340
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Future directions for the development of Chlamydomonas-based vaccines

Pages 1011-1019 | Published online: 09 Jan 2014

References

  • Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol. Bioeng. 109(6), 1443–1460 (2012).
  • Rochaix JD. Chlamydomonas reinhardtii as the photosynthetic yeast. Annu. Rev. Genet. 29, 209–230 (1995).
  • Gutman BL, Niyogi KK. Chlamydomonas and Arabidopsis. A dynamic duo. Plant Physiol. 135(2), 607–610 (2004).
  • Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of a fully active antibody in algae. Proc. Natl Acad. Sci. U.S.A. 21, 100(2), 438–442 (2003).
  • Franklin SE, Mayfield SP. Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin. Biol. Ther. 5(2), 225–235 (2005).
  • Sun M, Qian K, Su N et al. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol. Lett. 25, 1087–1092 (2003).
  • Neupert J, Shao N, Lu Y, Bock R. Genetic transformation of the model green alga Chlamydomonas reinhardtii. Methods Mol. Biol. 847:35–47 (2012).
  • Yamano T, Iguchi H, Fukuzawa H. Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J. Biosci. Bioeng. 115(6), 691–694 (2013).
  • Chen HC, Melis A. Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Plant Biotechnol. J. doi: 10.1111/pbi.12073 (2013).
  • Rasala BA, Mayfield SP. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics. Bioeng. Bugs. 2(1), 50–54 (2011).
  • Rosales-Mendoza S, Paz-Maldonado LM, Soria-Guerra RE. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell. Rep. 31(3), 479–94 (2012).
  • Franklin SE, Mayfield SP. Prospects for molecular farming in the green alga Chlamydomonas Curr. Opin. Plant Biol. 7(2), 159–65 (2004).
  • Lössl AG, Waheed MT. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol. J. 9(5), 527–39 (2011).
  • WHO, World Malaria Report. World Health Organization (2005).
  • Dauvillée D, Delhaye S, Gruyer S et al. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5, e15424 (2010).
  • Gregory JA, Li F, Tomosada LM et al. Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 7(5), e37179 (2012).
  • Jones CS, Luong T, Hannon M et al. Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl. Microbiol. Biotechnol. (2012).
  • Wang XF, Brandsma M, Tremblay R et al. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol. 8, e87 (2008).
  • Bach JF, Chatenoud L. Tolerance to islet autoantigens in type 1 diabetes. Annu. Rev. Immunol. 19, 131–61 (2001).
  • Alexandersen S, Mowat GN. Foot-and-mouth disease: host range and pathogenesis. Curr. Top. Microbiol. Immunol. 288, 9–42 (2005).
  • Kluytmans J, van BelkumA, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10, 505–520 (1997).
  • Dreesen IA, Charpin-El Hamri G, Fussenegger M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureusin fection. J. Biotechnol. 145, 273–280 (2010).
  • He DM, Qian KX, Shen GF et al. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf. B. Biointerfaces 55, 26–30 (2006).
  • Nashar TO, Amin T, Marcello A, Hirst TR. Current progress in the development of the B subunits of cholera toxin and Escherichia coli heat-labile enterotoxin as carriers for the oral delivery of heterologous antigens and epitopes. Vaccine 11(2), 235–240 (1993).
  • Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano GA. Chlamydomonas-derived human papillomavirus 16 e7 vaccine induces specific tumor protection. PLoS. One. 23, 8(4), e61473 (2013).
  • Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol. Biotechnol. 48(1), 60–75 (2011).
  • Cerutti H, Johnson AM, Gillham NW, Boynton JE. Epigenetic Silencing of a Foreign Gene in Nuclear Transformants of Chlamydomonas. Plant Cell. 9(6), 925–945 (1997).
  • Leon R, Fernandez E. Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv. Exp. Med. Biol. 616, 1–11 (2007).
  • Shaver S, Casas-Mollano JA, Cerny RL, Cerutti H. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics 5(4), 301–312 (2010).
  • Wu-Scharf D, Jeong B, Zhang C, Cerutti H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 290(5494), 1159–1162 (2000).
  • Rasala BA, Lee PA, Shen Z et al. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7(8), e43349 (2012).
  • Ryan MD, King AM, Thomas GP. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J. Gen. Virol. 72(Pt 11), 2727–2732 (1991).
  • Donnelly ML, Hughes LE, Luke G et al. The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. J. Gen. Virol. 82, 1027–1041 (2001).
  • Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine 11(12), 1179–1184 (1993).
  • Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell. Physiol. 45(9), 1176–1184 (2004).
  • Lauersen KJ, Berger H, Mussgnug JH et al. Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J. Biotechnol. pii: S0168–1656 (12)00685-2 (2012).
  • Kliphuis AM, Klok AJ, Martens DE, Lamers PP, Janssen M, Wijffels RH. Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. J. Appl. Phycol. 24(2), 253–266 (2012).
