333
Views
58
CrossRef citations to date
0
Altmetric
Reviews

Clinical applications of attenuated MVA poxvirus strain

, , &
Pages 1395-1416 | Published online: 09 Jan 2014

References

  • Boukhebza H, Bellon N, Limacher JM, Inchauspe G. Therapeutic vaccination to treat chronic infectious diseases: Current clinical developments using MVA-based vaccines. Hum. Vaccin Immunother. 8(12), 1746–1757 (2012).
  • Gilbert SC. Clinical development of modified vaccinia virus Ankara vaccines. Vaccine 31(39), 4241–4246 (2013).
  • Gomez CE, Najera JL, Krupa M, Perdiguero B, Esteban M. MVA and NYVAC as vaccines against emergent infectious diseases and cancer. Curr. Gene Ther. 11(3), 189–217 (2011).
  • Gomez CE, Perdiguero B, Garcia-Arriaza J, Esteban M. Poxvirus vectors as HIV/AIDS vaccines in humans. Hum. Vaccin. Immunother. 8(9), 1192–1207 (2012).
  • Hill AV, Reyes-Sandoval A, O'Hara G et al. Prime-boost vectored malaria vaccines: progress and prospects. Hum. Vaccin 6(1), 78–83 (2010).
  • Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J. 17(5), 359–371 (2011).
  • Pantaleo G, Esteban M, Jacobs B, Tartaglia J. Poxvirus vector-based HIV vaccines. Curr. Opin. HIV AIDS 5(5), 391–396 (2010).
  • Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev. Vaccines 10(8), 1221–1240 (2011).
  • Wen B, Deng Y, Chen H et al. The Novel Replication-defective vaccinia virus (tiantan strain)-based Hepatitis C virus vaccine induces robust immunity in macaques. Mol. Ther. 21(9), 1787–1795 (2013).
  • Mayr A, Stickl H, Muller HK, Danner K, Singer H. [The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author's transl)]. Zentralbl. Bakteriol. B. 167(5–6), 375–390 (1978).
  • Antoine G, Scheiflinger F, Dorner F, Falkner FG. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244(2), 365–396 (1998).
  • Hochstein-Mintzel V. [Oral and nasal immunization with Poxvirus vacciniae. I. Criteria for smallpox immunity and immunology of the conventional cutaneous reaction to vaccination]. Zentralbl. Bakteriol. [Orig B] 156(1), 1–14 (1972).
  • Elizaga ML, Vasan S, Marovich MA et al. Prospective surveillance for cardiac adverse events in healthy adults receiving modified vaccinia ankara vaccines: a systematic review. PLoS ONE 8(1), e54407 (2013).
  • Parrino J, Graham BS. Smallpox vaccines: Past, present, and future. J. Allergy Clin. Immunol. 118(6), 1320–1326 (2006).
  • Verheust C, Goossens M, Pauwels K, Breyer D. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 30(16), 2623–2632 (2012).
  • Sutter G, Moss B. Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc. Natl Acad. Sci. USA 89(22), 10847–10851 (1992).
  • Gallego-Gomez JC, Risco C, Rodriguez D et al. Differences in virus-induced cell morphology and in virus maturation between MVA and other strains (WR, Ankara, and NYCBH) of vaccinia virus in infected human cells. J. Virol. 77(19), 10606–10622 (2003).
  • Sancho MC, Schleich S, Griffiths G, Krijnse-Locker J. The block in assembly of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus morphogenesis. J. Virol. 76(16), 8318–8334 (2002).
  • Gomez CE, Najera JL, Domingo-Gil E, Ochoa-Callejero L, Gonzalez-Aseguinolaza G, Esteban M. Virus distribution of the attenuated MVA and NYVAC poxvirus strains in mice. J. Gen. Virol. 88(Pt 9), 2473–2478 (2007).
  • Ramirez JC, Finke D, Esteban M, Kraehenbuhl JP, Acha-Orbea H. Tissue distribution of the Ankara strain of vaccinia virus (MVA) after mucosal or systemic administration. Arch. Virol. 148(5), 827–839 (2003).
  • Ramirez JC, Gherardi MM, Esteban M. Biology of attenuated modified vaccinia virus Ankara recombinant vector in mice: virus fate and activation of B- and T-cell immune responses in comparison with the Western Reserve strain and advantages as a vaccine. J. Virol. 74(2), 923–933 (2000).
