371
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Application of wheat germ cell-free protein expression system for novel malaria vaccine candidate discovery

, , , , , & show all

References

  • Arevalo-Herrera M, Chitnis C, Herrera S. Current status of Plasmodium vivax vaccine. Hum. Vaccines 6(1), 124–132 (2010).
  • WHO. World Malaria Report 2011. WHO Press, Geneva, Switzerland (2011).
  • Crabb BS, Beeson JG, Amino R et al. Perspectives: the missing pieces. Nature 484(7395), S22–S23 (2012).
  • Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature 415(6872), 673–679 (2002).
  • Waters A. Malaria: new vaccines for old? Cell 124(4), 689–693 (2006).
  • Birkett AJ. PATH Malaria Vaccine Initiative (MVI): perspectives on the status of malaria vaccine development. Hum. Vaccines 6(1), 139–145 (2010).
  • DeWeerdt S. Vaccines: the take-home lesson. Nature 484(7395), S24–S25 (2012).
  • Agnandji ST, Lell B, Fernandes JF et al. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367(24), 2284–2295 (2012).
  • Thera MA, Doumbo OK, Coulibaly D et al. A field trial to assess a blood-stage malaria vaccine. N. Engl. J. Med. 365(11), 1004–1013 (2011).
  • Ogutu BR, Apollo OJ, McKinney D et al. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS ONE 4(3), e4708 (2009).
  • Genton B, Betuela I, Felger I et al. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J. Infect. Dis. 185(6), 820–827 (2002).
  • Riley EM, Stewart VA. Immune mechanisms in malaria: new insights in vaccine development. Nat. Med. 19(2), 168–178 (2013).
  • Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar. J. 11, 11 (2012).
  • Sirima SB, Cousens S, Druilhe P. Protection against malaria by MSP3 candidate vaccine. N. Engl. J. Med. 365(11), 1062–1064 (2011).
  • Hermsen CC, Verhage DF, Telgt DS et al. Glutamate-rich protein (GLURP) induces antibodies that inhibit in vitro growth of Plasmodium falciparum in a phase 1 malaria vaccine trial. Vaccine 25(15), 2930–2940 (2007).
  • Palacpac NM, Ntege E, Yeka A et al. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36. PLoS ONE 8(5), e64073 (2013).
  • Doolan DL, Mu Y, Unal B et al. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8(22), 4680–4694 (2008).
  • Takeo S, Arumugam TU, Torii M, Tsuboi T. Wheat germ cell-free technology for accelerating the malaria vaccine research. Expert Opin. Drug Discov. 4(11), 1191–1199 (2009).
  • Genton B. Malaria vaccines: a toy for travelers or a tool for eradication? Expert Rev. Vaccines 7(5), 597–611 (2008).
  • Carlson ED, Gan R, Hodgman CE, Jewett MC. Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30(5), 1185–1194 (2012).
  • Murray CJ, Baliga R. Cell-free translation of peptides and proteins:from high throughput screening to clinical production. Curr. Opin. Chem. Biol. 17(3), 420–426 (2013).
  • Martin GA, Kawaguchi R, Lam Y, DeGiovanni A, Fukushima M, Mutter W. High-yield, in vitro protein expression using a continuous-exchange, coupled transcription/ translation system. Biotechniques 31(4), 948–950, 952–943 (2001).
  • Madin K, Sawasaki T, Ogasawara T, Endo Y. A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl Acad. Sci. USA 97(2), 559–564 (2000).
  • Endo Y, Sawasaki T. High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J. Struct. Funct. Genomics 5(1–2), 45–57 (2004).
  • Sawasaki T, Hasegawa Y, Morishita R, Seki M, Shinozaki K, Endo Y. Genome-scale, biochemical annotation method based on the wheat germ cell-free protein synthesis system. Phytochemistry 65(11), 1549–1555 (2004).
  • Sawasaki T, Gouda MD, Kawasaki T et al. The wheat germ cell-free expression system: methods for high-throughput materialization of genetic information. Methods Mol. Biol. 310, 131–144 (2005).
