170
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Preclinical vaccines against mammary carcinoma

, , &
Pages 1449-1463 | Published online: 09 Jan 2014

References

  • Cardiff RD, Kenney N. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice. Cold Spring Harb. Perspect. Biol. 3(6), pii: a003111 (2011).
  • Muller WJ. Expression of activated oncogenes in the murine mammary gland: transgenic models for human breast cancer. Cancer Metastasis Rev. 10(3), 217–227 (1991).
  • Nanni P, De Giovanni C, Lollini PL, Nicoletti G, Prodi G. TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin. Exp. Metastasis 1(4), 373–380 (1983).
  • Rosato A, Dalla Santa S, Zoso A et al. The cytotoxic T-lymphocyte response against a poorly immunogenic mammary adenocarcinoma is focused on a single immunodominant class I epitope derived from the gp70 Env product of an endogenous retrovirus. Cancer Res. 63(9), 2158–2163 (2003).
  • Luznik L, Slansky JE, Jalla S et al. Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood 101(4), 1645–1652 (2003).
  • Hutchinson JN, Muller WJ. Transgenic mouse models of human breast cancer. Oncogene 19(53), 6130–6137 (2000).
  • Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat. Rev. Cancer 7(9), 659–672 (2007).
  • Bose R, Kavuri SM, Searleman AC et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Dis. 3(2), 224–237 (2013).
  • Sacco MG, Gribaldo L, Barbieri O et al. Establishment and characterization of a new mammary adenocarcinoma cell line derived from MMTV neu transgenic mice. Breast Cancer Res. Treat. 47(2), 171–180 (1998).
  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA 89(22), 10578–10582 (1992).
  • Finkle D, Quan ZR, Asghari V et al. HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin. Cancer Res. 10(7), 2499–2511 (2004).
  • Pedersen K, Angelini PD, Laos S et al. A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis. Mol. Cell. Biol. 29(12), 3319–3331 (2009).
  • Marchini C, Gabrielli F, Iezzi M et al. The human splice variant Delta16HER2 induces rapid tumor onset in a reporter transgenic mouse. PloS One 6(4), e18727 (2011).
  • Morancho B, Parra-Palau JL, Ibrahim YH et al. A dominant-negative N-terminal fragment of HER2 frequently expressed in breast cancers. Oncogene 32(11), 1452–1459 (2013).
  • Reilly RT, Gottlieb MB, Ercolini AM et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res. 60(13), 3569–3576 (2000).
  • Andrechek ER, Hardy WR, Laing MA, Muller WJ. Germ-line expression of an oncogenic erbB2 allele confers resistance to erbB2-induced mammary tumorigenesis. Proc. Natl Acad. Sci. USA 101(14), 4984–4989 (2004).
  • Boggio K, Nicoletti G, Di Carlo E et al. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med. 188(3), 589–596 (1998).
  • Nanni P, Nicoletti G, De Giovanni C et al. Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J. Exp. Med. 194(9), 1195–1205 (2001).
  • Jackson-Grusby L. Modeling cancer in mice. Oncogene 21(35), 5504–5514 (2002).
  • Quaglino E, Iezzi M, Mastini C et al. Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res. 64(8), 2858–2864 (2004).
  • Rolla S, Ria F, Occhipinti S et al. Erbb2 DNA vaccine combined with regulatory T cell deletion enhances antibody response and reveals latent low-avidity T cells: potential and limits of its therapeutic efficacy. J. Immunol. 184(11), 6124–6132 (2010).
  • Nanni P, Nicoletti G, Palladini A et al. Antimetastatic activity of a preventive cancer vaccine. Cancer Res. 67(22), 11037–11044 (2007).
  • Quaglino E, Rolla S, Iezzi M et al. Concordant morphologic and gene expression data show that a vaccine halts HER-2/neu preneoplastic lesions. J. Clin. Invest. 113(5), 709–717 (2004).
  • Spadaro M, Ambrosino E, Iezzi M et al. Cure of mammary carcinomas in Her-2 transgenic mice through sequential stimulation of innate (neoadjuvant interleukin-12) and adaptive (DNA vaccine electroporation) immunity. Clin. Cancer Res.11(5), 1941–1952 (2005).
  • Dranoff G. Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat. Rev. Immunol. 12(1), 61–66 (2012).
  • Nanni P, Nicoletti G, Landuzzi L et al. High metastatic efficiency of human sarcoma cells in Rag2/gammac double knockout mice provides a powerful test system for antimetastatic targeted therapy. Eur. J. Cancer 46(3), 659–668 (2010).
