354
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: long-term patient survival and mechanism of function

, &

References

  • Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann. Surg. 230, 309–318 (1999).
  • Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).
  • Gilboa E. The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999).
  • Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6(10), 715–727 (2006).
  • Zou W. Regulatory T cells, tumor immunity and immunotherapy. Nat. Rev. Immunol. 6(4), 295–307 (2006).
  • Creagh EM, O'Neill LA. TLRs, NLRs and RLRs: a trinity of pathogen sensors that cooperate with innate immunity. Trends Immunol. (8), 352–357 (2006).
  • Janeway CAJr, Metzhitov R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).
  • Matzinger P. The danger model: a renewed sense of self. Science 296(5566), 301–305 (2002).
  • Fournier P, Schirrmacher V. Randomized clinical studies of anti-tumor vaccination: state of the art in 2008. Exp. Rev. Vaccines 8(1), 51–66 (2009).
  • Fearon E, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).
  • Bishop JM. Cellular oncogenes and retroviruses. Annu. Rev. Biochem. 52, 301–354 (1983).
  • Weinberg RA. Tumor suppressor genes. Science 254(5035), 1138–1146 (1991).
  • Markowitz SD, Bertagnolli MM. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 361(25), 2449–2460 (2009).
  • Baccelli I, Trumpp, A. The evolving concept of cancer and metastasis stem cells. J. Cell Biol. 198(3), 281–293 (2012).
  • Kitano H. Cancer robustness: tumor tactics. Nature 426(6963), 125 (2003).
  • Hanahan D, Weinberg RA. The hallmark of cancer. Cell 100(1), 57–70 (2000).
  • Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).
  • Feuerer M, Beckhove PGarbi N et al. Bone marrow as a priming site for T cell responses to blood-borne antigens. Nat. Med. 9(9), 1151–1157 (2003).
  • Sallusto F, Geginat J, Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Ann. Rev. Immunol. 22, 745–763 (2004).
  • Pagès F, Berger ACamus M et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353(25), 2654–2666 (2005).
  • Suzuki A, Masuda ANagata H et al. Mature dendritic cells make clusters with T cells in the invasive margin of colorectal carcinoma. J. Pathol. 196(1), 37–43 (2002).
  • Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12(4), 298–306 (2012).
  • Wagner P, Koch MNummer D et al. Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann. Surg. Oncol. 15(8), 2310–2317 (2008).
  • Line A, Slucka Z, Stengrevics A, Silina K, Li G, Rees RC. Characterisation of tumour-associated antigens in colon cancer. Cancer Immunol. Immunother. 51(10), 574–582 (2002).
  • Bonertz A, Weitz JPietsch DH et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest. 119(11), 3311–3321 (2009).
  • Salama P, Philipps MGrieu F et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol. 27(2), 186–192 (2009).
  • Rizzo A, Pallone F, Monteleone G, Fantini MC. Intestinal inflammation and colorectal cancer: a double-edged sword? World J. of Gastroenterology 17(26), 3092–3100 (2011).
  • Blatner NR, Bonertz ABeckhove P et al. In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proc. Natl Acad. Sci. USA 107(14), 6430–6435 (2010).
  • Hanna MG, Pollack VA, Peters LC, Hoover HC. Active specific immunotherapy of established micrometastases with BCG plus tumor cell vaccines. Cancer 49(4), 659–664 (1982).
  • Heicappell R, Schirrmacher V, von Hoegen P, Ahlert T, Appelhans B. Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. Int. J. Cancer 37(4), 569–577 (1986).
  • Schirrmacher V, Bosslet K, Shantz G, Clauer K, Hübsch D. Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. IV. Antigenic differences between the parental tumor line and its metastasizing variant. Int. J. Cancer 23(2), 245–252 (1979).
  • Schirrmacher V, Heicappell R. Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. II. Establishment of specific systemic anti-tumor immunity. Clin. Exp. Metastasis 5(2), 147–156 (1987).