  • Endo Y, Sawasaki T. Cell-free expression systems for eukaryotic protein production. Curr. Opin. Biotechnol. 17(4), 373–380 (2006).
  • Goshima N, Kawamura Y, Fukumoto A et al. Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat. Methods 5(12), 1011–1017 (2008).
  • Tsuboi T, Takeo S, Iriko H et al. Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infect. Immun. 76(4), 1702–1708 (2008).
  • Rui E, Fernandez-Becerra C, Takeo S et al. Plasmodium vivax: comparison of immunogenicity among proteins expressed in the cell-free systems of Escherichia coli and wheat germ by suspension array assays. Malar. J. 10, 192 (2011).
  • Gilson PR, Nebl T, Vukcevic D et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell Proteomics 5(7), 1286–1299 (2006).
  • Haase S, Cabrera A, Langer C et al. Characterization of a conserved rhoptry-associated leucine zipper-like protein in the malaria parasite Plasmodium falciparum. Infect. Immun. 76(3), 879–887 (2008).
  • Richards JS, Beeson JG. The future for blood-stage vaccines against malaria. Immunol. Cell Biol. 87(5), 377–390 (2009).
  • Fowkes FJ, Richards JS, Simpson JA, Beeson JG. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: A systematic review and meta-analysis. PLoS Med. 7(1), e1000218 (2010).
  • Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906), 498–511 (2002).
  • Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1(1), E5 (2003).
  • Florens L, Washburn MP, Raine JD et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419(6906), 520–526 (2002).
  • Hinds L, Green JL, Knuepfer E, Grainger M, Holder AA. Novel putative glycosylphosphatidylinositol-anchored micronemal antigen of Plasmodium falciparum that binds to erythrocytes. Eukaryot. Cell 8(12), 1869–1879 (2009).
  • Arumugam TU, Takeo S, Yamasaki T et al. Discovery of GAMA, a Plasmodium falciparum merozoite micronemal protein, as a novel blood-stage vaccine candidate antigen. Infect. Immun. 79(11), 4523–4532 (2011).
  • Ito D, Hasegawa T, Miura K et al. RALP1 is a rhoptry-neck erythrocyte-binding protein of Plasmodium falciparum merozoite and a potential blood-stage vaccine candidate antigen. Infect. Immun. 81(11), 4290–4298 (2013).
  • Tachibana M, Wu Y, Iriko H et al. N-terminal prodomain of Pfs230 synthesized using a cell-free system is sufficient to induce complement-dependent malaria transmission-blocking activity. Clin. Vaccine Immunol. 18(8), 1343–1350 (2011).
  • Kaslow DC, Quakyi IA, Syin C et al. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature 333(6168), 74–76 (1988).
  • Tsuboi T, Kaslow DC, Gozar MM, Tachibana M, Cao YM, Torii M. Sequence polymorphism in two novel Plasmodium vivax ookinete surface proteins, Pvs25 and Pvs28, that are malaria transmission-blocking vaccine candidates. Mol. Med. 4(12), 772–782 (1998).
  • Kaslow DC. Transmission-blocking vaccines. Chem. Immunol., 80, 287–307 (2002).
  • Malkin EM, Durbin AP, Diemert DJ et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23(24), 3131–3138 (2005).
  • Wu Y, Ellis RD, Shaffer D et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS ONE 3(7), e2636 (2008).
  • Carter R, Graves PM, Quakyi IA, Good MF. Restricted or absent immune responses in human populations to Plasmodium falciparum gamete antigens that are targets of malaria transmission-blocking antibodies. J. Exp. Med. 169(1), 135–147 (1989).
  • Quakyi IA, Otoo LN, Pombo D et al. Differential non-responsiveness in humans of candidate Plasmodium falciparum vaccine antigens. Am. J. Trop. Med. Hyg. 41(2), 125–134 (1989).
  • Kocken CH, Jansen J, Kaan AM et al. Cloning and expression of the gene coding for the transmission blocking target antigen Pfs48/45 of Plasmodium falciparum. Mol. Biochem. Parasitol. 61(1), 59–68 (1993).
