838
Views
66
CrossRef citations to date
0
Altmetric
Special Focus: New Developments in Cancer Vaccines - Reviews

Live-attenuated bacteria as a cancer vaccine vector

, , , &
Pages 1139-1154 | Published online: 09 Jan 2014

References

  • Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Am. J. Med. Sci. (105), 488–511 (1893).
  • Paterson Y, Guirnalda PD, Wood LM. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin. Immunol. 22(3), 183–189 (2010).
  • Rothman J, Paterson Y. Live-attenuated Listeria-based immunotherapy. Expert. Rev. Vaccines 12(5), 493–504 (2013).
  • Carleton HA. Pathogenic bacteria as vaccine vectors: teaching old bugs new tricks. Yale J. Biol. Med. 83(4), 217–222 (2010).
  • Spreng S, Viret JF. Plasmid maintenance systems suitable for GMO-based bacterial vaccines. Vaccine 23(17–18), 2060–2065 (2005).
  • Singh R, Wallecha A. Cancer immunotherapy using recombinant Listeria monocytogenes: Transition from bench to clinic. Hum. Vaccin. 7(5) (2011).
  • Wallecha A, Maciag PC, Rivera S, Paterson Y, Shahabi V. Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy. Clin. Vaccine Immunol. 16(1), 96–103 (2009).
  • Cossart P, Pizarro-Cerda J, Lecuit M. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell. Biol. 13(1), 23–31 (2003).
  • Southwick FS, Purich DL. Listeria and Shigella actin-based motility in host cells. Trans. Am. Clin. Climatol. Assoc. 109, 160–172; discussion 172–163 (1998).
  • Tilney LG, Portnoy DA. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109(4 Pt 1), 1597–1608 (1989).
  • Alpuche-Aranda CM, Racoosin EL, Swanson JA, Miller SI. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J. Exp. Med. 179(2), 601–608 (1994).
  • Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444(7119), 567–573 (2006).
  • Russmann H, Shams H, Poblete F, Fu Y, Galan JE, Donis RO. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 281(5376), 565–568 (1998).
  • Chamekh M. Immunomodulation using genetically engineered bacteria for type III-mediated delivery of heterologous antigens and cytokines: potential application in vaccine and therapeutical developments. Immunopharmacol. Immunotoxicol. 32(1), 1–4 (2012).
  • Hegazy WA, Xu X, Metelitsa L, Hensel M. Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens. Infect. Immun. 80(3), 1193–1202 (2012).
  • Le Gouellec A, Chauchet X, Laurin D et al. A safe bacterial microsyringe for in vivo antigen delivery and immunotherapy. Mol. Ther. 21(5), 1076–1086 (2013).
  • Le Gouellec A, Chauchet X, Polack B, Buffat L, Toussaint B. Bacterial vectors for active immunotherapy reach clinical and industrial stages. Hum. Vaccines Immunother. 8(10), 1454–1458 (2012).
  • Panthel K, Meinel KM, Sevil Domenech VE et al. Prophylactic anti-tumor immunity against a murine fibrosarcoma triggered by the Salmonella type III secretion system. Microbes Infect. 8(9–10), 2539–2546 (2006).
  • Schafer R, Portnoy DA, Brassell SA, Paterson Y. Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J. Immunol. 149(1), 53–59 (1992).
  • Gentschev I, Dietrich G, Spreng S et al. Delivery of protein antigens and DNA by attenuated intracellular bacteria. International journal of medical microbiology: IJMM, 291(6–7), 577–582 (2002).
  • Paterson Y, Johnson RS. Progress towards the use of Listeria monocytogenes as a live bacterial vaccine vector for the delivery of HIV antigens. Expert Rev Vaccines 3(4 Suppl.), S119–S134 (2004).
  • Singh R, Paterson Y. Listeria monocytogenes as a vector for tumor-associated antigens for cancer immunotherapy. Expert Rev. Vaccines 5(4), 541–552 (2006).
  • Galen JE, Pasetti MF, Tennant S, Ruiz-Olvera P, Sztein MB, Levine MM. Salmonella enterica serovar Typhi live vector vaccines finally come of age. Immunol. Cell. Biol. 87(5), 400–412 (2009).
  • Gentschev I, Dietrich G, Spreng S et al. Use of the alpha-hemolysin secretion system of Escherichia coli for antigen delivery in the Salmonella typhi Ty21a vaccine strain. Int. J.Med Microbiol. 294(6), 363–371 (2004).