  • Angelova M, Charoentong P, Hackl H, Fischer M, Galon J, Trajanoski Z. Immunogenicity of the colorectal mutanome. Abstract 089 from the Abstract Book 2013 of the 11th Annual Meeting of the Association for Cancer Immunotherapy (CIMT), Mainz, Germany, 14–16 May 2013.
  • Lindenmann J, Klein PA. Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J. Exp. Med. 126(1), 93–108 (1967).
  • Russel SJ. RNA viruses as virotherapy agents. Cancer Gene Ther. 9(12), 961–966 (2002).
  • Cassel WA, Garret RE. Newcastle disease virus as an antineoplastic agent. Cancer 18, 863–868 (1965).
  • Cassel WA, Murray DR. A ten-year follow-up on stage II malignant melanoma patients treated post-surgically with Newcastle disease virus oncolysate. Med. Oncol. Tumor Pharmacother. 9(4), 169–171 (1992).
  • Tanaka N, Sivanandham M, Wallack MK. Immunotherapy of a vaccinia colon oncolysate prepared with interleukin-2 gene-encoded vaccinia virus and interferon-α increases the survival of mice bearing syngeneic colon adenocarcinoma. J Immunother Emphasis Tumor Immunol 16(4), 283–293 (1994).
  • Jack AM, Aydin N, Montenegro G, Alam K, Wallack M. A novel dendritic cell-based cancer vaccine produces promising results in a syngeneic CC-36 murine colon adenocarcinoma model. J. Surg. Res. 139(2), 164–169 (2007).
  • Kobayashi H. Viral xenogenization of intact tumor cells. Adv. Cancer Res. 30, 279–299 (1979).
  • Schirrmacher V, von Hoegen P. Importance of tumor cell membrane integrity and viability for cytotoxic T lymphocyte activation by cancer vaccines. Vaccine Res. 2, 183–196 (1993).
  • Von Hoegen P, Zawatzky R, Schirrmacher V. Modification of tumor cells by a low dose of Newcastle disease virus. III. Potentiation of tumor-specific cytolytic T cell activity via induction of interferon α/beta. Cell. Immunol. 126(1), 80–90 (1990).
  • Ertel C, Millar NS, Emmerson PT, Schirrmacher V, von Hoegen P. Viral hemagglutinin augments peptide-specific cytotoxic T cell responses. Eur. J. Immunol. 23(10), 2592–2596 (1993).
  • Hoover HcJr, Brandhorst JSPeters LC et al. Adjuvant active-specific immunotherapy for human colorectal cancer: 6,5-year median follow-up of a phase III prospectively randomized trial. J. Clin. Oncol. 11(3), 390–399 (1993).
  • Ali-El-Dein B, Barakat TS, Nabeeh A, Ibrahiem el-HI. Weekly intra vesicular bacillus Calmette-Guerin (BCG) alternating with epirubicin in Ta and T1 urothelial bladder cancer: an approach to decrease BCG toxicity. Urol. Ann. 5(2), 103–108 (2013).
  • Imler IL, Hoffmann JA. Toll receptors in innate immunity. Trends Cell Biol. 11(7), 304–311 (2001).
  • Shima F, Uto T, Akaji M. Synergistic stimulation of antigen-presenting cells via TLR by combining CpG ODN and poly(gamma-glutamic acid)-based nanoparticles as vaccine adjuvants. Bioconjug. Chem. 24(6), 926–933 (2013).
  • Jarahian M, Watzl CFournier P et al. Activation of natural killer cells by Newcastle-disease virus hemagglutinin-neuraminidase. J. Virol. 83(16), 8108–8121 (2009).
  • Gatti G, Nunez NGNocera DA et al. Direct effect of dsRNA mimetics on cancer cells induces endogenous IFN-ß production capable of improving dendritic cell function. Eur. J. Immunol. 43(7), 1849–1861 (2013).
