296
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Exploitation of physiology and metabolomics to identify pneumococcal vaccine candidates

&
Pages 1061-1075 | Published online: 09 Jan 2014

References

  • Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4(3), 144–154 (2004).
  • Pletz MW, Maus U, Krug N, Welte T, Lode H. Pneumococcal vaccines: mechanism of action, impact on epidemiology and adaption of the species. Int. J. Antimicrob. Agents 32(3), 199–206 (2008).
  • WHO. The Global Burden of Disease: 2004 Update. World Health Organization, Geneva, Switzerland (2008).
  • Atkinson W, Hamborsky J, McIntyre L, Wolfe S. Pneumococcal disease. In: Epidemiology and Prevention of Vaccine-Preventable Diseases (11th Edition). Centers for Disease Control and Prevention. Public Health Foundation, Washington DC, 217–229 (2009).
  • Gamez G, Hammerschmidt S. Combat pneumococcal infections: adhesins as candidates for protein-based vaccine development. Curr. Drug Targets 13(3), 323–337 (2012).
  • Bosch AA, Biesbroek G, Trzcinski K, Sanders EA, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 9(1), e1003057 (2013).
  • Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin. Microbiol. Rev. 24(1), 210–229 (2011).
  • Rubenfeld GD, Caldwell E, Peabody E et al. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353(16), 1685–1693 (2005).
  • Balakrishnan I, Crook P, Morris R, Gillespie SH. Early predictors of mortality in pneumococcal bacteraemia. J. Infect. 40(3), 256–261 (2000).
  • Lim WS, Macfarlane JT, Boswell TC et al. Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 56(4), 296–301 (2001).
  • Kupronis BA, Richards CL, Whitney CG. Invasive pneumococcal disease in older adults residing in long-term care facilities and in the community. J. Am. Geriatr. Soc. 51(11), 1520–1525 (2003).
  • van de Beek D, Drake JM, Tunkel AR. Nosocomial bacterial meningitis. N. Engl. J. Med. 362(2), 146–154 (2010).
  • Koedel U, Klein M, Pfister HW. New understandings on the pathophysiology of bacterial meningitis. Curr. Opin. Infect. Dis. 23(3), 217–223 (2010).
  • Brugger SD, Hathaway LJ, Muhlemann K. Detection of Streptococcus pneumoniae strain cocolonization in the nasopharynx. J. Clin. Microbiol. 47(6), 1750–1756 (2009).
  • Gillespie SH. Aspects of pneumococcal infection including bacterial virulence, host response and vaccination. J. Med. Microbiol. 28(4), 237–248 (1989).
  • Hare KM, Morris P, Smith-Vaughan H, Leach AJ. Random colony selection versus colony morphology for detection of multiple pneumococcal serotypes in nasopharyngeal swabs. Pediatr. Infect. Dis. J. 27(2), 178–180 (2008).
  • Jacobs MR, Koornhof HJ, Robins-Browne RM et al. Emergence of multiply resistant pneumococci. N. Engl. J. Med. 299(14), 735–740 (1978).
  • Klugman KP. Pneumococcal resistance to antibiotics. Clin. Microbiol. Rev. 3(2), 171–196 (1990).
  • Linares J, Ardanuy C, Pallares R, Fenoll A. Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period. Clin. Microbiol. Infect. 16(5), 402–410 (2010).
  • Goossens H, Ferech M, Coenen S, Stephens P. Comparison of outpatient systemic antibacterial use in 2004 in the United States and 27 European countries. Clin. Infect. Dis. 44(8), 1091–1095 (2007).
  • Ardanuy C, Tubau F, Pallares R et al. Epidemiology of invasive pneumococcal disease among adult patients in barcelona before and after pediatric 7-valent pneumococcal conjugate vaccine introduction, 1997–2007. Clin. Infect. Dis. 48(1), 57–64 (2009).
  • Felmingham D, White AR, Jacobs MR et al. The Alexander Project: the benefits from a decade of surveillance. J. Antimicrob. Chemother. 56( Suppl. 2), ii3–ii21 (2005).
  • Kyaw MH, Lynfield R, Schaffner W et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N. Engl. J. Med. 354(14), 1455–1463 (2006).
  • Rennels MB, Edwards KM, Keyserling HL et al. Safety and immunogenicity of heptavalent pneumococcal vaccine conjugated to CRM197 in United States infants. Pediatrics 101(4 Pt 1), 604–611 (1998).
  • Lynch JP, 3rd, Zhanel GG. Streptococcus pneumoniae: epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr. Opin. Pulm. Med. 16(3), 217–225 (2010).
