA by Toll-like receptors. Adv. Drug Deliv. Rev. 60(7), 813–823 (2008).
  • Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 36(12), 3256–3267 (2006).
  • Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3(2), 196–200 (2002).
  • Jurk M, Heil F, Vollmer J et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3(6), 499 (2002).
  • Ahonen CL, Gibson SJ, Smith RM et al. Dendritic cell maturation and subsequent enhanced T-cell stimulation induced with the novel synthetic immune response modifier R-848. Cell. Immunol. 197(1), 62–72 (1999).
  • Gibson SJ, Lindh JM, Riter TR et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell. Immunol. 218(1–2), 74–86 (2002).
  • Kaisho T, Akira S. Regulation of dendritic cell function through Toll-like receptors. Curr. Mol. Med. 3(4), 373–385 (2003).
  • Miller RL, Meng TC, Tomai MA. The antiviral activity of Toll-like receptor 7 and 7/8 agonists. Drug News Perspect. 21(2), 69–87 (2008).
  • Wysocka M, Newton S, Benoit BM et al. Synthetic imidazoquinolines potently and broadly activate the cellular immune response of patients with cutaneous T-cell lymphoma: synergy with interferon-γ enhances production of interleukin-12. Clin. Lymphoma Myeloma 7(8), 524–534 (2007).
  • Burns RP Jr, Ferbel B, Tomai M, Miller R, Gaspari AA. The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans’ cells. Clin. Immunol. 94(1), 13–23 (2000).
  • Fogel M, Long JA, Thompson PJ, Upham JW. Dendritic cell maturation and IL-12 synthesis induced by the synthetic immune-response modifier S-28463. J. Leukoc. Biol. 72(5), 932–938 (2002).
  • Loré K, Betts MR, Brenchley JM et al. Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses. J. Immunol. 171(8), 4320–4328 (2003).
  • Ramakrishna V, Vasilakos JP, Tario JD Jr, Berger MA, Wallace PK, Keler T. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells. J. Transl. Med. 5, 5 (2007).
  • Wagner TL, Ahonen CL, Couture AM et al. Modulation of Th1 and Th2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cell. Immunol. 191(1), 10–19 (1999).
  • Ahmad G, Zhang W, Torben W, Noor Z, Siddiqui AA. Protective effects of Sm-p80 in the presence of resiquimod as an adjuvant against challenge infection with Schistosoma mansoni in mice. Int. J. Infect. Dis. 14(9), e781–e787 (2010).
  • Du J, Wu Z, Ren S et al. TLR8 agonists stimulate newly recruited monocyte-derived cells into potent APCs that enhance HBsAg immunogenicity. Vaccine 28(38), 6273–6281 (2010).
  • Durand V, Wong SY, Tough DF, Le Bon A. Shaping of adaptive immune responses to soluble proteins by TLR agonists: a role for IFN-α/β. Immunol. Cell Biol. 82(6), 596–602 (2004).
  • Ma R, Du JL, Huang J, Wu CY. Additive effects of CpG ODN and R-848 as adjuvants on augmenting immune responses to HBsAg vaccination. Biochem. Biophys. Res. Commun. 361(2), 537–542 (2007).
  • Otero M, Calarota SA, Felber B et al. Resiquimod is a modest adjuvant for HIV-1 gag-based genetic immunization in a mouse model. Vaccine 22(13–14), 1782–1790 (2004).
  • Thomsen LL, Topley P, Daly MG, Brett SJ, Tite JP. Imiquimod and resiquimod in a mouse model: adjuvants for DNA vaccination by particle-mediated immunotherapeutic delivery. Vaccine 22(13–14), 1799–1809 (2004).
  • Tomai MA, Imbertson LM, Stanczak TL, Tygrett LT, Waldschmidt TJ. The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes. Cell. Immunol. 203(1), 55–65 (2000).
  • Vasilakos JP, Smith RM, Gibson SJ et al. Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell. Immunol. 204(1), 64–74 (2000).
  • Velasquez LS, Hjelm BE, Arntzen CJ, Herbst-Kralovetz MM. An intranasally delivered Toll-like receptor 7 agonist elicits robust systemic and mucosal responses to Norwalk virus-like particles. Clin. Vaccine Immunol. 17(12), 1850–1858 (2010).
  • Wille-Reece U, Flynn BJ, Loré K et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl Acad. Sci. USA 102(42), 15190–15194 (2005).
  • Zhang WW, Matlashewski G. Immunization with a Toll-like receptor 7 and/or 8 agonist vaccine adjuvant increases protective immunity against Leishmania major in BALB/c mice. Infect. Immun. 76(8), 3777–3783 (2008).
  • Chang BA, Cross JL, Najar HM, Dutz JP. Topical resiquimod promotes priming of CTL to parenteral antigens. Vaccine 27(42), 5791–5799 (2009).
  • Baldwin SL, Bertholet S, Kahn M et al. Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine 27(23), 3063–3071 (2009).
  • Weldon WC, Zarnitsyn VG, Esser ES et al. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS ONE 7(7), e41501 (2012).
  • Adams S, Kozhaya L, Martiniuk F et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin. Cancer Res. 18(24), 6748–6757 (2012).
  • Narayan R, Nguyen H, Bentow JJ et al. Immunomodulation by imiquimod in patients with high-risk primary melanoma. J. Invest. Dermatol. 132(1), 163–169 (2012).
  • Adams S, O’Neill DW, Nonaka D et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol. 181(1), 776–784 (2008).
  • Ahonen CL, Doxsee CL, McGurran SM et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med. 199(6), 775–784 (2004).