  • Fournier P, Wilden H, Schirrmacher V. Importance of retinoic acid-inducible gene 1 and of receptor for type I interferon for cellular resistance to infection by Newcastle disease virus. Int. J. Oncol. 40(1), 287–298 (2012).
  • Schirrmacher V, Haas CBonifer R et al. Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther. 6(1), 63–73 (1999).
  • Termeer CC, Schirrmacher V, Bröcker EB, Becker JC. Newcastle disease virus infection induces B7-1/B7-2-independent T-cell costimulatory activity in human melanoma cells. Cancer Gene Ther. 7(2), 316–323 (2000).
  • Uyl-de Groot CA, Vermorken JB, Hanna MGJr et al. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits. Vaccine 23(17–18), 2379–2387 (2005).
  • Ockert D, Schirrmacher VBeck N et al. Newcastle disease virus-infected autologous intact tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clin. Cancer Res. 2(1), 21–28 (1996).
  • Ahlert T, Sauerbrei WBastert G et al. Tumor cell number and viability as quality and efficacy parameters of autologous virus modified cancer vaccines. J. Clin. Oncol. 15(4), 1354–1366 (1997).
  • Steiner HH, Bonsanto MMBeckhove P et al. Anti-tumor vaccination of patients with glioblastoma multiforme in a case-control study: feasibility, safety and clinical benefit. J. Clin. Oncol. 22(21), 4272–4281 (2004).
  • Kaech SM, Ahmet R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2(5), 415–422 (2001).
  • Tokoyoda K, Hauser AE, Nakayama T, Radbruch A. Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 10(3), 193–200 (2010).
  • Schluns KSLefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3(4), 269–279 (2003).
  • Nemoto Y, Kanai TTakahara M et al. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut 62(8), 1142–1152 (2013).
  • Snell LM, Lin GH, Watts TH. IL-15 dependent upregulation of GITR on CD8 memory phenotype T cells in the bone marrow relative to spleen and lymph node suggests the bone marrow as a site of superior bioavailability of Il-15. J. Immunol. 188(12), 5915–5923 (2012).
  • Weninger W, Crowley MA, Manjunath N, von Andrian UH. Migratory properties of naïve, effector and memory CD8+ T cells. J. Exp. Med. 194(7), 953–966 (2001).
  • Feuerer M, Beckhove PBai L et al. Therapy of human tumors in NOD/SCID mice with patient-derived re-activated memory T cells from bone marrow. Nat. Med. 7(4), 452–458 (2001).
  • Beckhove P, Feuerer MDolenc M et al. Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J. Clin. Invest. 114(1), 67–76 (2004).
  • Hsu SC, Wang LTYao CL et al. Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+ CD45RO+ T cells. Immunobiol. 218(1), 90–95 (2013).
  • Duffy D, Perrin HAbadie V et al. Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T cells. Immunity 37(5), 917–929 (2012).
  • Cavanagh LL, Bonasio RMazo IB et al. Activation of bone marrow- resident memory T cells by circulating, antigen-bearing dendritic cells. Nat. Immunol. 6(10), 1029–1037 (2005).
  • Schirrmacher V, Feuerer MFournier P et al. T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol. Med. 9(12), 526–534 (2003).
  • Murao A, Oka YTsuboi A et al. High frequencies of less differentiated and more proliferative WT1-specific T cells in bone marrow in tumor-bearing patients: an important role of bone marrow as a secondary lymphoid organ. Cancer Sci. 101(4), 848–854 (2010).
  • Zhang X, Dong HLin W et al. Human bone marrow: a reservoir for ‘enhanced effector memory’ CD8+ T cells with potent recall function. J. Immunol. 177(10), 6730–6737 (2006).
  • Na IK, Letsch AGuerreiro M et al. Human bone marrow as a source to generate CMV-specific CD4+ T cells with multifunctional capacity. J. Immunother. 32(9), 907–913 (2009).
  • Schmitz-Winnenthal FH, Volk C, Z'graggen K et al. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res. 65(21), 10079–10087 (2005).