  • Williamson KC, Criscio MD, Kaslow DC. Cloning and expression of the gene for Plasmodium falciparum transmission-blocking target antigen, Pfs230. Mol. Biochem. Parasitol. 58(2), 355–358 (1993).
  • Read D, Lensen AH, Begarnie S, Haley S, Raza A, Carter R. Transmission-blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pfs230 are all complement-fixing. Parasite Immunol. 16(10), 511–519 (1994).
  • Bousema T, Roeffen W, Meijerink H et al. The dynamics of naturally acquired immune responses to Plasmodium falciparum sexual stage antigens Pfs230 & Pfs48/45 in a low endemic area in Tanzania. PLoS ONE 5(11), e14114 (2010).
  • van Dijk MR, van Schaijk BC, Khan SM et al. Three members of the 6-cys protein family of Plasmodium play a role in gamete fertility. PLoS Pathog. 6(4), e1000853 (2010).
  • Carter R, Coulson A, Bhatti S, Taylor BJ, Elliott JF. Predicted disulfide-bonded structures for three uniquely related proteins of Plasmodium falciparum, Pfs230, Pfs48/45 and Pf12. Mol. Biochem. Parasitol. 71(2), 203–210 (1995).
  • Gerloff DL, Creasey A, Maslau S, Carter R. Structural models for the protein family characterized by gamete surface protein Pfs230 of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 102(38), 13598–13603 (2005).
  • Quakyi IA, Carter R, Rener J, Kumar N, Good MF, Miller LH. The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies. J. Immunol. 139(12), 4213–4217 (1987).
  • Rener J, Graves PM, Carter R, Williams JL, Burkot TR. Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. J. Exp. Med. 158(3), 976–981 (1983).
  • Bustamante PJ, Woodruff DC, Oh J, Keister DB, Muratova O, Williamson KC. Differential ability of specific regions of Plasmodium falciparum sexual-stage antigen, Pfs230, to induce malaria transmission-blocking immunity. Parasite Immunol. 22(8), 373–380 (2000).
  • Vincent AA, Fanning S, Caira FC, Williamson KC. Immunogenicity of malaria transmission-blocking vaccine candidate, y230.CA14 following crosslinking in the presence of tetanus toxoid. Parasite Immunol. 21(11), 573–581 (1999).
  • Fanning SL, Czesny B, Sedegah M et al. A glycosylphosphatidylinositol anchor signal sequence enhances the immunogenicity of a DNA vaccine encoding Plasmodium falciparum sexual-stage antigen, Pfs230. Vaccine 21(23), 3228–3235 (2003).
  • Williamson KC. Pfs230: from malaria transmission-blocking vaccine candidate toward function. Parasite Immunol. 25(7), 351–359 (2003).
  • Farrance CE, Rhee A, Jones RM et al. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. Clin. Vaccine Immunol. 18(8), 1351–1357 (2011).
  • Blagborough AM, Sinden RE. Plasmodium berghei HAP2 induces strong malaria transmission-blocking immunity in vivo and in vitro. Vaccine 27(38), 5187–5194 (2009).
  • Miura K, Deng B, Tullo G et al. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays. PLoS ONE 8(3), e57909 (2013).
  • Miura K, Takashima E, Deng B et al. Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay. Infect. Immun. doi:10.1128/IAI.01056-13 (2013) ( Epub ahead of print).
  • Sawasaki T, Hasegawa Y, Tsuchimochi M et al. A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett. 514(1), 102–105 (2002).
  • Richards JS, Arumugam TU, Reiling L et al. Identification and prioritization of merozoite antigens as targets of protective human immunity to Plasmodium falciparum malaria for vaccine and biomarker development. J. Immunol. 191(2), 795–809 (2013).
  • Sakamoto H, Takeo S, Maier AG, Sattabongkot J, Cowman AF, Tsuboi T. Antibodies against a Plasmodium falciparum antigen PfMSPDBL1 inhibit merozoite invasion into human erythrocytes. Vaccine 30(11), 1972–1980 (2012).
  • Fan YT, Wang Y, Ju C et al. Systematic analysis of natural antibody responses to P. falciparum merozoite antigens by protein arrays. J. Proteomics 78, 148–158 (2013).
