426
Views
32
CrossRef citations to date
0
Altmetric
Special Report

Tumor lysate-loaded biodegradable microparticles as cancer vaccines

, , , , &

References

  • Van Der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038), 1643–1647 (1991).
  • Boon T, Coulie PG, Van Den Eynde BJ, Van Der Bruggen P. Human T cell responses against melanoma. Annu. Rev. Immunol. 24, 175–208 (2006).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • Mcneel DG, Dunphy EJ, Davies JG et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol. 27(25), 4047–4054 (2009).
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9(3), 162–174 (2009).
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6(4), 295–307 (2006).
  • Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J. Cell. Physiol. 228(7), 1404–1412 (2012).
  • Norian LA, Rodriguez PC, O'Mara LA et al. Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via L-arginine metabolism. Cancer Res. 69(7), 3086–3094 (2009).
  • Le DT, Jaffee EM. Next-generation cancer vaccine approaches: integrating lessons learned from current successes with promising biotechnologic advances. J. Natl Compr. Cancer Netw. 11(7), 766–772 (2013).
  • Neumann E, Engelsberg A, Decker J et al. Heterogeneous expression of the tumor-associated antigens RAGE-1, PRAME, and glycoprotein 75 in human renal cell carcinoma: candidates for T-cell-based immunotherapies? Cancer Res. 58(18), 4090–4095 (1998).
  • Neller MA, Lopez JA, Schmidt CW. Antigens for cancer immunotherapy. Semin. Immunol. 20(5), 286–295 (2008).
  • De Gruijl TD, Van Den Eertwegh AJ, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol. Immunother. 57(10), 1569–1577 (2008).
  • Babu R, Adamson DC. Rindopepimut: an evidence-based review of its therapeutic potential in the treatment of EGFRvIII-positive glioblastoma. Core Evid. 7, 93–103 (2012).
  • Sanchez-Perez L, Kottke T, Diaz RM et al. Potent selection of antigen loss variants of B16 melanoma following inflammatory killing of melanocytes in vivo. Cancer Res. 65(5), 2009–2017 (2005).
  • Riker A, Cormier J, Panelli M et al. Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126(2), 112–120 (1999).
  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 64(14), 4973–4979 (2004).
  • Wheeler CJ, Black KL, Liu G et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 68(14), 5955–5964 (2008).
  • Prins RM, Wang X, Soto H et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J. Immunother. 36(2), 152–157 (2013).
  • Schaefer C, Butterfield LH, Lee S et al. Function but not phenotype of melanoma peptide-specific CD8(+) T cells correlate with survival in a multiepitope peptide vaccine trial (ECOG 1696). Int. J. Cancer 131(4), 874–884 (2012).
  • Haanen JB, Baars A, Gomez R et al. Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients. Cancer Immunol. Immunother. 55(4), 451–458 (2006).
  • Weide B, Zelba H, Derhovanessian E et al. Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J. Clin. Oncol. 30(15), 1835–1841 (2012).
  • Karbach J, Gnjatic S, Bender A et al. Tumor-reactive CD8+ T-cell responses after vaccination with NY-ESO-1 peptide, CpG 7909 and Montanide ISA -51: association with survival. Int. J. Cancer 126(4), 909–918 (2010).
  • Schwartzentruber DJ, Lawson DH, Richards JM et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364(22), 2119–2127 (2011).
  • Mitchell MS, Kan-Mitchell J, Kempf RA, Harel W, Shau HY, Lind S. Active specific immunotherapy for melanoma: Phase I trial of allogeneic lysates and a novel adjuvant. Cancer Res. 48(20), 5883–5893 (1988).
  • Sondak VK, Sosman JA. Results of clinical trials with an allogeneic melanoma tumor cell lysate vaccine: Melacine((R)). Semin. Cancer Biol. 13(6), 409–415 (2003).
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol. Cell Biol. 82(5), 488–496 (2004).
  • Schnurr M, Galambos P, Scholz C et al. Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res. 61(17), 6445–6450 (2001).
  • Gitlitz BJ, Figlin RA, Pantuck AJ, Belldegrun AS. Dendritic cell-based immunotherapy of renal cell carcinoma. Curr. Urol. Rep. 2(1), 46–52 (2001).
  • Parajuli P, Mathupala S, Sloan AE. Systematic comparison of dendritic cell-based immunotherapeutic strategies for malignant gliomas: in vitro induction of cytolytic and natural killer-like T cells. Neurosurgery 55(5), 1194–1204 (2004).
  • Win SJ, Mcmillan DG, Errington-Mais F et al. Enhancing the immunogenicity of tumour lysate-loaded dendritic cell vaccines by conjugation to virus-like particles. Br. J. Cancer 106(1), 92–98 (2012).
  • Prasad S, Cody V, Saucier-Sawyer JK et al. Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine 7(1), 1–10 (2011).
  • Harding CV, Song R. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol. 153(11), 4925–4933 (1994).
  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-Mcdonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr. Opin. Microbiol. 13(1), 106–112 (2010).
  • Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm. Res. 28(2), 215–236 (2011).
  • Wagner H. The immunogenicity of CpG-antigen conjugates. Adv. Drug Deliv. Rev. 61(3), 243–247 (2009).
  • Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. A new horizon in modifications of chitosan: syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst. 30(2), 91–181 (2013).
  • Salem AK, Hung CF, Kim TW, Wu TC, Searson PC, Leong KW. Multi-component nanorods for vaccination applications. Nanotechnology 16(4), 484–487 (2005).
  • Xiang SD, Scholzen A, Minigo G et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods 40(1), 1–9 (2006).
  • Hanlon DJ, Aldo PB, Devine L et al. Enhanced stimulation of anti-ovarian cancer CD8+ T cells by dendritic cells loaded with nanoparticle encapsulated tumor antigen. Am. J. Reprod. Immunol. 65(6), 597–609 (2011).
  • Yoshikawa T, Okada N, Tsujino M et al. Vaccine efficacy of fusogenic liposomes containing tumor cell-lysate against murine B16BL6 melanoma. Biol. Pharm. Bull. 29(1), 100–104 (2006).
  • Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3(12), 984–993 (2003).
  • Hildner K, Edelson BT, Purtha WE et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904), 1097–1100 (2008).
  • Van Den Broeke LT, Daschbach E, Thomas EK, Andringa G, Berzofsky JA. Dendritic cell-induced activation of adaptive and innate antitumor immunity. J. Immunol. 171(11), 5842–5852 (2003).
  • Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin. Immunol. 8(5), 271–280 (1996).
  • Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 111(7), 927–930 (2002).
  • Gnjatic S, Sawhney NB, Bhardwaj N. Toll-like receptor agonists: are they good adjuvants? Cancer J. 16(4), 382–391 (2010).
  • Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 11(4 Suppl.), S63–68 (2005).
  • Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440(7085), 808–812 (2006).
  • Keijzer C, Slutter B, Van Der Zee R, Jiskoot W, Van Eden W, Broere F. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS ONE 6(11), e26684 (2011).
  • Krishnamachari Y, Salem AK. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev. 61(3), 205–217 (2009).
  • Zhang XQ, Dahle CE, Baman NK, Rich N, Weiner GJ, Salem AK. Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. J. Immunother. 30(5), 469–478 (2007).
  • Foged C, Hansen J, Agger EM. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur. J. Pharm. Sci. 45(4), 482–491 (2012).
  • Colaco CA, Bailey CR, Walker KB, Keeble J. Heat shock proteins: stimulators of innate and acquired immunity. Biomed. Res. Int. 2013, 461230 (2013).
  • Beaudette TT, Bachelder EM, Cohen JA et al. In vivo studies on the effect of co-encapsulation of CpG DNA and antigen in acid-degradable microparticle vaccines. Mol. Pharm. 6(4), 1160–1169 (2009).
  • Greenberg NM, Demayo F, Finegold MJ et al. Prostate cancer in a transgenic mouse. Proc. Natl Acad. Sci. USA 92(8), 3439–3443 (1995).
  • Mueller M, Reichardt W, Koerner J, Groettrup M. Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice. J. Control Release 162(1), 159–166 (2012).
  • Buteau C, Markovic SN, Celis E. Challenges in the development of effective peptide vaccines for cancer. Mayo Clin. Proc. 77(4), 339–349 (2002).
  • Goforth R, Salem AK, Zhu X et al. Immune stimulatory antigen loaded particles combined with depletion of regulatory T-cells induce potent tumor specific immunity in a mouse model of melanoma. Cancer Immunol. Immunother. 58(4), 517–530 (2009).
  • Steele TA. Chemotherapy-induced immunosuppression and reconstitution of immune function. Leukemia Res. 26(4), 411–414 (2002).
  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8(1), 59–73 (2008).
  • Vincent J, Mignot G, Chalmin F et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70(8), 3052–3061 (2010).
  • Ercolini AM, Ladle BH, Manning EA et al. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J. Exp. Med. 201(10), 1591–1602 (2005).
  • Gazzaniga S, Bravo AI, Guglielmotti A et al. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J. Invest. Dermatol. 127(8), 2031–2041 (2007).
  • Geary SM, Lemke CD, Lubaroff DM, Salem AK. The combination of a low-dose chemotherapeutic agent, 5-Fluorouracil, and an adenoviral tumor vaccine has a synergistic benefit on survival in a tumor model system. PLoS ONE 8(6), e67904 (2013).
  • Mattarollo SR, Loi S, Duret H, Ma Y, Zitvogel L, Smyth MJ. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 71(14), 4809–4820 (2011).
  • Frazier JL, Han JE, Lim M, Olivi A. Immunotherapy combined with chemotherapy in the treatment of tumors. Neurosurg. Clin. North Am. 21(1), 187–194 (2010).
  • He Q, Li J, Yin W et al. Low-dose paclitaxel enhances the anti-tumor efficacy of GM-CSF surface-modified whole-tumor-cell vaccine in mouse model of prostate cancer. Cancer Immunol. Immunother. 60(5), 715–730 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.