  • Beckhove P, Schirrmacher V. Local tumor growth and spontaneous systemic T cell responses in cancer patients: a paradox and puzzle. In: Innate and Adaptive Immunity in the Tumor Microenvironment. Yefenof E (Ed.). Springer, New York, NY, USA, 53–76 (2008).
  • Sommerfeldt N, Schütz F, Sohn C et al. The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res. 66(16), 8258–8265 (2006).
  • Bai L, Koopmann J, Fiola C, Fournier P, Schirrmacher, V. Dendritic cells pulsed with viral oncolysates potently stimulate autologous T cells from cancer patients. Int. J. Oncol. 21(4), 685–694 (2002).
  • Mahnke Y, Schwendemann J, Beckhove P, Schirrmacher, V. Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115(3), 325–336 (2005).
  • Washburn B, Schirrmacher V. Human tumor cell infection by Newcastle disease virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int. J. Oncol. 21(1), 85–93 (2002).
  • Von der Ohe M, Altstaed J, Gross U, Rink L. Human neutrophils produce macrophage inhibitory protein-1 beta but not type I interferons in response to viral stimulation. J. Interferon Cytokine Res. 21(4), 241–247 (2001).
  • Mikhak Z, Fleming CMMedoff BD et al. STAT1 in peripheral tissue differentially regulates homing of antigen-specific Th1 and Th2 cells. J. Immunol. 176(8), 4959–4967 (2006).
  • Vermorken JB, Claessen AM, van Tinteren H et al. Active specific immunotherapy for stage II and III colon cancer: a randomized trial. Lancet 353(9150), 345–350 (1999).
  • Schirrmacher V, Jurianz K, Roth Ch, Griesbach A, Bonifer R, Zawatzky R. Tumor stimulator cell modification by infection with Newcastle disease virus: Analysis of effects and mechanism in MLTC-CML cultures. Int. J. Oncol. 14(2), 205–215 (1999).
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124(4), 783–801 (2006).
  • Schulz O, Diebold SSChen M et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433(7028), 887–892 (2005).
  • Haas C, Lulei M, Fournier P, Arnold A, Schirrmacher V. T-cell triggering by CD3- and CD28-binding molecules linked to a human virus-modified tumor cell vaccine. Vaccine 23(19), 2439–2453 (2005).
  • Fournier P, Arnold A, Schirrmacher V. Polarization of human monocyte-derived dendritic cells to DC1 by in vitro stimulation with Newcastle disease virus. J. BUON 14(Suppl. 1), 111–122 (2009).
  • Fournier P, Arnold A, Wilden H, Schirrmacher V. Newcastle disease virus induces pro-inflammatory conditions and type I interferon for counter-acting Treg activity. Int. J. Oncol. 40(3), 840–850 (2012).
  • Kalinski P, Nakamura YWatchmaker P et al. Helper roles of NK and CD8+ T cells in the induction of tumor immunity. Polarized dendritic cells as cancer vaccines. Immunol. Res. 36(1–3), 137–146 (2006).
  • Dolan BP, Gibbs KDJr, Ostrand-Rosenberg S. Tumor-specific CD4+ T cells are activated by „cross-dressed' dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines. J. Immunol. 176(3), 1447–1455 (2006).
  • Wakim LM, Bevan MJ. Cross-dressed dendritic cells drive memory CD8+ T cell activation after viral infection. Nature 471(7340), 629–632 (2011).
  • Dolan BP, Gibbs KDJr, Ostrand-Rosenberg S. Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells. J. Immunol. 177(9), 6018–6024 (2006).
  • Petersen TR, Sika-Paotonu D, Knight DA et al. Exploiting the role of endogenous lymphoid-resident dendritic cells in the priming of NKT cells and CD8+ T cells to dendritic cell-based vaccines. PLoS ONE 6(3), e17657 (2011).
