201
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Vaccination and the TAP-independent antigen processing pathways

, , , &
Pages 1077-1083 | Published online: 09 Jan 2014

References

  • Barquet N, Domingo P. Smallpox: the triumph over the most terrible of the ministers of death. Ann. Intern. Med. 127(8 Pt 1), 635–642 (1997).
  • Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi I. Smallpox and Its Eradication. (W.H.O., Geneva) (2004).
  • Qin L, Upton C, Hazes B, Evans DH. Genomic analysis of the vaccinia virus strain variants found in Dryvax vaccine. J. Virol. 85(24), 13049–13060 (2011).
  • World Health Organization. Global Commission for the Certification of Smallpox Eradication. The Global Eradication of Smallpox: Final Report of the Global Commission for the Certification of Smallpox Eradication (1980).
  • Moss B. Poxviridae: The viruses and their replication. In: Knipe DM, Howley PM ( Eds). Lippincott Williams & Wilkins, Philadelphia, PA., 2849–2883 (2001).
  • Huygelen C. Jenner’s cowpox vaccine in light of current vaccinology. Verh. K. Acad. Geneeskd. Belg. 58(5), 479–536 (1996).
  • Baxby D. The origins of vaccinia virus. J. Infect. Dis. 136(3), 453–455 (1977).
  • Carroll DS, Emerson GL, Li Y et al. Chasing Jenner’s vaccine: revisiting cowpox virus classification. PLoS ONE 6(8), e23086 (2011).
  • Shchelkunov SN, Safronov PF, Totmenin AV et al. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243(2), 432–460 (1998).
  • Freed ER, Duma RJ, Escobar MR. Vaccinia necrosum and its relationship to impaired immunologic responsiveness. Am. J. Med. 52(3), 411–420 (1972).
  • Redfield RR, Wright DC, James WD, Jones TS, Brown C, Burke DS. Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease. N. Engl. J. Med. 316(11), 673–676 (1987).
  • Alzhanova D, Fruh K. Modulation of the host immune response by cowpox virus. Microbes. Infect. 12(12–13), 900–909 (2010).
  • Bahar MW, Graham SC, Chen RA et al. How vaccinia virus has evolved to subvert the host immune response. J. Struct. Biol. 175(2), 127–134 (2011).
  • Byun M, Verweij MC, Pickup DJ, Wiertz EJ, Hansen TH, Yokoyama WM. Two mechanistically distinct immune evasion proteins of cowpox virus combine to avoid antiviral CD8 T cells. Cell Host. Microbe. 6(5), 422–432 (2009).
  • Rehm KE, Connor RF, Jones GJ, Yimbu K, Mannie MD, Roper RL. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II. Immunology 128(3), 381–392 (2009).
  • Alzhanova D, Edwards DM, Hammarlund E et al. Cowpox virus inhibits the transporter associated with antigen processing to evade T cell recognition. Cell Host. Microbe 6(5), 433–445 (2009).
  • York IA, Goldberg AL, Mo XY, Rock KL. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol. Rev. 172, 49–66 (1999).
  • Cerundolo V, de la Salle H. Description of HLA class I- and CD8-deficient patients: Insights into the function of cytotoxic T lymphocytes and NK cells in host defense. Semin. Immunol. 18(6), 330–336 (2006).
  • van Kaer L, Ashton Rickardt PG, Ploegh HL, Tonegawa S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 71, 1205–1214 (1992).
  • Donato L, de la Salle H, Hanau D et al. Association of HLA class I antigen deficiency related to a TAP2 gene mutation with familial bronchiectasis. J. Pediatr. 127(6), 895–900 (1995).
  • Kennedy RB, Ovsyannikova IG, Jacobson RM, Poland GA. The immunology of smallpox vaccines. Curr. Opin. Immunol. 21(3), 314–320 (2009).
  • Kennedy R, Poland GA. T-Cell epitope discovery for variola and vaccinia viruses. Rev. Med. Virol. 17(2), 93–113 (2007).
  • Lorente E, Infantes S, Barnea E et al. Multiple viral ligands naturally presented by different class I molecules in transporter antigen processing-deficient vaccinia virus-infected cells. J. Virol. 86(1), 527–541 (2012).
  • Anderson KS, Alexander J, Wei M, Cresswell P. Intracellular transport of class I MHC molecules in antigen processing mutant cell lines. J. Immunol. 151, 3407–3419 (1993).
  • Larsen MV, Nielsen M, Weinzierl A, Lund O. TAP-Independent MHC Class I Presentation. Curr. Immunol. Rev. 2(3), 233–245 (2006).