  • Vesikari T, Wysocki J, Chevallier B et al. Immunogenicity of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the licensed 7vCRM vaccine. Pediatr. Infect. Dis. J. 28(4 Suppl.), S66–76 (2009).
  • CDC. Invasive pneumococcal disease in young children before licensure of 13-valent pneumococcal conjugate vaccine - United States, 2007. MMWR Morb. Mortal. Wkly Rep. 59(9), 253–257 (2010).
  • Kieninger DM, Kueper K, Steul K et al. Safety, tolerability, and immunologic noninferiority of a 13-valent pneumococcal conjugate vaccine compared to a 7-valent pneumococcal conjugate vaccine given with routine pediatric vaccinations in Germany. Vaccine 28(25), 4192–4203 (2010).
  • Ghaffar F, Friedland IR, McCracken GHJr. Dynamics of nasopharyngeal colonization by Streptococcus pneumoniae. Pediatr. Infect. Dis. J. 18(7), 638–646 (1999).
  • Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6(4), 288–301 (2008).
  • Voss S, Gamez G, Hammerschmidt S. Impact of pneumococcal microbial surface components recognizing adhesive matrix molecules on colonization. Mol. Oral. Microbiol. 27(4), 246–256 (2012).
  • Hoskins J, Alborn WEJr, Arnold J et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183(19), 5709–5717 (2001).
  • Tettelin H, Nelson KE, Paulsen IT et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293(5529), 498–506 (2001).
  • Hava DL, Camilli A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45(5), 1389–1406 (2002).
  • Hava DL, LeMieux J, Camilli A. From nose to lung: the regulation behind Streptococcus pneumoniae virulence factors. Mol. Microbiol. 50(4), 1103–1110 (2003).
  • Lau GW, Haataja S, Lonetto M et al. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40(3), 555–571 (2001).
  • Marra A, Asundi J, Bartilson M et al. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect. Immun. 70(3), 1422–1433 (2002).
  • Obert C, Sublett J, Kaushal D et al. Identification of a Candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect. Immun. 74(8), 4766–4777 (2006).
  • Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen EI. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 190(9), 1661–1669 (2004).
  • Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, Tuomanen EI. Microarray analysis of pneumococcal gene expression during invasive disease. Infect. Immun. 72(10), 5582–5596 (2004).
  • Polissi A, Pontiggia A, Feger G et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66(12), 5620–5629 (1998).
  • Jefferies JM, Clarke SC, Webb JS, Kraaijeveld AR. Risk of red queen dynamics in pneumococcal vaccine strategy. Trends Microbiol. 19(8), 377–381 (2011).
  • Kennedy RB, Poland GA. The top five ‘game changers’ in vaccinology: toward rational and directed vaccine development. OMICS 15(9), 533–537 (2011).
  • Schmidt F, Volker U. Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics 11(15), 3203–3211 (2011).
  • Watson JD, Cook-Deegan RM. Origins of the human genome project. FASEB J. 5(1), 8–11 (1991).
  • Fleischmann RD, Adams MD, White O et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223), 496–512 (1995).
  • Guell M, Yus E, Lluch-Senar M, Serrano L. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat. Rev. Microbiol. 9(9), 658–669 (2011).
  • Seib KL, Dougan G, Rappuoli R. The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet. 5(10), e1000612 (2009).
  • Sanchez CJ, Kumar N, Lizcano A et al. Streptococcus pneumoniae in biofilms are unable to cause invasive disease due to altered virulence determinant production. PLoS ONE 6(12), e28738 (2011).
  • Ogunniyi AD, Mahdi LK, Trappetti C et al. Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo transcriptomic analysis. Infect. Immun. 80(9), 3268–3278 (2012).
  • Garmory HS, Titball RW. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72(12), 6757–6763 (2004).
  • Brown JS, Holden DW. Iron acquisition by Gram-positive bacterial pathogens. Microbes. Infect. 4(11), 1149–1156 (2002).
  • Tai SS, Wang TR, Lee CJ. Characterization of hemin binding activity of Streptococcus pneumoniae. Infect. Immun. 65(3), 1083–1087 (1997).
  • Brown JS, Gilliland SM, Ruiz-Albert J, Holden DW. Characterization of pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70(8), 4389–4398 (2002).
  • Brown JS, Gilliland SM, Holden DW. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40(3), 572–585 (2001).
  • Jomaa M, Yuste J, Paton JC, Jones C, Dougan G, Brown JS. Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect. Immun. 73(10), 6852–6859 (2005).