  • Corbett M, Bogers WM, Heeney JL et al. Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic. Proc. Natl Acad. Sci. USA 105(6), 2046–2051 (2008).
  • Burgers WA, Shephard E, Monroe JE et al. Construction, characterization, and immunogenicity of a multigene modified vaccinia Ankara (MVA) vaccine based on HIV type 1 subtype C. AIDS Res. Hum. Retroviruses 24(2), 195–206 (2008).
  • Wyatt LS, Belyakov IM, Earl PL, Berzofsky JA, Moss B. Enhanced cell surface expression, immunogenicity and genetic stability resulting from a spontaneous truncation of HIV Env expressed by a recombinant MVA. Virology 372(2), 260–272 (2008).
  • Cottingham MG, Carroll MW. Recombinant MVA vaccines: dispelling the myths. Vaccine 31(39), 4247–4251 (2013).
  • Walsh SR, Seaman MS, Grandpre LE et al. Impact of anti-orthopoxvirus neutralizing antibodies induced by a heterologous prime-boost HIV-1 vaccine on insert-specific immune responses. Vaccine 31(1), 114–119 (2012).
  • Excler JL, Tomaras GD, Russell ND. Novel directions in HIV-1 vaccines revealed from clinical trials. Curr. Opin. HIV AIDS 8(5),420–430 (2013).
  • Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V. An avian cell line designed for production of highly attenuated viruses. Vaccine 27(5), 748–756 (2009).
  • Jordan I, Northoff S, Thiele M et al. A chemically defined production process for highly attenuated poxviruses. Biologicals 39(1), 50–58 (2011).
  • Brown SW, Mehtali M. The Avian EB66(R) cell Llne, application to vaccines, and therapeutic protein production. PDA J. Pharm. Sci. Technol. 64(5), 419–425 (2010).
  • Flechsig C, Suezer Y, Kapp M et al. Uptake of antigens from modified vaccinia Ankara virus-infected leukocytes enhances the immunostimulatory capacity of dendritic cells. Cytotherapy 13(6), 739–752 (2011).
  • Delaloye J, Roger T, Steiner-Tardivel QG et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 5(6), e1000480 (2009).
  • Eitz Ferrer P, Potthoff S, Kirschnek S et al. Induction of Noxa-mediated apoptosis by modified vaccinia virus Ankara depends on viral recognition by cytosolic helicases, leading to IRF-3/IFN-beta-dependent induction of pro-apoptotic Noxa. PLoS Pathog. 7(6), e1002083 (2011).
  • Gomez CE, Perdiguero B, Jimenez V et al. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. PLoS ONE 7(4), e35485 (2012).
  • Guerra S, Najera JL, Gonzalez JM et al. Distinct gene expression profiling after infection of immature human monocyte-derived dendritic cells by the attenuated poxvirus vectors MVA and NYVAC. J. Virol. 81(16), 8707–8721 (2007).
  • Pascutti MF, Rodriguez AM, Falivene J, Giavedoni L, Drexler I, Gherardi MM. Interplay between modified vaccinia virus Ankara and dendritic cells: phenotypic and functional maturation of bystander dendritic cells. J. Virol. 85(11), 5532–5545 (2011).
  • Cubillos-Zapata C, Guzman E, Turner A et al. Differential effects of viral vectors on migratory afferent lymph dendritic cells in vitro predict enhanced immunogenicity in vivo. J. Virol. 85(18), 9385–9394 (2011).
  • Guzman E, Cubillos-Zapata C, Cottingham MG et al. Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J. Virol. 86(10), 5452–5466 (2012).
  • Climent N, Guerra S, Garcia F et al. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+) T cell responses in HIV-1-infected individuals. PLoS ONE 6(5), e19644 (2011).
  • Yang S, Tsang KY, Schlom J. Induction of higher-avidity human CTLs by vector-mediated enhanced costimulation of antigen-presenting cells. Clin. Cancer Res. 11(15), 5603–5615 (2005).
  • Gasteiger G, Kastenmuller W, Ljapoci R, Sutter G, Drexler I. Cross-priming of cytotoxic T cells dictates antigen requisites for modified vaccinia virus Ankara vector vaccines. J. Virol. 81(21), 11925–11936 (2007).