  • Schwendemann J, Choi C, Schirrmacher V, Beckhove P. Dynamic differentiation of activated human peripheral blood CD8+ and CD4+ effector memory T cells. J. Immunol. 175(3), 1433–1439 (2005).
  • Cieri N, Camisa BCocchiarella F et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naïve precursors. Blood 121(4), 573–584 (2013).
  • Li G, Yang QZhu Y et al. T-bet and Eomes regulate the balance between the effector/central memory T cells versus memory stem like T cells. PLoS ONE 8(6), e67401 (2013).
  • Kohler ME, Hallett WHChen QR et al. Early expression of stem-cell associated genes within the CD8+ compartment after treatment with a tumor vaccine. Cell. Immunol. 265(1), 65–73 (2010).
  • DiRosa F, Santoni A. Memory T cell competition for bone marrow seeding. Immunology 108(3), 296–304 (2003).
  • Braumüller H, Wieder TBrenner E et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494(7437), 361–367 (2013).
  • Merika E, Saif MW, Katz A, Syrigos K, Morse M. Colon cancer vaccines: an update. In vivo 24(5), 607–628 (2010).
  • Rao B, Han MWang L et al. Clinical outcomes of active specific immunotherapy in advanced colorectal cancer and suspected minimal residual colorectal cancer: a meta-analysis and system review. J. Transl. Med. 9, 17 (2011).
  • De Weger VA, Turksma AWVoorham QJM et al. Clinical effects of adjuvant active specific immunotherapy differ between patients with microsatellite-stable and microsatellite-instable colon cancer. Clin. Cancer Res. 18(3), 882–889 (2011).
  • Schulze T, Kemmner WWeitz J et al. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunol. Immunother. 58(1), 61–69 (2009).
  • Schlag P, Manasterski MGerneth T et al. Active specific immunotherapy with Newcastle-disease-virus-modified autologous tumor cells following resection of liver metastases in colorectal cancer. Cancer Immunol. Immunother. 35(5), 325–330 (1992).
  • O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J. Natl Cancer Inst. 96(19), 1420–1425 (2004).
  • Liang W, Wang HSun TM et al. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract. World J. Gastroenterol. 9(3), 495–498 (2003).
  • Park MS, García-Sastre A, Cros JF, Basler CF, Palese P. Newcastle disease virus V protein is a determinant of host range restriction. J. Virol. 77(17), 9522–9532 (2003).
  • Schirrmacher V, Fournier P. Danger signals in tumor cells: a risk factor for autoimmune disease? Exp. Rev. Vaccines 9(4), 347–350 (2010).
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 5(4), 296–306 (2005).
  • Wu YG, Wu GZWang L et al. Tumor cell lysate-pulsed dendritic cells induce a T-cell response against colon cancer in vitro and in vivo. Med. Oncol. 27(3), 736–742 (2010).
  • Nagorsen D, Thiel E. Clinical and immunological responses to active specific cancer vaccines in human colorectal cancer. Clin. Cancer Res. 12(10), 3064–3069 (2006).
  • Kantoff PW, Higano CSShore ND et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010).
  • Bach P, Abel THoffmann C et al. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res. 73(2), 865–874 (2013).
  • Duarte S, Momier DBaque P et al. Preventive cancer stem cell-based vaccination reduces liver metastasis development in a rat colon carcinoma syngeneic model. Stem Cells 31(3), 423–432 (2013).
  • Ileana E, Champiat S, Soria J.C. Immune-Checkpoints: the new anti-cancer immunotherapies. Bull. Cancer 100(6), 601–610 (2013).
  • Quezada SA, Peggs K.S. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br. J. Cancer 108(8), 1560–1565 (2013).
  • Topalian SL, Hodi FSBrahmer JR et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366(26), 2443–2454 (2012).
  • Liefers GJ, Cleton-Jansen AM, van de Velde CJ et al. Micrometastases and survival in stage II colorectal cancer. N. Engl. J. Med. 339(4), 223–228 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.