  • Nanni P, Nicoletti G, Palladini A et al. Multiorgan metastasis of human HER-2+ breast cancer in Rag2-/-;Il2rg-/- mice and treatment with PI3K inhibitor. PloS One 7(6), e39626 (2012).
  • Brehm MA, Shultz LD, Greiner DL. Humanized mouse models to study human diseases. Curr. Opin. Endocrinol. Diabetes Obesity 17(2), 120–125 (2010).
  • De Giovanni C, Nicoletti G, Landuzzi L et al. Human responses against HER-2-positive cancer cells in human immune system-engrafted mice. Br. J. Cancer 107(8), 1302–1309 (2012).
  • Paoloni MC, Khanna C. Comparative oncology today. Vet. Clin. N. Am. Small Anim. Pract. 37(6), 1023–1032; v (2007).
  • USDA licenses DNA vaccine for treatment of melanoma in dogs. J. Am. Vet. Med. Assoc. 236(5), 495 (2010).
  • Liao JC, Gregor P, Wolchok JD et al. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun. 6, 8 (2006).
  • Bergman PJ, Mcknight J, Novosad A et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin. Cancer Res.9(4), 1284–1290 (2003).
  • Grosenbaugh DA, Leard AT, Bergman PJ et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am. J. Vet. Res. 72(12), 1631–1638 (2011).
  • Yuan J, Ku GY, Gallardo HF et al. Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun. 9, 5 (2009).
  • Wolchok JD, Yuan J, Houghton AN et al. Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol. Ther. 15(11), 2044–2050 (2007).
  • Ginsberg BA, Gallardo HF, Rasalan TS et al. Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. Clin. Cancer Res.16(15), 4057–4065 (2010).
  • Burrai GP, Mohammed SI, Miller MA et al. Spontaneous feline mammary intraepithelial lesions as a model for human estrogen receptor- and progesterone receptor-negative breast lesions. BMC Cancer 10, 156 (2010).
  • De Maria R, Olivero M, Iussich S et al. Spontaneous feline mammary carcinoma is a model of HER2 overexpressing poor prognosis human breast cancer. Cancer Res. 65(3), 907–912 (2005).
  • Lollini PL, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. Nat. Rev. Cancer 6(3), 204–216 (2006).
  • Iezzi M, Quaglino E, Amici A, Lollini PL, Forni G, Cavallo F. DNA vaccination against oncoantigens: a promise. Oncoimmunology 1(3), 316–325 (2012).
  • Lollini PL, Nicoletti G, Landuzzi L et al. Vaccines and other immunological approaches for cancer immunoprevention. Curr. Drug Targets 12(13), 1957–1973 (2011).
  • Quaglino E, Mastini C, Amici A et al. A better immune reaction to Erbb-2 tumors is elicited in mice by DNA vaccines encoding rat/human chimeric proteins. Cancer Res. 70(7), 2604–2612 (2010).
  • De Giovanni C, Nicoletti G, Palladini A et al. A multi-DNA preventive vaccine for p53/Neu-driven cancer syndrome. Hum. Gene Ther. 20(5), 453–464 (2009).
  • Nanni P, Landuzzi L, Nicoletti G et al. Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J. Immunol. 173(4), 2288–2296 (2004).
  • Cavallo F, Offringa R, Van Der Burg SH, Forni G, Melief CJ. Vaccination for treatment and prevention of cancer in animal models. Adv. Immunol. 90, 175–213 (2006).
  • Cavallo F, Di Carlo E, Butera M et al. Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12. Cancer Res. 59(2), 414–421 (1999).
  • Allione A, Consalvo M, Nanni P et al. Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and gamma-interferon gene or admixed with conventional adjuvants. Cancer Res. 54(23), 6022–6026 (1994).
  • Kuwai T, Nakamura T, Kim SJ et al. Intratumoral heterogeneity for expression of tyrosine kinase growth factor receptors in human colon cancer surgical specimens and orthotopic tumors. Am. J. Pathol. 172(2), 358–366 (2008).
  • Husemann Y, Geigl JB, Schubert F et al. Systemic spread is an early step in breast cancer. Cancer Cell 13(1), 58–68 (2008).
  • Khanna C, London C, Vail D, Mazcko C, Hirschfeld S. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin. Cancer Res.15(18), 5671–5677 (2009).
  • Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea--a paradigm shift. Cancer Res. 66(4), 1883–1890; discussion 1895–1886 (2006).
  • Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120(1), 41–50
  • Noh KH, Lee YH, Jeon JH et al. Cancer vaccination drives Nanog-dependent evolution of tumor cells toward an immune-resistant and stem-like phenotype. Cancer Res. 72(7), 1717–1727 (2012).
  • Ning N, Pan Q, Zheng F et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 72(7), 1853–1864 (2012).
  • Nicolini A, Ferrari P, Fini M et al. Cancer stem cells: perspectives of new therapeutical approaches for breast cancer. Front. Biosci. (Schol. Ed.) 3, 1486–1499 (2011).
  • Nanni P, Pupa SM, Nicoletti G et al. p185(neu) protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma. Int. J. Cancer 87(2), 186–194 (2000).
  • Mimura K, Ando T, Poschke I et al. T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. Int. J. Cancer 128(2), 390–401 (2011).
  • Lollini PL, Nicoletti G, Landuzzi L et al. Down regulation of major histocompatibility complex class I expression in mammary carcinoma of HER-2/neu transgenic mice. Int. J. Cancer 77(6), 937–941 (1998).
  • Cabrera T, Lopez-Nevot MA, Gaforio JJ, Ruiz-Cabello F, Garrido F. Analysis of HLA expression in human tumor tissues. Cancer Immunol. Immunother. 52(1), 1–9 (2003).
  • Bukur J, Jasinski S, Seliger B. The role of classical and non-classical HLA class I antigens in human tumors. Semin. Cancer Biol. 22(4), 350–358 (2012).
  • Chiarle R, Martinengo C, Mastini C et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat. Med. 14(6), 676–680 (2008).
  • Ait-Tahar K, Damm-Welk C, Burkhardt B et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood 115(16), 3314–3319 (2010).
  • Guo K, Li J, Tang JP et al. Targeting intracellular oncoproteins with antibody therapy or vaccination. Sci. Transl. Med. 3(99), 99ra85 (2011).
  • Ferrone S. Hidden immunotherapy targets challenge dogma. Science translational Med. 3(99), 99ps38 (2011).
  • Tagliabue E, Balsari A, Campiglio M, Pupa SM. HER2 as a target for breast cancer therapy. Expert Opin. Biol. Ther. 10(5), 711–724 (2010).
  • Cavallo F, Calogero RA, Forni G. Are oncoantigens suitable targets for anti-tumour therapy? Nat. Rev. Cancer 7(9), 707–713 (2007).
  • Calogero RA, Quaglino E, Saviozzi S, Forni G, Cavallo F. Oncoantigens as anti-tumor vaccination targets: the chance of a lucky strike? Cancer Immunol. Immunother. 57(11), 1685–1694 (2008).
  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12(2), 87–98 (2011).
  • Costa V, Aprile M, Esposito R, Ciccodicola A. RNA-Seq and human complex diseases: recent accomplishments and future perspectives. Eur. J. Hum. Genet 21(2), 134–142 (2013).
  • Wu Y, Wang X, Wu F et al. Transcriptome profiling of the cancer, adjacent non-tumor and distant normal tissues from a colorectal cancer patient by deep sequencing. PloS One 7(8), e41001 (2012).
  • Pflueger D, Terry S, Sboner A et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res. 21(1), 56–67 (2011).
  • Trapnell C, Williams BA, Pertea G et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5), 511–515 (2010).
  • Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J. Mammary Gland Biol. Neoplasia 15(2), 253–260
  • Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65(13), 5506–5511 (2005).
  • Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol. Immunother. (2011).
  • Gilboa E. The promise of cancer vaccines. Nat. Rev. Cancer 4(5), 401–411 (2004).
  • Lokhov PG, Balashova EE. Universal cancer vaccine: An update on the design of cancer vaccines generated from endothelial cells. Hum. Vaccin. Immunother. 9(7)(2013).
  • Arigoni M, Barutello G, Lanzardo S et al. A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors. Angiogenesis 15(2), 305–316 (2012).
  • Sabin LR, Delas MJ, Hannon GJ. Dogma derailed: the many influences of RNA on the genome. Mol. cell 49(5), 783–794 (2013).
  • Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66(15), 7390–7394 (2006).
  • Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 21(6), 354–361 (2011).
  • Piao HL, Ma L. Non-coding RNAs as regulators of mammary development and breast cancer. J. Mammary Gland Biol. Neoplasia 17(1), 33–42 (2012).