  • Mestecky J, Nguyen H, Czerkinsky C et al. Oral immunization: an update. Curr. Opin. Gastroenterol. 24, 713–719 (2008).
  • Fujkuyama Y, Tokuhara D, Kataoka K et al. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev. Vaccines 11(3), 367–379 (2012).
  • Gebril A, Alsaadi M, Acevedo R et al. Optimizing efficacy of mucosal vaccines. Expert Rev. Vaccines 11(9), 1139–1155 (2012).
  • Pavot V, Rochereau N, Genin C et al. New insights in mucosal vaccine development. Vaccine 30, 142–154 (2012).
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 33, 492–503 (2010).
  • Reed SG, Bertholet S, Coler RN et al. New horizons in adjuvants for vaccine development. Trends Immunol. 30, 23–32 (2009).
  • Babai I, Samira S, Barenholz Y et al. A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. II. Induction of TH1 and TH2 responses in mice. Vaccine 17, 1239–1250 (1999).
  • Kong Q, Richter L, Yang YF et al. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl Acad. Sci. U. S. A. 98, 11539–11544 (2001).
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J. Immunol. 183(11), 6883–6892 (2009).
  • Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6(3), 317–333 (2006).
  • Guzmán S, Gato A, Lamela M et al. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 17(6), 665–670 (2003).
  • Liu BH, Lee YK Effect of total secondary carotenoids extracts from Chlorococcum sp. on Helicobacter pylori-infected BALB/c mice. Int. Immunopharmacol. 3(7), 979–986 (2003).
  • Pugh N, Ross SA, ElSohly HN et al. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Med. 67, 737–742 (2001).
  • Raychaudhuri S, Morrow WJ. Can soluble antigens induce CD8+ cytotoxic T-cell responses? A paradox revisited. Immunol. Today. 14(7), 344–348 (1993).
  • Foged C, Hansen J, Agger EM. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur. J. Pharm. Sci. 45(4), 482–491 (2012).
  • Remondo C, Cereda V, Mostböck S et al. Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces cerevisiae) vector encoding carcinoembryonic antigen. Vaccine 27(7), 987–994 (2009).
  • Zhang T, Yang H, Wang R et al. Oral administration of myostatin-specific whole recombinant yeast Saccharomyces cerevisiae vaccine increases body weight and muscle composition in mice. Vaccine 29(46), 8412–8416 (2011).
  • Zhang T, Sun L, Xin Y et al. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin. BMC Biotechnol. 12(1), 97 (2012).
  • Stubbs AC, Martin KS, Coeshott C et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat. Med. 7(5), 625–629 (2001).
  • Newman SL, Holly A. Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells. Infect. Immun. 69(11), 6813–6822 (2001).
  • Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852 (2002).
  • Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl Acad. Sci. U.S.A.97 (25), 13766–13771 (2000).
  • Kaisho T, Akira S. Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends Immunol. 22 (2), 78–83 (2001).
  • Xia Y, Vetvicka V, Yan J et al. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol. 162 (4), 2281–2290 (1999).
  • Engering AJ, Cella M, Fluitsma D et al. The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. J. Immunol. 27(September (9)), 2417–2425 (1997).
  • Colella TA, Bullock TN, Russell LB et al. Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy. J. Exp. Med. 191(April (7), 1221–1232 (2000).
  • Tan MC, Mommaas AM, Drijfhout JW et al. Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur. J. Immunol. 27 (9), 2426–2435 (1997).
  • Miller DH, Mellman IS, Lamport DT et al. The chemical composition of the cell wall of Chlamydomonas gymnogamaand the concept of a plant cell wall protein. J. Cell Biol. 63(2 Pt 1), 420–429 (1974).
  • Roberts K. Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Philos. Trans. R. Soc. Lond. B. 268, 129–146 (1974).
  • Bollig K, Lamshöft M, Schweimer K et al. Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii: conservation of the inner core in Chlamydomonas and land plants. Carbohydr. Res. 342, 2557–2566 (2007).
  • Eder M, Tenhaken R, Driouich A et al. Occurrence and characterization of arabinogalactan-like proteins and hemicelluloses in Micrasterias (Streptophyta). J. Phycol. 44, 1221–1234 (2008).
  • Estevez JM, Fernández PV, Kasulin L et al. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology 19, 212–228 (2009).
  • Dunn EK, Shoue DA, Huang X et al. Spectroscopic and biochemical analysis of regions of the cell wall of the unicellular ‘mannan weed,’ Acetabularia acetabulum. Plant Cell Physiol. 48, 122–133 (2007).
  • Popper ZA, Tuohy MG. Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol.153(2), 373–383 (2010).
  • Domozych DS, Ciancia M, Fangel JU et al. The cell walls of green algae: a journey through evolution and diversity. Front. Plant. Sci. 3, 82 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.