  • Caproni E, Tritto E, Cortese M et al. MF59 and Pam3CSK4 boost adaptive responses to influenza subunit vaccine through an IFN type I-independent mechanism of action. J. Immunol. 188(7), 3088–3098 (2012).
  • Cheng C, Jain P, Bettahi I, Pal S, Tifrea D, de la Maza LM. A TLR2 agonist is a more effective adjuvant for a Chlamydia major outer membrane protein vaccine than ligands to other TLR and NOD receptors. Vaccine 29(38), 6641–6649 (2011).
  • Lumsden JM, Nurmukhambetova S, Klein JH et al. Evaluation of immune responses to a Plasmodium vivax CSP-based recombinant protein vaccine candidate in combination with second-generation adjuvants in mice. Vaccine 30(22), 3311–3319 (2012).
  • Oh JZ, Kedl RM. The capacity to induce cross-presentation dictates the success of a TLR7 agonist-conjugate vaccine for eliciting cellular immunity. J. Immunol. 185(8), 4602–4608 (2010).
  • Rajagopal D, Paturel C, Morel Y, Uematsu S, Akira S, Diebold SS. Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood 115(10), 1949–1957 (2010).
  • Weeratna RD, Makinen SR, McCluskie MJ, Davis HL. TLR agonists as vaccine adjuvants: comparison of CpG ODN and resiquimod (R-848). Vaccine 23(45), 5263–5270 (2005).
  • Wille-Reece U, Wu CY, Flynn BJ, Kedl RM, Seder RA. Immunization with HIV-1 Gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 Gag-specific Th1 and CD8+ T cell responses. J. Immunol. 174(12), 7676–7683 (2005).
  • Zhao K, Wang H, Wu C. The immune responses of HLA-A*0201 restricted SARS-CoV S peptide-specific CD8+ T cells are augmented in varying degrees by CpG ODN, PolyI:C and R848. Vaccine 29(38), 6670–6678 (2011).
  • Soria I, Myhre P, Horton V et al. Effect of food on the pharmacokinetics and bioavailability of oral imiquimod relative to a subcutaneous dose. Int. J. Clin. Pharmacol. Ther. 38(10), 476–481 (2000).
  • Ketloy C, Engering A, Srichairatanakul U et al. Expression and function of Toll-like receptors on dendritic cells and other antigen presenting cells from non-human primates. Vet. Immunol. Immunopathol. 125(1–2), 18–30 (2008).
  • Watanabe J, Miyazaki Y, Zimmerman GA, Albertine KH, McIntyre TM. Endotoxin contamination of ovalbumin suppresses murine immunologic responses and development of airway hyper-reactivity. J. Biol. Chem. 278(43), 42361–42368 (2003).
  • Kastenmüller K, Wille-Reece U, Lindsay RW et al. Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. J. Clin. Invest. 121(5), 1782–1796 (2011).
  • Tomai MA, Vasilakos JP. TLR7/8 agonists. In: Novel Immunologic Adjuvants. Rappuoli R, De Gregorio E (Eds). Future Medicine Ltd, London, UK, 81–92 (2011).
  • Shukla NM, Lewis TC, Day TP et al. Toward self-adjuvanting subunit vaccines: model peptide and protein antigens incorporating covalently bound Toll-like receptor-7 agonistic imidazoquinolines. Bioorg. Med. Chem. Lett. 21(11), 3232–3236 (2011).
  • Kasturi SP, Skountzou I, Albrecht RA et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470(7335), 543–547 (2011).
  • Lehner M, Stilper A, Morhart P, Holter W. Plasticity of dendritic cell function in response to prostaglandin E2 (PGE2) and interferon-gamma (IFN-γ). J. Leukoc. Biol. 83(4), 883–893 (2008).
  • Mäkelä SM, Osterlund P, Julkunen I. TLR ligands induce synergistic interferon-β and interferon-λ1 gene expression in human monocyte-derived dendritic cells. Mol. Immunol. 48(4), 505–515 (2011).
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6(8), 769–776 (2005).
  • Pufnock JS, Cigal M, Rolczynski LS et al. Priming CD8+ T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8+ T cells retaining CD28. Blood 117(24), 6542–6551 (2011).
  • Sanchez PJ, McWilliams JA, Haluszczak C, Yagita H, Kedl RM. Combined TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell expression of CD70 in vivo. J. Immunol. 178(3), 1564–1572 (2007).
  • Xu S, Koldovsky U, Xu M et al. High-avidity antitumor T-cell generation by Toll receptor 8-primed, myeloid- derived dendritic cells is mediated by IL-12 production. Surgery 140(2), 170–178 (2006).
  • Morse MA, Chapman R, Powderly J et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin. Cancer Res. 17(14), 4844–4853 (2011).
  • Shukla NM, Salunke DB, Balakrishna R, Mutz CA, Malladi SS, David SA. Potent adjuvanticity of a pure TLR7-agonistic imidazoquinoline dendrimer. PLoS ONE 7(8), e43612 (2012).
  • Smirnov D, Schmidt JJ, Capecchi JT, Wightman PD. Vaccine adjuvant activity of 3M-052: an imidazoquinoline designed for local activity without systemic cytokine induction. Vaccine 29(33), 5434–5442 (2011).
  • Tomai MA, Vasilakos JP. TLR-7 and -8 agonists as vaccine adjuvants. Expert Rev. Vaccines 10(4), 405–407 (2011).
  • Tomai MA, Vasilakos JP. TLR agonists as vaccine adjuvants. In: Innovation in Vaccinology: From Design, Through to Delivery and Testing. Baschieri S (Ed.). Springer Heidelberg, Germany, 205–228 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.