  • Iborra S, Izquierdo HM, Martinez-Lopez M, Blanco-Menendez N, Reis E Sousa C, Sancho D. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J. Clin. Invest. 122(5), 1628–1643 (2012).
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361(23), 2209–2220 (2009).
  • Pitisuttithum P, Rerks-Ngarm S, Bussaratid V et al. Safety and reactogenicity of canarypox ALVAC-HIV (vCP1521) and HIV-1 gp120 AIDSVAX B/E vaccination in an efficacy trial in Thailand. PLoS ONE 6(12), e27837 (2011).
  • Antrobus RD, Berthoud TK, Mullarkey CE et al. Co-administration of seasonal influenza vaccine and MVA-NP+M1 simultaneously achieves potent humoral and cell mediated responses. Mol. Ther. (2013) (Epub ahead of print).
  • Antrobus RD, Lillie PJ, Berthoud TK et al. A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in adults aged over 50 years. PLoS ONE 7(10), e48322 (2012).
  • Berthoud TK, Hamill M, Lillie PJ et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin. Infect. Dis. 52(1), 1–7 (2011).
  • Lillie PJ, Berthoud TK, Powell TJ et al. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin. Infect. Dis. 55(1), 19–25 (2012).
  • Cavenaugh JS, Awi D, Mendy M, Hill AV, Whittle H, Mcconkey SJ. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS ONE 6(2), e14626 (2011).
  • Habersetzer F, Honnet G, Bain C et al. A poxvirus vaccine is safe, induces T-cell responses, and decreases viral load in patients with chronic hepatitis C. Gastroenterology 141(3), 890–899 e891–e894 (2011).
  • Gomez CE, Perdiguero B, Cepeda MV et al. High, broad, polyfunctional and durable T cell immune responses induced in mice by a novel hepatitis C virus (HCV) vaccine candidate based on MVA expressing the near full-length HCV genome (MVA-HCV). J. Virol. 87(13), 7282–7300 (2013).
  • Fournillier A, Frelin L, Jacquier E et al. A Heterologous Prime/Boost Vaccination Strategy Enhances the Immunogenicity of Therapeutic Vaccines for Hepatitis C Virus. J. Infect. Dis. 208(6), 1008–1019 (2013).
  • Who Aregawi M, Cibulskis RE, Otten M, Williams R. WHO Global Malaria Programme. Surveillance Monitoring and Evaluation Unit. World Malaria Report 2009. World Health Organization, Geneva, Switzerland (2009).
  • Good MF, Doolan DL. Malaria vaccine design: immunological considerations. Immunity 33(4), 555–566 (2010).
  • Tsuji M. A retrospective evaluation of the role of T cells in the development of malaria vaccine. Exp. Parasitol. 126(3), 421–425 (2010).
  • Grun JL, Weidanz WP. Antibody-independent immunity to reinfection malaria in B-cell-deficient mice. Infect. Immun. 41(3), 1197–1204 (1983).
  • Amante FH, Good MF. Prolonged Th1-like response generated by a Plasmodium yoelii-specific T cell clone allows complete clearance of infection in reconstituted mice. Parasite Immunol. 19(3), 111–126 (1997).
  • Osier FH, Fegan G, Polley SD et al. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect. Immun. 76(5), 2240–2248 (2008).
  • Crompton PD, Kayala MA, Traore B et al. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc. Natl Acad. Sci.. USA. 107(15), 6958–6963 (2010).
  • Agnandji ST, Lell B, Fernandes JF et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367(24), 2284–2295 (2012).
  • Olotu A, Fegan G, Wambua J et al. Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N. Engl. J. Med. 368(12), 1111–1120 (2013).
  • Zavala F, Rodrigues M, Rodriguez D, Rodriguez JR, Nussenzweig RS, Esteban M. A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8(+) T cells. Virology 280(2), 155–159 (2001).
  • Liu MA. Immunologic basis of vaccine vectors. Immunity 33(4), 504–515 (2010).
  • Li S, Rodrigues M, Rodriguez D et al. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc. Natl Acad. Sci. USA 90(11), 5214–5218 (1993).