  • Jiang Z, Zhou Y, Devarajan K, Slater CM, Daly MB, Chen X. Identifying putative breast cancer-associated long intergenic non-coding RNA loci by high density SNP array analysis. Front. Genet. 3, 299 (2012).
  • Bockmeyer CL, Christgen M, Muller M et al. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res. Treat. 130(3), 735–745 (2011).
  • Blenkiron C, Goldstein LD, Thorne NP et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8(10), R214 (2007).
  • Adams BD, Guttilla IK, White BA. Involvement of microRNAs in breast cancer. Semin. Reprod. Med. 26(6), 522–536 (2008).
  • Enerly E, Steinfeld I, Kleivi K et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6(2), e16915 (2011).
  • Lowery AJ, Miller N, Devaney A et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 11(3), R27 (2009).
  • Iorio MV, Ferracin M, Liu CG et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65(16), 7065–7070 (2005).
  • Buffa FM, Camps C, Winchester L et al. microRNA-associated progression pathways and potential therapeutic targets identified by integrated mRNA and microRNA expression profiling in breast cancer. Cancer Res. 71(17), 5635–5645 (2011).
  • Andorfer CA, Necela BM, Thompson EA, Perez EA. MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol. Med. 17(6), 313–319 (2011).
  • Arigoni M, Barutello G, Riccardo F et al. miR-135b Coordinates Progression of ErbB2-Driven Mammary Carcinomas through Suppression of MID1 and MTCH2. Am J. Pathol. 182(6), 2058–2070 (2013).
  • Astolfi A, Landuzzi L, Nicoletti G et al. Gene expression analysis of immune-mediated arrest of tumorigenesis in a transgenic mouse model of HER-2/neu-positive basal-like mammary carcinoma. Am. J. Pathol. 166(4), 1205–1216 (2005).
  • Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101(10), 2087–2092 (2010).
  • Wherry EJ. T cell exhaustion. Nat. Immunol. 12(6), 492–499 (2011).
  • Van Duikeren S, Fransen MF, Redeker A et al. Vaccine-induced effector-memory CD8+ T cell responses predict therapeutic efficacy against tumors. J. Immunol. 189(7), 3397–3403 (2012).
  • Wang L, Xie Y, Ahmed KA et al. Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice. Breast Cancer Res. Treat. (2013).
  • Xie Y, Wang L, Freywald A, Qureshi M, Chen Y, Xiang J. A novel T cell-based vaccine capable of stimulating long-term functional CTL memory against B16 melanoma via CD40L signaling. Cell. Mol. Immunol. 10(1), 72–77 (2013).
  • Silva JM, Videira M, Gaspar R, Preat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 168(2), 179–199 (2013).
  • Pedicord VA, Montalvo W, Leiner IM, Allison JP. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance. Proc. Natl Acad. Sci. USA 108(1), 266–271 (2011).
  • Arens R, Van Hall T, Van Der Burg SH, Ossendorp F, Melief CJ. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Sem. Immunol. 25(2), 182–190 (2013).
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12(4), 252–264 (2012).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100(14), 8372–8377 (2003).
  • Downey SG, Klapper JA, Smith FO et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin. Cancer Res. 13(22 Pt 1), 6681–6688 (2007).
  • Hodi FS, O'day SJ, Mcdermott DF et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J. Med. 363(8), 711–723 (2010).
  • Brahmer JR, Tykodi SS, Chow LQ et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The N Engl J. Med. 366(26), 2455–2465 (2012).
  • Topalian SL, Hodi FS, Brahmer JR et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The N Engl J. Med. 366(26), 2443–2454 (2012).
  • Brahmer JR, Drake CG, Wollner I et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28(19), 3167–3175 (2010).
  • Sarnaik AA, Yu B, Yu D et al. Extended dose ipilimumab with a peptide vaccine: immune correlates associated with clinical benefit in patients with resected high-risk stage IIIc/IV melanoma. Clin. Cancer Res.17(4), 896–906 (2011).
  • Sanderson K, Scotland R, Lee P et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol. 23(4), 741–750 (2005).
  • Yuan J, Ginsberg B, Page D et al. CTLA-4 blockade increases antigen-specific CD8(+) T cells in prevaccinated patients with melanoma: three cases. Cancer Immunol. Immunother. 60(8), 1137–1146 (2011).
  • Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci. 104(1), 15–21 (2013).