  • Fensterle J, Bergmann B, Yone CL et al. Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther, 15(2), 85–93 (2008).
  • Chen LM, Briones G, Donis RO, Galan JE. Optimization of the delivery of heterologous proteins by the Salmonella enterica serovar Typhimurium type III secretion system for vaccine development. Infect. Immun. 74(10), 5826–5833 (2006).
  • Chen G, Dai Y, Chen J et al. Oral delivery of the Sj23LHD-GST antigen by Salmonella typhimurium type III secretion system protects against Schistosoma japonicum infection in mice. PLoS Negl. Trop. Dis. 5(9), e1313 (2011).
  • Juarez-Rodriguez MD, Arteaga-Cortes LT, Kader R, Curtiss R 3rd, Clark-Curtiss JE. Live Attenuated Salmonella Vaccines against Mycobacterium tuberculosis with Antigen Delivery via the Type III Secretion System. Infect. Immun. 80(2), 798–814 (2012).
  • Panthel K, Meinel KM, Domenech VE et al. Salmonella pathogenicity island 2-mediated overexpression of chimeric SspH2 proteins for simultaneous induction of antigen-specific CD4 and CD8 T cells. Infect. Immun. 73(1), 334–341 (2005).
  • Husseiny MI, Wartha F, Hensel M. Recombinant vaccines based on translocated effector proteins of Salmonella Pathogenicity Island 2. Vaccine 25(1), 185–193 (2007).
  • Xiong G, Husseiny MI, Song L et al. Novel cancer vaccine based on genes of Salmonella pathogenicity island 2. Int. J. Cancer 126(11), 2622–2634 (2010).
  • Toso JF, Gill VJ, Hwu P et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20(1), 142–152 (2002).
  • Nemunaitis J, Cunningham C, Senzer N et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 10(10), 737–744 (2003).
  • Epaulard O, Toussaint B, Quenee L et al. Anti-tumor immunotherapy via antigen delivery from a live attenuated genetically engineered Pseudomonas aeruginosa type III secretion system-based vector. Mol. Ther. 14(5), 656–661 (2006).
  • Derouazi M, Wang Y, Marlu R et al. Optimal epitope composition after antigen screening using a live bacterial delivery vector Application to TRP-2. Bioeng. Bugs 1(1), 51–60 (2010).
  • Wang Y, Gouellec AL, Chaker H, Asrih H, Polack B, Toussaint B. Optimization of antitumor immunotherapy mediated by type III secretion system-based live attenuated bacterial vectors. J. Immunother. 35(3), 223–234 (2012).
  • Pilgrim S, Stritzker J, Schoen C et al. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther. 10(24), 2036–2045 (2003).
  • Schoen C, Stritzker J, Goebel W, Pilgrim S. Bacteria as DNA vaccine carriers for genetic immunization. Int. J. Med. Microbiol. 294(5), 319–335 (2004).
  • Souders NC, Verch T, Paterson Y. In vivo bactofection: listeria can function as a DNA-cancer vaccine. DNA Cell. Biol. 25(3), 142–151 (2006).
  • Schoen C, Loeffler DI, Frentzen A, Pilgrim S, Goebel W, Stritzker J. Listeria monocytogenes as novel carrier system for the development of live vaccines. Int. J. Med Microbiol. 298(1–2), 45–58 (2008).
  • Blander JM, Sander LE. Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12(3), 215–225 (2012).
  • Germanier R, Fuer E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 131(5), 553–558 (1975).
  • Epaulard O, Derouazi M, Margerit C et al. Optimization of a type III secretion system-based Pseudomonas aeruginosa live vector for antigen delivery. Clin. Vaccine Immunol. 15(2), 308–313 (2008).
  • Stocker BA. Auxotrophic Salmonella typhi as live vaccine. Vaccine 6(2), 141–145 (1988).
  • Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 21(5–6), 401–418 (2003).
  • Spreng S, Dietrich G, Weidinger G. Rational design of Salmonella-based vaccination strategies. Methods 38(2), 133–143 (2006).
  • Brockstedt DG, Dubensky TW. Promises and challenges for the development of Listeria monocytogenes-based immunotherapies. Expert Rev. Vaccines 7(7), 1069–1084 (2008).
  • Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27(30), 3975–3983 (2009).
  • Brockstedt DG, Giedlin MA, Leong ML et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl Acad. Sci. USA 101(38), 13832–13837 (2004).
  • Le DT, Brockstedt DG, Nir-Paz R et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin. Cancer Res. 18(3), 858–868 (2012).
  • Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat. Rev. Microbiol. 7(9), 654–665 (2009).
  • Dacheux D, Attree I, Schneider C, Toussaint B. Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional type III secretion system. Infect. Immun. 67(11), 6164–6167 (1999).
  • Dubensky TW Jr, Skoble J, Lauer P, Brockstedt DG. Killed but metabolically active vaccines. Curr Opin Biotechnol. 23(6), 917–23. (2012).
  • Brockstedt DG, Bahjat KS, Giedlin MA et al. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat. Med. 11(8), 853–860 (2005).
  • Sauer JD, Pereyre S, Archer KA et al. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc. Natl Acad. Sci. USA 108(30), 12419–12424 (2011).
  • Polack B, Vergnaud S, Paclet MH, Lamotte D, Toussaint B, Morel F. Protein delivery by Pseudomonas type III secretion system: Ex vivo complementation of p67(phox)-deficient chronic granulomatous disease. Biochem Biophy. Res. Comm. 275(3), 854–858 (2000).
  • Matsushita H, Vesely MD, Koboldt DC et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385), 400–404 (2012).
  • King I, Itterson M, Bermudes D. Tumor-targeted Salmonella typhimurium overexpressing cytosine deaminase: a novel, tumor-selective therapy. Methods Mol. Biol. 542, 649–659 (2009).
  • Forbes NS. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10(11), 785–794 (2010).
  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J. Immunol. 167(11), 6471–6479 (2001).
  • Dominiecki ME, Beatty GL, Pan ZK, Neeson P, Paterson Y. Tumor sensitivity to IFN-gamma is required for successful antigen-specific immunotherapy of a transplantable mouse tumor model for HPV-transformed tumors. Cancer Immunol. Immunother. 54(5), 477–488 (2005).
  • Souders NC, Sewell DA, Pan ZK et al. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun. 7, 2 (2007).
  • Sewell DA, Douven D, Pan ZK, Rodriguez A, Paterson Y. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch. Otolaryngol. Head Neck Surg. 130(1), 92–97 (2004).
  • Sewell DA, Shahabi V, Gunn GR 3rd, Pan ZK, Dominiecki ME, Paterson Y. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res. 64(24), 8821–8825 (2004).
  • Lin CW, Lee JY, Tsao YP, Shen CP, Lai HC, Chen SL. Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int. J. Cancer 102(6), 629–637 (2002).
  • Verch T, Pan ZK, Paterson Y. Listeria monocytogenes-based antibiotic resistance gene-free antigen delivery system applicable to other bacterial vectors and DNA vaccines. Infect. Immun. 72(11), 6418–6425 (2004).
  • Jia Y, Yin Y, Duan F et al. Prophylactic and therapeutic efficacy of an attenuated Listeria monocytogenes-based vaccine delivering HPV16 E7 in a mouse model. Int. J. Mol. Med. 30(6), 1335–1342 (2012).
  • Mustafa W, Maciag PC, Pan ZK et al. Listeria monocytogenes delivery of HPV-16 major capsid protein L1 induces systemic and mucosal cell-mediated CD4+ and CD8+ T-cell responses after oral immunization. Viral Immunol. 22(3), 195–204 (2009).
  • Singh R, Dominiecki ME, Jaffee EM, Paterson Y. Fusion to Listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J. Immunol. 175(6), 3663–3673 (2005).
  • Singh R, Paterson Y. In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines. Cancer Immunol. Immunother. 56(6), 927–938 (2007).
  • Seavey MM, Pan ZK, Maciag PC et al. A novel human Her-2/neu chimeric molecule expressed by Listeria monocytogenes can elicit potent HLA-A2 restricted CD8-positive T cell responses and impact the growth and spread of Her-2/neu-positive breast tumors. Clin. Cancer Res. 15(3), 924–932 (2009).
  • Shahabi V, Seavey MM, Maciag PC, Rivera S, Wallecha A. Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer Gene Ther. 18(1), 53–62 (2011).
  • Wood LM, Pan ZK, Guirnalda P, Tsai P, Seavey M, Paterson Y. Targeting tumor vasculature with novel Listeria-based vaccines directed against CD105. Cancer Immunol. Immunother. 60(7), 931–942 (2011).
  • Kim SH, Castro F, Gonzalez D, Maciag PC, Paterson Y, Gravekamp C. Mage-b vaccine delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. Br. J. Cancer 99(5), 741–749 (2008).