  • Schneider J, Gilbert SC, Hannan CM et al. Induction of CD8+ T cells using heterologous prime-boost immunisation strategies. Immunol. Rev. 170, 29–38 (1999).
  • Miyahira Y, Garcia-Sastre A, Rodriguez D et al. Recombinant viruses expressing a human malaria antigen can elicit potentially protective immune CD8+ responses in mice. Proc. Natl Acad. Sci. USA 95(7), 3954–3959 (1998).
  • Draper SJ, Moore AC, Goodman AL et al. Effective induction of high-titer antibodies by viral vector vaccines. Nat. Med. 14(8), 819–821 (2008).
  • Draper SJ, Goodman AL, Biswas S et al. Recombinant viral vaccines expressing merozoite surface protein-1 induce antibody- and T cell-mediated multistage protection against malaria. Cell Host Microbe 5(1), 95–105 (2009).
  • Moorthy VS, Mcconkey S, Roberts M et al. Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. Vaccine 21(17–18), 1995–2002 (2003).
  • Mcconkey SJ, Reece WH, Moorthy VS et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat. Med. 9(6), 729–735 (2003).
  • Dunachie SJ, Walther M, Epstein JE et al. A DNA prime-modified vaccinia virus ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect. Immun. 74(10), 5933–5942 (2006).
  • Moorthy VS, Pinder M, Reece WH et al. Safety and immunogenicity of DNA/modified vaccinia virus ankara malaria vaccination in African adults. J. Infect. Dis. 188(8), 1239–1244 (2003).
  • Moorthy VS, Imoukhuede EB, Milligan P et al. A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med. 1(2), e33 (2004).
  • Webster DP, Dunachie S, Vuola JM et al. Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc. Natl Acad. Sci. USA 102(13), 4836–4841 (2005).
  • Keating SM, Bejon P, Berthoud T et al. Durable human memory T cells quantifiable by cultured enzyme-linked immunospot assays are induced by heterologous prime boost immunization and correlate with protection against malaria. J. Immunol. 175(9), 5675–5680 (2005).
  • Bejon P, Mwacharo J, Kai OK et al. Immunogenicity of the candidate malaria vaccines FP9 and modified vaccinia virus Ankara encoding the pre-erythrocytic antigen ME-TRAP in 1–6 year old children in a malaria endemic area. Vaccine 24(22), 4709–4715 (2006).
  • Bejon P, Mwacharo J, Kai O et al. A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin. Trials 1(6), e29 (2006).
  • Bejon P, Mwacharo J, Kai O et al. The induction and persistence of T cell IFN-γ responses after vaccination or natural exposure is suppressed by Plasmodium falciparum. J. Immunol. 179(6), 4193–4201 (2007).
  • Ogwang C, Afolabi M, Kimani D et al. Safety and immunogenicity of heterologous prime-boost immunisation with Plasmodium falciparum malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy Gambian and Kenyan adults. PLoS ONE 8(3), e57726 (2013).
  • O'hara GA, Duncan CJ, Ewer KJ et al. Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J. Infect. Dis. 205(5), 772–781 (2012).
  • Sheehy SH, Duncan CJ, Elias SC et al. Phase Ia clinical evaluation of the Plasmodium falciparum blood-stage antigen MSP1 in ChAd63 and MVA vaccine vectors. Mol. Ther. 19(12), 2269–2276 (2011).
  • Sheehy SH, Duncan CJ, Elias SC et al. Phase Ia clinical evaluation of the safety and immunogenicity of the Plasmodium falciparum blood-stage antigen AMA1 in ChAd63 and MVA vaccine vectors. PLoS ONE 7(2), e31208 (2012).
  • Who. Global tuberculosis report 2012. World Health Organization, Geneva, Switzerland (2012).
  • Flynn JL, Chan J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).
  • Kaufmann SH. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 1(1), 20–30 (2001).
  • Ellner JJ, Hirsch CS, Whalen CC. Correlates of protective immunity to Mycobacterium tuberculosis in humans. Clin. Infect. Dis. 30(Suppl. 3), S279–S282 (2000).
  • Black GF, Weir RE, Floyd S et al. BCG-induced increase in interferon-gamma response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the UK: two randomised controlled studies. Lancet 359(9315), 1393–1401 (2002).
  • Flynn JL, Goldstein MM, Chan J et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2(6), 561–572 (1995).