  • Brown JS, Ogunniyi AD, Woodrow MC, Holden DW, Paton JC. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect. Immun. 69(11), 6702–6706 (2001).
  • Whalan RH, Funnell SG, Bowler LD, Hudson MJ, Robinson A, Dowson CG. Distribution and genetic diversity of the ABC transporter lipoproteins PiuA and PiaA within Streptococcus pneumoniae and related streptococci. J. Bacteriol. 188(3), 1031–1038 (2006).
  • Ong CL, Potter AJ, Trappetti C et al. Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR. Infect. Immun. 81(2), 421–429 (2013).
  • Jacobsen FE, Kazmierczak KM, Lisher JP, Winkler ME, Giedroc DP. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Metallomics 3(1), 38–41 (2011).
  • McAllister LJ, Tseng HJ, Ogunniyi AD, Jennings MP, McEwan AG, Paton JC. Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol. Microbiol. 53(3), 889–901 (2004).
  • Bergmann S, Hammerschmidt S. Versatility of pneumococcal surface proteins. Microbiology 152( Pt 2), 295–303 (2006).
  • Anderton JM, Rajam G, Romero-Steiner S et al. E-cadherin is a receptor for the common protein pneumococcal surface adhesin A (PsaA) of Streptococcus pneumoniae. Microb. Pathog. 42(5–6), 225–236 (2007).
  • Rajam G, Anderton JM, Carlone GM, Sampson JS, Ades EW. Pneumococcal surface adhesin A (PsaA): a review. Crit. Rev. Microbiol. 34(3–4), 163–173 (2008).
  • Briles DE, Ades E, Paton JC et al. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun. 68(2), 796–800 (2000).
  • Gor DO, Ding X, Li Q, Schreiber JR, Dubinsky M, Greenspan NS. Enhanced immunogenicity of pneumococcal surface adhesin A by genetic fusion to cytokines and evaluation of protective immunity in mice. Infect. Immun. 70(10), 5589–5595 (2002).
  • Pelton SI, Klein JO. The promise of immunoprophylaxis for prevention of acute otitis media. Pediatr. Infect. Dis. J. 18(10), 926–935 (1999).
  • Pimenta FC, Miyaji EN, Areas AP et al. Intranasal immunization with the cholera toxin B subunit-pneumococcal surface antigen A fusion protein induces protection against colonization with Streptococcus pneumoniae and has negligible impact on the nasopharyngeal and oral microbiota of mice. Infect. Immun. 74(8), 4939–4944 (2006).
  • Seo JY, Seong SY, Ahn BY, Kwon IC, Chung H, Jeong SY. Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin a encapsulated in microspheres. Infect. Immun. 70(3), 1143–1149 (2002).
  • Johnston JW, Briles DE, Myers LE, Hollingshead SK. Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect. Immun. 74(2), 1171–1180 (2006).
  • Kloosterman TG, Witwicki RM, van der Kooi-Pol MM, Bijlsma JJ, Kuipers OP. Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J. Bacteriol. 190(15), 5382–5393 (2008).
  • McDevitt CA, Ogunniyi AD, Valkov E et al. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog. 7(11), e1002357 (2011).
  • Bayle L, Chimalapati S, Schoehn G, Brown J, Vernet T, Durmort C. Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAII and is essential for normal bacterial morphology and virulence. Mol. Microbiol. 82(4), 904–916 (2011).
  • Bidossi A, Mulas L, Decorosi F et al. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS ONE 7(3), e33320 (2012).
  • Buckwalter CM, King SJ. Pneumococcal carbohydrate transport: food for thought. Trends Microbiol. 20(11), 517–522 (2012).
  • Giefing C, Meinke AL, Hanner M et al. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J. Exp. Med. 205(1), 117–131 (2008).
  • Moffitt KL, Gierahn TM, Lu YJ et al. T(H)17-based vaccine design for prevention of Streptococcus pneumoniae colonization. Cell Host. Microbe. 9(2), 158–165 (2011).
  • Donati C, Hiller NL, Tettelin H et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 11(10), R107 (2010).
  • Hartel T, Klein M, Koedel U, Rohde M, Petruschka L, Hammerschmidt S. Impact of glutamine transporters on pneumococcal fitness under infection-related conditions. Infect. Immun. 79(1), 44–58 (2011).
  • Kloosterman TG, Hendriksen WT, Bijlsma JJ et al. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. J. Biol. Chem. 281(35), 25097–25109 (2006).