  • Weinzierl AO, Rudolf D, Hillen N et al. Features of TAP-independent MHC class I ligands revealed by quantitative mass spectrometry. Eur. J. Immunol. 38(6), 1503–1510 (2008).
  • Lorente E, Infantes S, Abia D et al. A viral, transporter associated with antigen processing (TAP)-independent, high affinity ligand with alternative interactions endogenously presented by the nonclassical human leukocyte antigen E class I molecule. J. Biol. Chem. 287, 34895–34903 (2012).
  • Lorente E, Garcia R, Mir C et al. Role of metalloproteases in vaccinia virus epitope processing for transporter associated with antigen processing (TAP)-independent human leukocyte antigen (HLA)-B7 class I antigen presentation. J. Biol. Chem. 287(13), 9990–10000 (2012).
  • Pasquetto V, Bui HH, Giannino R et al. HLA-A*0201, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J. Immunol. 175(8), 5504–5515 (2005).
  • Oseroff C, Kos F, Bui HH et al. HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc. Natl Acad. Sci. USA 102(39), 13980–13985 (2005).
  • Meyer VS, Kastenmuller W, Gasteiger G et al. Long-term immunity against actual poxviral HLA ligands as identified by differential stable isotope labeling. J. Immunol. 181(9), 6371–6383 (2008).
  • Del Val M, López D. Multiple proteases process viral antigens for presentation by MHC class I molecules to CD8+ T lymphocytes. Mol. Immunol. 39(3–4), 235–247 (2002).
  • Johnstone C, Del Val M. Traffic of proteins and peptides across membranes for immunosurveillance by CD8+ T lymphocytes: A topological challenge. Traffic 8(11), 1486–1494 (2007).
  • Lautscham G, Rickinson A, Blake N. TAP-independent antigen presentation on MHC class I molecules: lessons from Epstein-Barr virus. Microbes Infect. 5(4), 291–299 (2003).
  • Johnson KL, Ovsyannikova IG, Mason CJ, Bergen HR, III, Poland GA. Discovery of naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass spectrometry for vaccine development. Vaccine 28(1), 38–47 (2009).
  • Wei ML, Cresswell P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356(6368), 443–446 (1992).
  • Henderson RA, Michel H, Sakaguchi K et al. HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255(5049), 1264–1266 (1992).
  • Gil-Torregrosa BC, Castaño AR, López D, Del Val M. Generation of MHC class I peptide antigens by protein processing in the secretory route by furin. Traffic 1(8), 641–651 (2000).
  • Gil-Torregrosa BC, Castaño AR, Del Val M. Major histocompatibility complex class I viral antigen processing in the secretory pathway defined by the trans-Golgi network protease furin. J. Exp. Med. 188(6), 1105–1116 (1998).
  • Seifert U, Marañón C, Shmueli A et al. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat. Immunol. 4(4), 375–379 (2003).
  • Guil S, Rodríguez-Castro M, Aguilar F, Villasevil EM, Antón LC, Del Val M. Need for tripeptidyl-peptidase II in major histocompatibility complex class I viral antigen processing when proteasomes are detrimental. J. Biol. Chem. 281(52), 39925–39934 (2006).
  • York IA, Bhutani N, Zendzian S, Goldberg AL, Rock KL. Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J. Immunol. 177(3), 1434–1443 (2006).
  • Tiwari N, Garbi N, Reinheckel T, Moldenhauer G, Hammerling GJ, Momburg F. A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. J. Immunol. 178(12), 7932–7942 (2007).
  • Lorente E, Garcia R, López D. Allele-dependent processing pathways generate the endogenous human leukocyte antigen (HLA) class I peptide repertoire in TAP-deficient cells. J. Biol. Chem. 286(44), 38054–38059 (2011).
  • Tey SK, Khanna R. Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway. Blood 120(5), 994–1004 (2012).
  • López D, Garcia-Calvo M, Smith G, Del Val M. Caspases in virus-infected cells contribute to recognition by CD8+ T lymphocytes. J. Immunol. 184, 5193–5199 (2010).
  • López D, Jiménez M, García-Calvo M, Del Val M. Concerted antigen processing of a short viral antigen by human caspases 5 and 10. J. Biol. Chem. 286, 16910–16913 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.