  • Flesch IE, Kaufmann SH. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect. Immun. 58(8), 2675–2677 (1990).
  • Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441(7095), 890–893 (2006).
  • Darrah PA, Patel DT, De Luca PM et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13(7), 843–850 (2007).
  • Forbes EK, Sander C, Ronan EO et al. Multifunctional, high-level cytokine-producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J. Immunol. 181(7), 4955–4964 (2008).
  • Williams A, Goonetilleke NP, Mcshane H et al. Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infect. Immun. 73(6), 3814–3816 (2005).
  • Goonetilleke NP, Mcshane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol. 171(3), 1602–1609 (2003).
  • Vordermeier HM, Rhodes SG, Dean G et al. Cellular immune responses induced in cattle by heterologous prime-boost vaccination using recombinant viruses and bacille Calmette-Guerin. Immunology 112(3), 461–470 (2004).
  • Verreck FA, Vervenne RA, Kondova I et al. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS ONE 4(4), e5264 (2009).
  • Vordermeier HM, Villarreal-Ramos B, Cockle PJ et al. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect. Immun. 77(8), 3364–3373 (2009).
  • Mcshane H, Pathan AA, Sander CR et al. Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat. Med. 10(11), 1240–1244 (2004).
  • Mcshane H, Pathan AA, Sander CR, Goonetilleke NP, Fletcher HA, Hill AV. Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis (Edinb) 85(1–2), 47–52 (2005).
  • Nicol MP, Grobler LA. MVA-85A, a novel candidate booster vaccine for the prevention of tuberculosis in children and adults. Curr. Opin. Mol. Ther. 12(1), 124–134 (2010).
  • Tameris MD, Hatherill M, Landry BS et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871), 1021–1028 (2013).
  • Bishai W, Sullivan Z, Bloom BR, Andersen P. Bettering BCG: a tough task for a TB vaccine? Nat. Med. 19(4), 410–411 (2013).
  • Dreicer R, Stadler WM, Ahmann FR et al. MVA-MUC1-IL2 vaccine immunotherapy (TG4010) improves PSA doubling time in patients with prostate cancer with biochemical failure. Invest. New Drugs 27(4), 379–386 (2009).
  • Oudard S, Rixe O, Beuselinck B et al. A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: clinical and immunological findings. Cancer Immunol. Immunother. 60(2), 261–271 (2011).
  • Quoix E, Ramlau R, Westeel V et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol. 12(12), 1125–1133 (2011).
  • Ramlau R, Quoix E, Rolski J et al. A phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV Non-small cell lung cancer. J. Thorac. Oncol. 3(7), 735–744 (2008).
  • Amato RJ, Drury N, Naylor S et al. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial. J. Immunother. 31(6), 577–585 (2008).
  • Amato RJ, Hawkins RE, Kaufman HL et al. Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin. Cancer Res. 16(22), 5539–5547 (2010).
  • Amato RJ, Shingler W, Goonewardena M et al. Vaccination of renal cell cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) alone or administered in combination with interferon-alpha (IFN-alpha): a phase 2 trial. J. Immunother. 32(7), 765–772 (2009).
  • Amato RJ, Shingler W, Naylor S et al. Vaccination of renal cell cancer patients with modified vaccinia ankara delivering tumor antigen 5T4 (TroVax) administered with interleukin 2: a phase II trial. Clin. Cancer Res. 14(22), 7504–7510 (2008).
  • Elkord E, Dangoor A, Drury NL et al. An MVA-based vaccine targeting the oncofetal antigen 5T4 in patients undergoing surgical resection of colorectal cancer liver metastases. J. Immunother. 31(9), 820–829 (2008).
  • Harrop R, Drury N, Shingler W et al. Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses. Cancer Immunol. Immunother. 57(7), 977–986 (2008).
  • Hawkins RE, Macdermott C, Shablak A et al. Vaccination of patients with metastatic renal cancer with modified vaccinia Ankara encoding the tumor antigen 5T4 (TroVax) given alongside interferon-alpha. J. Immunother. 32(4), 424–429 (2009).
  • Kaufman HL, Taback B, Sherman W et al. Phase II trial of Modified Vaccinia Ankara (MVA) virus expressing 5T4 and high dose Interleukin-2 (IL-2) in patients with metastatic renal cell carcinoma. J. Transl. Med. 7, 2 (2009).