  • Jangpatarapongsa K, Xia H, Fang Q et al. Immunity to Malaria in Plasmodium vivaxInfection: A study in central China. PLoS ONE 7(9), e45971 (2012).
  • Chen JH, Jung JW, Wang Y et al. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. J. Proteome Res. 9(12), 6479–6489 (2010).
  • Siller E, DeZwaan DC, Anderson JF, Freeman BC, Barral JM. Slowing bacterial translation speed enhances eukaryotic protein folding efficiency. J. Mol. Biol. 396(5), 1310–1318 (2010).
  • Mudeppa DG, Pang CK, Tsuboi T et al. Cell-free production of functional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Mol. Biochem. Parasitol. 151(2), 216–219 (2007).
  • Maeda T, Saito T, Harb OS et al. Pyruvate kinase type-II isozyme in Plasmodium falciparum localizes to the apicoplast. Parasitol. Int. 58(1), 101–105 (2009).
  • Nozawa A, Fujimoto R, Matsuoka H, Tsuboi T, Tozawa Y. Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate-tricarboxylate carrier of Plasmodium falciparum. Biochem. Biophys. Res. Commun. 414(3), 612–617 (2011).
  • Volz JC, Bartfai R, Petter M et al. PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. Cell Host Microbe 11(1), 7–18 (2012).
  • Bullen HE, Charnaud SC, Kalanon M et al. Biosynthesis, localization, and macromolecular arrangement of the Plasmodium falciparum translocon of exported proteins (PTEX). J. Biol. Chem. 287(11), 7871–7884 (2012).
  • Kitamura K, Kishi-Itakura C, Tsuboi T et al. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS ONE 7(8), e42977 (2012).
  • Takeo S, Hisamori D, Matsuda S, Vinetz J, Sattabongkot J, Tsuboi T. Enzymatic characterization of the Plasmodium vivax chitinase, a potential malaria transmission-blocking target. Parasitol. Int. 58(3), 243–248 (2009).
  • VanBuskirk KM, O’Neill MT, De La Vega P et al. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc. Natl Acad. Sci. USA 106(31), 13004–13009 (2009).
  • Jiang G, Shi M, Conteh S et al. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies. PLoS ONE 4(8), e6559 (2009).
  • Cao J, Kaneko O, Thongkukiatkul A et al. Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. Parasitol. Int. 58(1), 29–35 (2009).
  • Ito D, Han ET, Takeo S et al. Plasmodial ortholog of Toxoplasma gondii rhoptry neck protein 3 is localized to the rhoptry body. Parasitol. Int. 60(2), 132–138 (2011).
  • Ord RL, Rodriguez M, Yamasaki T, Takeo S, Tsuboi T, Lobo CA. Targeting sialic acid dependent and independent pathways of invasion in Plasmodium falciparum. PLoS ONE 7(1), e30251 (2012).
  • Chen JH, Wang Y, Ha KS et al. Measurement of naturally acquired humoral immune responses against the C-terminal region of the Plasmodium vivax MSP1 protein using protein arrays. Parasitol. Res. 109(5), 1259–1266 (2011).
  • Yildiz Zeyrek F, Palacpac N, Yuksel F et al. Serologic markers in relation to parasite exposure history help to estimate transmission dynamics of Plasmodium vivax. PLoS ONE 6(11), e28126 (2011).
  • Fowkes FJ, McGready R, Cross NJ et al. New insights into acquisition, boosting, and longevity of immunity to malaria in pregnant women. J. Infect. Dis. 206(10), 1612–1621 (2012).
  • Li J, Ito D, Chen JH et al. Pv12, a 6-Cys antigen of Plasmodium vivax, is localized to the merozoite rhoptry. Parasitol. Int. 61(3), 443–449 (2012).
  • Otsuki H, Kaneko O, Thongkukiatkul A et al. Single amino acid substitution in Plasmodium yoelii erythrocyte ligand determines its localization and controls parasite virulence. Proc. Natl Acad. Sci. USA 106(17), 7167–7172 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.