  • Vacchelli E, Martins I, Eggermont A et al. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 1(9), 1557–1576 (2012).
  • Baxevanis CN, Papamichail M, Perez SA. Toxicity profiles of HER2/neu peptide anticancer vaccines: the picture from Phase/I and II clinical trials. Expert Rev. Vaccin. 11(6), 637–640 (2012).
  • Musiani P, Modesti A, Giovarelli M et al. Cytokines, tumour-cell death and immunogenicity: a question of choice. Immunol. Today 18(1), 32–36 (1997).
  • Nanni P, Forni G, Lollini PL. Cytokine gene therapy: hopes and pitfalls. Ann. Oncol. 10(3), 261–266 (1999).
  • De Giovanni C, Nicoletti G, Landuzzi L et al. Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12-engineered allogeneic cell vaccine. Cancer Res. 64(11), 4001–4009 (2004).
  • Palladini A, Nicoletti G, Pappalardo F et al. In silico modeling and in vivo efficacy of cancer-preventive vaccinations. Cancer Res. 70(20), 7755–7763 (2010).
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr. Opin. Immunol. 23(3), 421–429 (2011).
  • Demuth PC, Min Y, Huang B et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 12(4), 367–376 (2013).
  • Jacob JB, Kong YC, Nalbantoglu I, Snower DP, Wei WZ. Tumor regression following DNA vaccination and regulatory T cell depletion in neu transgenic mice leads to an increased risk for autoimmunity. J. Immunol. 182(9), 5873–5881 (2009).
  • Gottfried E, Kreutz M, Mackensen A. Tumor-induced modulation of dendritic cell function. Cytokine Growth Factor Rev. 19(1), 65–77 (2008).
  • Bolli E, Quaglino E, Arigoni M et al. Oncoantigens for an immune prevention of cancer. Am. J.Cancer Res. 1(2), 255–264 (2011).
  • Whittington PJ, Radkevich-Brown O, Jacob JB, Jones RF, Weise AM, Wei WZ. Her-2 DNA versus cell vaccine: immunogenicity and anti-tumor activity. Cancer Immunol. Immunother 58(5), 759–767 (2009).
  • Lu S. Heterologous prime-boost vaccination. Curr. Opin. Immunol. 21(3), 346–351 (2009).
  • Aurisicchio L, Ciliberto G. Genetic cancer vaccines: current status and perspectives. Expert opin. Biol. Ther. 12(8), 1043–1058 (2012).
  • Cipriani B, Fridman A, Bendtsen C et al. Therapeutic vaccination halts disease progression in BALB-neuT mice: the amplitude of elicited immune response is predictive of vaccine efficacy. Hum Gene Ther. 19(7), 670–680 (2008).
  • Fattori E, Aurisicchio L, Zampaglione I et al. ErbB2 genetic cancer vaccine in nonhuman primates: relevance of single nucleotide polymorphisms. Hum. Gene Ther. 20(3), 253–265 (2009).
  • Baxevanis CN, Perez SA, Papamichail M. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol. Immunother. 58(3), 317–324 (2009).
  • Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin. Cancer Res. 10(16), 5316–5326 (2004).
  • Greenberg JI, Cheresh DA. VEGF as an inhibitor of tumor vessel maturation: implications for cancer therapy. Expert Opin. Biol. Ther. 9(11), 1347–1356 (2009).
  • Goel S, Duda DG, Xu L et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91(3), 1071–1121 (2011).
  • Holmgren L, Ambrosino E, Birot O et al. A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth. Proc. Natl Acad. Sci. USA 103(24), 9208–9213 (2006).
  • Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 480(7378), 480–489 (2011).
  • Wolchok JD, Hoos A, O'day S et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15(23), 7412–7420 (2009).
  • Waters DJ, Wildasin K. Cancer clues from pet dogs. Sci Am. 295(6), 94–101 (2006).
  • Rowell JL, Mccarthy DO, Alvarez CE. Dog models of naturally occurring cancer. Trends Mol. Med. 17(7), 380–388 (2011).
  • Gameiro SR, Jammeh ML, Hodge JW. Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise. Expert Rev. Vaccin. 12(6), 617–629 (2013).
  • Hodge JW, Garnett CT, Farsaci B et al. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer. 133(3), 624–636 (2013).
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Ann. Rev. Immunol. 31, 51–72 (2013).
  • Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. Semin. Oncol. 39(3), 323–339 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.