  • Mandl SJ, Rountree RB, Dalpozzo K et al. Immunotherapy with MVA-BN(R)-HER2 induces HER-2-specific Th1 immunity and alters the intratumoral balance of effector and regulatory T cells. Cancer Immunol. Immunother. 61(1), 19–29 (2012).
  • Song GY, Srivastava T, Ishizaki H, Lacey SF, Diamond DJ, Ellenhorn JD. Recombinant modified vaccinia virus ankara (MVA) expressing wild-type human p53 induces specific antitumor CTL expansion. Cancer Invest. 29(8), 501–510 (2011).
  • Dangoor A, Lorigan P, Keilholz U et al. Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol. Immunother. 59(6), 863–873 (2010).
  • Brun JL, Dalstein V, Leveque J et al. Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am. J. Obstet. Gynecol. 204(2), 169 e161–e168 (2011).
  • Hui EP, Taylor GS, Jia H et al. Phase 1 trial of recombinant Modified Vaccinia Ankara (MVA) encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 73(6), 1676–1688 (2013).
  • Harrop R, Shingler W, Kelleher M, De Belin J, Treasure P. Cross-trial analysis of immunologic and clinical data resulting from phase I and II trials of MVA-5T4 (TroVax) in colorectal, renal, and prostate cancer patients. J. Immunother. 33(9), 999–1005 (2010).
  • Tatsis N, Lin SW, Harris-Mccoy K, Garber DA, Feinberg MB, Ertl HC. Multiple immunizations with adenovirus and MVA vectors improve CD8+ T cell functionality and mucosal homing. Virology 367(1), 156–167 (2007).
  • Barouch DH, Liu J, Li H et al. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature 482(7383), 89–93 (2012).
  • Boyd AC, Ruiz-Hernandez R, Peroval MY et al. Towards a universal vaccine for avian influenza: protective efficacy of modified Vaccinia virus Ankara and Adenovirus vaccines expressing conserved influenza antigens in chickens challenged with low pathogenic avian influenza virus. Vaccine 31(4), 670–675 (2013).
  • Ratto-Kim S, Currier JR, Cox JH et al. Heterologous prime-boost regimens using rAd35 and rMVA vectors elicit stronger cellular immune responses to HIV proteins than homologous regimens. PLoS ONE 7(9), e45840 (2012).
  • Reyes-Sandoval A, Berthoud T, Alder N et al. Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect. Immun. 78(1), 145–153 (2010).
  • Reyes-Sandoval A, Rollier CS, Milicic A et al. Mixed vector immunization with recombinant adenovirus and MVA can improve vaccine efficacy while decreasing antivector immunity. Mol. Ther. 20(8), 1633–1647 (2012).
  • Mooij P, Balla-Jhagjhoorsingh SS, Koopman G et al. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J. Virol. 82(6), 2975–2988 (2008).
  • Vaccari M, Keele BF, Bosinger SE et al. Protection Afforded by an HIV Vaccine Candidate in Macaques Depends on the Dose of SIVmac251 at Challenge Exposure. J. Virol. 87(6), 3538–3548 (2013).
  • Santra S, Sun Y, Parvani JG et al. Heterologous prime/boost immunization of rhesus monkeys by using diverse poxvirus vectors. J. Virol. 81(16), 8563–8570 (2007).
  • Abaitua F, Rodriguez JR, Garzon A, Rodriguez D, Esteban M. Improving recombinant MVA immune responses: potentiation of the immune responses to HIV-1 with MVA and DNA vectors expressing Env and the cytokines IL-12 and IFN-γamma. Virus Res. 116(1–2), 11–20 (2006).
  • Kolibab K, Yang A, Derrick SC, Waldmann TA, Perera LP, Morris SL. Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clin. Vaccine Immunol. 17(5), 793–801 (2010).
  • Nemeckova S, Smahel M, Hainz P et al. Combination of intratumoral injections of vaccinia virus MVA expressing GM-CSF and immunization with DNA vaccine prolongs the survival of mice bearing HPV16 induced tumors with downregulated expression of MHC class I molecules. Neoplasma 54(4), 326–333 (2007).