  • Hendriksen WT, Kloosterman TG, Bootsma HJ et al. Site-specific contributions of glutamine-dependent regulator GlnR and GlnR-regulated genes to virulence of Streptococcus pneumoniae. Infect. Immun. 76(3), 1230–1238 (2008).
  • Rappuoli R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19(17–19), 2688–2691 (2001).
  • Barocchi MA, Censini S, Rappuoli R. Vaccines in the era of genomics: the pneumococcal challenge. Vaccine 25(16), 2963–2973 (2007).
  • Wizemann TM, Heinrichs JH, Adamou JE et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun. 69(3), 1593–1598 (2001).
  • Meinke AL, Senn BM, Visram Z et al. Immunological fingerprinting of group B streptococci: from circulating human antibodies to protective antigens. Vaccine 28(43), 6997–7008 (2010).
  • Beilharz K, Novakova L, Fadda D, Branny P, Massidda O, Veening JW. Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc. Natl Acad. Sci. USA 109(15), E905–913 (2012).
  • Schmid P, Selak S, Keller M et al. Th17/Th1 biased immunity to the pneumococcal proteins PcsB, StkP and PsaA in adults of different age. Vaccine 29(23), 3982–3989 (2011).
  • Barendt SM, Land AD, Sham LT et al. Influences of capsule on cell shape and chain formation of wild-type and pcsB mutants of serotype 2 Streptococcus pneumoniae. J. Bacteriol. 191(9), 3024–3040 (2009).
  • Ng WL, Robertson GT, Kazmierczak KM, Zhao J, Gilmour R, Winkler ME. Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol. Microbiol. 50(5), 1647–1663 (2003).
  • Reinscheid DJ, Ehlert K, Chhatwal GS, Eikmanns BJ. Functional analysis of a PcsB-deficient mutant of group B streptococcus. FEMS Microbiol. Lett. 221(1), 73–79 (2003).
  • Novakova L, Saskova L, Pallova P et al. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J. 272(5), 1243–1254 (2005).
  • Pallova P, Hercik K, Saskova L, Novakova L, Branny P. A eukaryotic-type serine/threonine protein kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo. Biochem. Biophys. Res. Commun. 355(2), 526–530 (2007).
  • Saskova L, Novakova L, Basler M, Branny P. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J. Bacteriol. 189(11), 4168–4179 (2007).
  • Giefing C, Jelencsics KE, Gelbmann D, Senn BM, Nagy E. The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro. Microbiology 156( Pt 6), 1697–1707 (2010).
  • Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32(2), 149–167 (2008).
  • Sham LT, Tsui HC, Land AD, Barendt SM, Winkler ME. Recent advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and antimicrobial targets. Curr. Opin. Microbiol. 15(2), 194–203 (2012).
  • Vollmer W, Seligman SJ. Architecture of peptidoglycan: more data and more models. Trends Microbiol. 18(2), 59–66 (2010).
  • Davis KM, Weiser JN. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect. Immun. 79(2), 562–570 (2011).
  • Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol. Rev. 32(2), 361–385 (2008).
  • Moffitt KL, Malley R. Next generation pneumococcal vaccines. Curr. Opin. Immunol. 23(3), 407–413 (2011).
  • Tai SS. Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies. Crit. Rev. Microbiol. 32(3), 139–153 (2006).
  • Ramos-Sevillano E, Moscoso M, Garcia P, Garcia E, Yuste J. Nasopharyngeal colonization and invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae. PLoS ONE 6(8), e23626 (2011).
  • Vicik R, Busemann M, Baumann K, Schirmeister T. Inhibitors of cysteine proteases. Curr. Top. Med. Chem. 6(4), 331–353 (2006).
  • Rossi P, Aramini JM, Xiao R et al. Structural elucidation of the Cys-His-Glu-Asn proteolytic relay in the secreted CHAP domain enzyme from the human pathogen Staphylococcus saprophyticus. Proteins 74(2), 515–519 (2009).
  • Ling E, Feldman G, Portnoi M et al. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin. Exp. Immunol. 138(2), 290–298 (2004).
  • Henderson B, Martin A. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun. 79(9), 3476–3491 (2011).
  • Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40(6), 1273–1287 (2001).
  • Bergmann S, Rohde M, Hammerschmidt S. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect. Immun. 72(4), 2416–2419 (2004).
  • Blau K, Portnoi M, Shagan M et al. Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae. J. Infect. Dis. 195(12), 1828–1837 (2007).
  • Daniely D, Portnoi M, Shagan M et al. Pneumococcal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice. Clin. Exp. Immunol. 144(2), 254–263 (2006).