  • Wood LM, Pan ZK, Seavey MM, Muthukumaran G, Paterson Y. The ubiquitin-like protein, ISG15, is a novel tumor-associated antigen for cancer immunotherapy. Cancer Immunol. Immunother. 61(5), 689–700 (2012).
  • Jensen ER, Selvakumar R, Shen H, Ahmed R, Wettstein FO, Miller JF. Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J. Virol. 71(11), 8467–8474 (1997).
  • Maciag PC, Seavey MM, Pan ZK, Ferrone S, Paterson Y. Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res. 68(19), 8066–8075 (2008).
  • Bruhn KW, Craft N, Nguyen BD, Yip J, Miller JF. Characterization of anti-self CD8 T-cell responses stimulated by recombinant Listeria monocytogenes expressing the melanoma antigen TRP-2. Vaccine 23(33), 4263–4272 (2005).
  • Shahabi V, Reyes-Reyes M, Wallecha A, Rivera S, Paterson Y, Maciag P. Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunol. Immunother. 57(9), 1301–1313 (2008).
  • Hannan R, Zhang H, Wallecha A et al. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol. Immunother. 61(12), 2227–2238 (2012).
  • Zhu X, Zhou P, Cai J, Yang G, Liang S, Ren D. Tumor antigen delivered by Salmonella III secretion protein fused with heat shock protein 70 induces protection and eradication against murine melanoma. Cancer Sci. 101(12), 2621–2628 (2010).
  • Jellbauer S, Panthel K, Hetrodt JH, Russmann H. CD8 T-cell induction against vascular endothelial growth factor receptor 2 by Salmonella for vaccination purposes against a murine melanoma. PLoS One 7(4), e34214 (2012).
  • Wang YJ, Hou Y, Huang H, Liu GR, White AP, Liu SL. Two oral HBx vaccines delivered by live attenuated Salmonella: both eliciting effective anti-tumor immunity. Cancer Lett. 263(1), 67–76 (2008).
  • Roider E, Jellbauer S, Kohn B et al. Invasion and destruction of a murine fibrosarcoma by Salmonella-induced effector CD8 T cells as a therapeutic intervention against cancer. Cancer Immunol. Immunother. 60(3), 371–380 (2011).
  • Nishikawa H, Sato E, Briones G et al. In vivo antigen delivery by a Salmonella typhimurium type III secretion system for therapeutic cancer vaccines. J. Clin. Invest. 116(7), 1946–1954 (2006).
  • Hummel S, Apte RN, Qimron U, Vitacolonna M, Porgador A, Zoller M. Tumor vaccination by Salmonella typhimurium after transformation with a eukaryotic expression vector in mice: impact of a Salmonella typhimurium gene interfering with MHC class I presentation. J. Immunother. 28(5), 467–479 (2005).
  • Lu XL, Jiang XB, Liu RE, Zhang SM. The enhanced anti-angiogenic and antitumor effects of combining flk1-based DNA vaccine and IP-10. Vaccine 26(42), 5352–5357 (2008).
  • Fu W, Chu L, Han X, Liu X, Ren D. Synergistic antitumoral effects of human telomerase reverse transcriptase-mediated dual-apoptosis-related gene vector delivered by orally attenuated Salmonella enterica Serovar Typhimurium in murine tumor models. J. Gene Med. 10(6), 690–701 (2008).
  • Niethammer AG, Xiang R, Ruehlmann JM et al. Targeted interleukin 2 therapy enhances protective immunity induced by an autologous oral DNA vaccine against murine melanoma. Cancer Res. 61(16), 6178–6184 (2001).
  • Xiang R, Lode HN, Chao TH et al. An autologous oral DNA vaccine protects against murine melanoma. Proc. Natl Acad. Sci. USA 97(10), 5492–5497 (2000).
  • Qian BJ, Yan F, Li N et al. MTDH/AEG-1-based DNA vaccine suppresses lung metastasis and enhances chemosensitivity to doxorubicin in breast cancer. Cancer Immunol. Immunother. 60(6), 883–893 (2011).
  • Lee SH, Mizutani N, Mizutani M et al. Endoglin (CD105) is a target for an oral DNA vaccine against breast cancer. Cancer Immunol. Immunother. 55(12), 1565–1574 (2006).
  • Lewen S, Zhou H, Hu HD et al. A Legumain-based minigene vaccine targets the tumor stroma and suppresses breast cancer growth and angiogenesis. Cancer Immunol. Immunother. 57(4), 507–515 (2008).