  • Garber DA, O'Mara LA, Zhao J, Gangadhara S, An I, Feinberg MB. Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies. PLoS ONE 4(5), e5445 (2009).
  • Cottingham MG, Andersen RF, Spencer AJ et al. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA). PLoS ONE 3(2), e1638 (2008).
  • Falivene J, Del Medico Zajac MP, Pascutti MF et al. Improving the MVA vaccine potential by deleting the viral gene coding for the IL-18 binding protein. PLoS ONE 7(2), e32220 (2012).
  • Garcia-Arriaza J, Najera JL, Gomez CE, Sorzano CO, Esteban M. Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B) expressing four HIV-1 antigens and potentiation by specific gene deletions. PLoS ONE 5(8), e12395 (2010).
  • Garcia-Arriaza J, Najera JL, Gomez CE et al. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses. PLoS ONE 6(8), e24244 (2011).
  • Perdiguero B, Gomez CE, Najera JL et al. Deletion of the viral anti-apoptotic gene F1L in the HIV/AIDS vaccine candidate MVA-C enhances immune responses against HIV-1 antigens. PLoS ONE 7(10), e48524 (2012).
  • Garber DA, O'Mara LA, Gangadhara S et al. Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques. J. Virol. 86(23), 12605–12615 (2012).
  • Garcia-Arriaza J, Arnaez P, Gomez CE, Sorzano CO, Esteban M. Improving adaptive and memory immune responses of an HIV/AIDS vaccine candidate MVA-B by deletion of vaccinia virus genes (C6L and K7R) blocking interferon signaling pathways. PLoS ONE 8(6), e66894 (2013).
  • Six A, Bellier B, Thomas-Vaslin V, Klatzmann D. Systems biology in vaccine design. Microb. Biotechnol. 5(2), 295–304 (2012).
  • Querec TD, Akondy RS, Lee EK et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10(1), 116–125 (2009).
  • Gaucher D, Therrien R, Kettaf N et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 205(13), 3119–3131 (2008).
  • Nakaya HI, Wrammert J, Lee EK et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12(8), 786–795 (2011).
  • Jaoko W, Nakwagala FN, Anzala O et al. Safety and immunogenicity of recombinant low-dosage HIV-1 A vaccine candidates vectored by plasmid pTHr DNA or modified vaccinia virus Ankara (MVA) in humans in East Africa. Vaccine 26(22), 2788–2795 (2008).
  • Guimaraes-Walker A, Mackie N, Mccormack S et al. Lessons from IAVI-006, a phase I clinical trial to evaluate the safety and immunogenicity of the pTHr.HIVA DNA and MVA.HIVA vaccines in a prime-boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine 26(51), 6671–6677 (2008).
  • Sandstrom E, Nilsson C, Hejdeman B et al. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J. Infect. Dis. 198(10), 1482–1490 (2008).
  • Gudmundsdotter L, Nilsson C, Brave A et al. Recombinant Modified Vaccinia Ankara (MVA) effectively boosts DNA-primed HIV-specific immune responses in humans despite pre-existing vaccinia immunity. Vaccine 27(33), 4468–4474 (2009).
  • Aboud S, Nilsson C, Karlen K et al. Strong HIV-specific CD4+ and CD8+ T-lymphocyte proliferative responses in healthy individuals immunized with an HIV-1 DNA vaccine and boosted with recombinant modified vaccinia virus ankara expressing HIV-1 genes. Clin. Vaccine Immunol. 17(7), 1124–1131 (2010).
  • Currier JR, Ngauy V, De Souza MS et al. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate. PLoS ONE 5(11), e13983 (2010).
  • Bakari M, Aboud S, Nilsson C et al. Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. Vaccine 29(46), 8417–8428 (2011).
  • Ramanathan VD, Kumar M, Mahalingam J et al. A Phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C-modified vaccinia Ankara virus vaccine candidate in Indian volunteers. AIDS Res. Hum. Retroviruses 25(11), 1107–1116 (2009).
  • Vasan S, Schlesinger SJ, Chen Z et al. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B'/C candidate vaccine. PLoS ONE 5(1), e8816 (2010).
  • Goepfert PA, Elizaga ML, Sato A et al. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J. Infect. Dis. 203(5), 610–619 (2011).