  • Pancholi V, Fischetti VA. alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J. Biol. Chem. 273(23), 14503–14515 (1998).
  • Attali C, Durmort C, Vernet T, Di Guilmi AM. The interaction of Streptococcus pneumoniae with plasmin mediates transmigration across endothelial and epithelial monolayers by intercellular junction cleavage. Infect. Immun. 76(11), 5350–5356 (2008).
  • Dale RC, Candler PM, Church AJ, Wait R, Pocock JM, Giovannoni G. Neuronal surface glycolytic enzymes are autoantigen targets in post-streptococcal autoimmune CNS disease. J. Neuroimmunol. 172(1–2), 187–197 (2006).
  • Morsczeck C, Prokhorova T, Sigh J et al. Streptococcus pneumoniae: proteomics of surface proteins for vaccine development. Clin. Microbiol. Infect. 14(1), 74–81 (2008).
  • Fontana JM, Alexander E, Salvatore M. Translational research in infectious disease: current paradigms and challenges ahead. Transl. Res. 159(6), 430–453 (2012).
  • Boekhorst J, van Breukelen B, Heck AJr, Snel B. Comparative phosphoproteomics reveals evolutionary and functional conservation of phosphorylation across eukaryotes. Genome Biol. 9(10), R144 (2008).
  • Jers C, Soufi B, Grangeasse C, Deutscher J, Mijakovic I. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev. Proteomics 5(4), 619–627 (2008).
  • Soufi B, Gnad F, Jensen PR et al. The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8(17), 3486–3493 (2008).
  • Schmidl SR, Gronau K, Pietack N, Hecker M, Becher D, Stulke J. The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases. Mol. Cell. Proteomics 9(6), 1228–1242 (2010).
  • Sun X, Ge F, Xiao CL et al. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J. Proteome. Res. 9(1), 275–282 (2010).
  • Tang J. Microbial metabolomics. Curr. Genomics 12(6), 391–403 (2011).
  • Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 24(5), 613–646 (2005).
  • Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62 (2006).
  • Eisenreich W, Dandekar T, Heesemann J, Goebel W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat. Rev. Microbiol. 8(6), 401–412 (2010).
  • Hartel T, Eylert E, Schulz C et al. Characterization of central carbon metabolism of Streptococcus pneumoniae by isotopologue profiling. J. Biol. Chem., 287(6), 4260–4274 (2012).
  • Pavlovsky AG, Liu X, Faehnle CR, Potente N, Viola RE. Structural characterization of inhibitors with selectivity against members of a homologous enzyme family. Chem. Biol. Drug Des. 79(1), 128–136 (2012).
  • Burghout P, Cron LE, Gradstedt H et al. Carbonic anhydrase is essential for Streptococcus pneumoniae growth in environmental ambient air. J. Bacteriol. 192(15), 4054–4062 (2010).
  • Burghout P, Vullo D, Scozzafava A, Hermans PW, Supuran CT. Inhibition of the beta-carbonic anhydrase from Streptococcus pneumoniae by inorganic anions and small molecules: toward innovative drug design of antiinfectives? Bioorg. Med. Chem. 19(1), 243–248 (2011).
  • King SJ, Hippe KR, Gould JM et al. Phase variable desialylation of host proteins that bind to Streptococcus pneumoniae in vivo and protect the airway. Mol. Microbiol. 54(1), 159–171 (2004).
  • Pettigrew MM, Fennie KP, York MP, Daniels J, Ghaffar F. Variation in the presence of neuraminidase genes among Streptococcus pneumoniae isolates with identical sequence types. Infect. Immun. 74(6), 3360–3365 (2006).
  • Brittan JL, Buckeridge TJ, Finn A, Kadioglu A, Jenkinson HF. Pneumococcal neuraminidase A: an essential upper airway colonization factor for Streptococcus pneumoniae. Mol. Oral. Microbiol. 27(4), 270–283 (2012).
  • Long JP, Tong HH, DeMaria TF. Immunization with native or recombinant Streptococcus pneumoniae neuraminidase affords protection in the chinchilla otitis media model. Infect. Immun. 72(7), 4309–4313 (2004).
  • Xu G, Li X, Andrew PW, Taylor GL. Structure of the catalytic domain of Streptococcus pneumoniae sialidase NanA. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 64( Pt 9), 772–775 (2008).
  • Brear P, Telford J, Taylor GL, Westwood NJ. Synthesis and structural characterisation of selective non-carbohydrate-based inhibitors of bacterial sialidases. Chembiochem. 13(16), 2374–2383 (2012).
  • Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect. Immun. 75(1), 350–357 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.