  • Luo Y, O'Hagan D, Zhou H et al. Plasmid DNA encoding human carcinoembryonic antigen (CEA) adsorbed onto cationic microparticles induces protective immunity against colon cancer in CEA-transgenic mice. Vaccine 21(17–18), 1938–1947 (2003).
  • Zuo SG, Chen Y, Wu ZP et al. Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis. Biol. Pharm. Bull. 33(2), 174–182 (2010).
  • Niethammer AG, Primus FJ, Xiang R et al. An oral DNA vaccine against human carcinoembryonic antigen (CEA) prevents growth and dissemination of Lewis lung carcinoma in CEA transgenic mice. Vaccine 20(3–4), 421–429 (2001).
  • Dong J, Yang J, Chen MQ et al. A comparative study of gene vaccines encoding different extracellular domains of the vascular endothelial growth factor receptor 2 in the mouse model of colon adenocarcinoma CT-26. Cancer Biol Ther. 7(4), 502–509 (2008).
  • Xiang R, Silletti S, Lode HN et al. Protective immunity against human carcinoembryonic antigen (CEA) induced by an oral DNA vaccine in CEA-transgenic mice. Clin. Cancer Res. 7(3 Suppl.), 856s–864s (2001).
  • Zhou H, Luo Y, Mizutani M et al. A novel transgenic mouse model for immunological evaluation of carcinoembryonic antigen-based DNA minigene vaccines. J. Clin. Invest. 113(12), 1792–1798 (2004).
  • Fest S, Huebener N, Bleeke M et al. Survivin minigene DNA vaccination is effective against neuroblastoma. Int. J. Cancer 125(1), 104–114 (2009).
  • Huebener N, Fest S, Strandsby A et al. A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity. Mol. Cancer Ther. 7(7), 2241–2251 (2008).
  • Feng KK, Zhao HY, Qiu H, Chen J. [Specific anti-glioma angiogenesis immune response induced by attenuated Salmonella typhimurium vaccine expressing vascular endothelial growth factor receptor-2]. Ai. Zheng. 24(5), 548–553 (2005).
  • Ahmad S, Casey G, Cronin M et al. Induction of effective antitumor response after mucosal bacterial vector mediated DNA vaccination with endogenous prostate cancer specific antigen. J. Urol. 186(2), 687–693 (2011).
  • Guo CC, Ding J, Pan BR et al. Development of an oral DNA vaccine against MG7-Ag of gastric cancer using attenuated salmonella typhimurium as carrier. World J. Gastroenterol. 9(6), 1191–1195 (2003).
  • Niethammer AG, Lubenau H, Mikus G et al. Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-Receptor 2 in patients with stage IV and locally advanced pancreatic cancer. BMC Cancer 12, 361 (2012).

Websites

  • ClinicalTrials.gov identifier: NCT01266460. Vaccine Therapy in Treating Patients With Persistent or Recurrent Cervical Cancer.http://clinicaltrials.gov/show/NCT01266460
  • ClinicalTrials.gov identifier: NCT01116245. An Assessment of an Attenuated Live Listeria Vaccine in CIN 2+ (ADXS11-001). http://clinicaltrials.gov/show/NCT01116245
  • ClinicalTrials.gov identifier: NCT01671488. A Phase I/II Evaluation of ADXS11-001, Mitomycin, 5-fluorouracil (5-FU) and IMRT for Anal Cancer (276). http://clinicaltrials.gov/show/NCT01671488
  • ClinicalTrials.gov identifier: NCT01598792. Safety Study of Recombinant Listeria Monocytogenes(Lm)Based Vaccine Virus Vaccine to Treat Oropharyngeal Cancer (REALISTIC).http://clinicaltrials.gov/show/NCT01598792
  • ClinicalTrials.gov identifier: NCT01417000. Cancer Vaccines CRS-207 and GVAX Pancreas for Metastatic Pancreatic Adenocarcinoma. http://clinicaltrials.gov/show/NCT01417000
  • ClinicalTrials.gov identifier: NCT01675765. CRS-207 Cancer Vaccine in Combination With Chemotherapy as Front-line Treatment for Malignant Pleural Mesothelioma.http://clinicaltrials.gov/show/NCT01675765
  • ClinicalTrials.gov identifier: NCT01099631. IL-2 Expressing, Attenuated Salmonella Typhimurium in Unresectable Hepatic Spread.http://clinicaltrials.gov/show/NCT01099631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.