  • Keefer MC, Frey SE, Elizaga M et al. A phase I trial of preventive HIV vaccination with heterologous poxviral-vectors containing matching HIV-1 inserts in healthy HIV-uninfected subjects. Vaccine 29(10), 1948–1958 (2011).
  • Garcia F, Bernaldo De Quiros JC, Gomez CE et al. Safety and immunogenicity of a modified pox vector-based HIV/AIDS vaccine candidate expressing Env, Gag, Pol and Nef proteins of HIV-1 subtype B (MVA-B) in healthy HIV-1-uninfected volunteers: A phase I clinical trial (RISVAC02). Vaccine 29(46), 8309–8316 (2011).
  • Gomez CE, Najera JL, Perdiguero B et al. The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens. J. Virol. 85(21), 11468–11478 (2011).
  • Gorse GJ, Newman MJ, Decamp A et al. DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults. Clin. Vaccine Immunol. 19(5), 649–658 (2012).
  • Hayes P, Gilmour J, Von Lieven A et al. Safety and immunogenicity of DNA prime and modified vaccinia ankara virus-HIV subtype C vaccine boost in healthy adults. Clin. Vaccine Immunol. 20(3), 397–408 (2013).
  • Mehendale S, Thakar M, Sahay S et al. Safety and immunogenicity of DNA and MVA HIV-1 subtype C vaccine prime-boost regimens: a phase I randomised Trial in HIV-uninfected Indian volunteers. PLoS ONE 8(2), e55831 (2013).
  • Greenough TC, Cunningham CK, Muresan P et al. Safety and immunogenicity of recombinant poxvirus HIV-1 vaccines in young adults on highly active antiretroviral therapy. Vaccine 26(52), 6883–6893 (2008).
  • Kutscher S, Allgayer S, Dembek CJ et al. MVA-nef induces HIV-1-specific polyfunctional and proliferative T-cell responses revealed by the combination of short- and long-term immune assays. Gene Ther. 17(11), 1372–1383 (2010).
  • Howles S, Guimaraes-Walker A, Yang H et al. Vaccination with a modified vaccinia virus Ankara (MVA)-vectored HIV-1 immunogen induces modest vector-specific T cell responses in human subjects. Vaccine 28(45), 7306–7312 (2010).
  • Powell TJ, Peng Y, Berthoud TK et al. Examination of Influenza Specific T Cell Responses after Influenza Virus Challenge in Individuals Vaccinated with MVA-NP+M1 Vaccine. PLoS ONE 8(5), e62778 (2013).
  • Sheehy SH, Duncan CJ, Elias SC et al. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol. Ther. 20(12), 2355–2368 (2012).
  • Rowland R, Pathan AA, Satti I et al. Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: a phase I clinical trial. Hum. Vaccin Immunother. 9(1), 50–62 (2013).
  • Meyer J, Harris SA, Satti I et al. Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine 31(7), 1026–1033 (2013).
  • Scriba TJ, Tameris M, Smit E et al. A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am. J. Respir. Crit. Care Med. 185(7), 769–778 (2012).
  • Pathan AA, Minassian AM, Sander CR et al. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 30(38), 5616–5624 (2012).
  • Scriba TJ, Tameris M, Mansoor N et al. Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J. Infect. Dis. 203(12), 1832–1843 (2011).
  • Ota MO, Odutola AA, Owiafe PK et al. Immunogenicity of the tuberculosis vaccine MVA85A is reduced by coadministration with EPI vaccines in a randomized controlled trial in Gambian infants. Sci. Transl. Med. 3(88), 88ra56 (2011).
  • Odutola AA, Owolabi OA, Owiafe PK, Mcshane H, Ota MO. A new TB vaccine, MVA85A, induces durable antigen-specific responses 14 months after vaccination in African infants. Vaccine 30(38), 5591–5594 (2012).
  • Scriba TJ, Tameris M, Mansoor N et al. Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur. J. Immunol. 40(1), 279–290 (2010).
  • Sander CR, Pathan AA, Beveridge NE et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am. J. Respir. Crit. Care Med. 179(8), 724–733 (2009).
  • Brookes RH, Hill PC, Owiafe PK et al. Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa. PLoS ONE 3(8), e2921 (2008).
  • Hawkridge T, Scriba TJ, Gelderbloem S et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J. Infect. Dis. 198(4), 544–552 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.