433
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Novel approaches in polyepitope T-cell vaccine development against HIV-1

, , &

References

  • Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat. Rev. Immunol. 1(3), 209–219 (2001).
  • Ahlers JD, Belyakov IM. Strategies for recruiting and targeting dendritic cells for optimizing HIV vaccines. Trends Mol. Med. 15(6), 263–274 (2009).
  • Belyakov IM, Ahlers JD. Mucosal immunity and HIV-1 infection: applications for mucosal AIDS vaccine development. Curr. Topics Microbiol. Immunol. 354, 157–179 (2012).
  • Ladell K, Hashimoto M, Iglesias MC et al. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity 38(3), 425–436 (2013).
  • Sui YJ, Zhu Q, Gagnon S et al. Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques. Proc. Natl Acad. Sci. USA 107(21), 9843–9848 (2010).
  • Ahlers JD, Belyakov IM. New Paradigms for Generating Effective CD8(+) T Cell Responses Against HIV-1/AIDS. Discov. Med. 49, 528–537 (2010).
  • Mittler RS, Hoffmann MK. Synergism between hiv-gp120 and gp120-specific antibody in blocking human T-cell activation. Science 245(4924), 1380–1382 (1989).
  • Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 435(1), 14–28 (2013).
  • Flynn MN, Forthal DN, Harro CD et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191(5), 654–665 (2005).
  • Buchbinder SP, Mehrotra DV, Duerr A et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372(9653), 1881–1893 (2008).
  • Sekaly RP. The failed HIV Merck vaccine study: a step back or a launching point for future vaccine development? J. Exp. Med. 205(1), 7–12 (2008).
  • Mcmichael AJ, Haynes BF. Lessons learned from HIV-1 vaccine trials: new priorities and directions. Nat. Immunol. 13(5), 423–427 (2012).
  • Alam SM, Liao HX, Tomaras GD et al. Antigenicity and immunogenicity of RV144 vaccine AIDSVAX clade E envelope immunogen is enhanced by a gp120 N-terminal deletion. J. Virol. 87(3), 1554–1568 (2013).
  • Haynes BF, Gilbert PB, Mcelrath MJ et al. Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. N. Engl. J. Med. 366(14), 1275–1286 (2012).
  • Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 31(35), 3502–3518 (2013).
  • Wren L, Kent SJ. HIV vaccine efficacy trial: glimmers of hope and the potential role of antibody-dependent cellular cytotoxicity. Hum. Vaccin. 7(4), 467–474 (2011).
  • Mehandru S, Poles MA, Tenner-Racz K et al. Primary HIV-1 infection is associated with preferential depletion of CD4(+) T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200(6), 761–770 (2004).
  • Guadalupe M, Reay E, Sankaran S et al. Severe CD4(+) T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77(21), 11708–11717 (2003).
  • Belyakov IM, Ahlers JD. What Role Does the Route of Immunization Play in the Generation of Protective Immunity against Mucosal Pathogens? J. Immunol. 183(11), 6883–6892 (2009).
  • Belyakov IM, Hel Z, Kelsall B et al. Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nat. Med. 7(12), 1320–1326 (2001).
  • Belyakov IM, Isakov D, Zhu Q, Dzutsev A, Berzofsky JA. A novel functional CTL avidity/activity compartmentalization to the site of mucosal immunization contributes to protection of macaques against simian/human immunodeficiency viral depletion of mucosal CD4(+) T cells. J. Immunol. 178(11), 7211–7221 (2007).
  • Bazhan SI, Karpenko LI, Ilyicheva TN et al. Rational design based synthetic polyepitope DNA vaccine for eliciting HIV-specific CD8+T cell responses. Mol. Immunol. 47(7–8), 1507–1515 (2010).
  • Karpenko LI, Scherbakova NS, Chikaev AN et al. Polyepitope protein incorporated the HIV-1 mimotope recognized by monoclonal antibody 2G12. Mol. Immunol. 50(4), 193–199 (2012).
  • Hanke T, Schneider J, Gilbert SC, Hill AVS, Mcmichael A. DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice. Vaccine 16(4), 426–435 (1998).
  • Thomson SA, Elliott SL, Sherritt MA et al. Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopes. J. Immunol. 157(2), 822–826 (1996).
  • Bazhan SI, Belavin PA, Seregin SV et al. Designing and engineering of DNA-vaccine construction encoding multiple CTL-epitopes of major HIV-1 antigens. Vaccine 22(13–14), 1672–1682 (2004).
  • Fischer W, Perkins S, Theiler J et al. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat. Med. 13(1), 100–106 (2007).
  • Gao F, Weaver EA, Lu ZJ et al. Antigenicity and immunogenicity of a synthetic human immunodeficiency virus type I group m consensus envelope glycoprotein. J. Virol. 79(2), 1154–1163 (2005).
  • Weaver EA, Lu ZJ, Camacho ZT et al. Cross-subtype T-cell immune responses induced by a human immunodeficiency virus type 1 group M consensus env immunogen. J. Virol. 80(14), 6745–6756 (2006).
  • Belyakov IM, Derby MA, Ahlers JD et al. Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc. Natl Acad. Sci. USA 95(4), 1709–1714 (1998).
  • Berzofsky JA, Ahlers JD, Derby MA, Pendleton CD, Arichi T, Belyakov IM. Approaches to improve engineered vaccines for human immunodeficiency virus and other viruses that cause chronic infections. Immunol. Rev. 170, 151–172 (1999).
  • Karpenko LI, Ilyichev AA, Eroshkin AM et al. Combined virus-like particle-based polyepitope DNA/protein HIV-1 vaccine - Design, immunogenicity and toxicity studies. Vaccine 25(21), 4312–4323 (2007).
  • Sandstrom E, Nilsson C, Hejdeman B et al. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus ankara. J. Infect. Dis. 198(10), 1482–1490 (2008).
  • Rosario M, Bridgeman A, Quakkelaar ED et al. Long peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaques. Eur. J. Immunol. 40(7), 1973–1984 (2010).
  • Knudsen ML, Mbewe-Mvula A, Rosario M et al. Superior Induction of T Cell Responses to Conserved HIV-1 Regions by Electroporated Alphavirus Replicon DNA Compared to That with Conventional Plasmid DNA Vaccine. Journal of Virology 86(8), 4082–4090 (2012).
  • Karpenko LI, Danilenko AV, Bazhan SI et al. Attenuated Salmonella enteritidis E23 as a vehicle for the rectal delivery of DNA vaccine coding for HIV-1 polyepitope CTL immunogen. Microb. Biotechnol. 5(2), 241–250 (2012).
  • Kannanganat S, Nigam P, Velu V et al. Preexisting Vaccinia Virus Immunity Decreases SIV-Specific Cellular Immunity but Does Not Diminish Humoral Immunity and Efficacy of a DNA/MVA Vaccine. J. Immunol. 185(12), 7262–7273 (2010).
  • Hanke T, Mcmichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat. Med. 6(9), 951–955 (2000).
  • Schmitz JE, Kuroda MJ, Santra S et al. Control of viremia in simian immunodeficiency virus infection by CD8(+) lymphocytes. Science 283(5403), 857–860 (1999).
  • Yang OO, Kalams SA, Trocha A et al. Suppression of human immunodeficiency virus type 1 replication by CD8(+) cells: Evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J. Virol. 71(4), 3120–3128 (1997).
  • Wong JK, Strain MC, Porrata R et al. In Vivo CD8+T-Cell Suppression of SIV Viremia Is Not Mediated by CTL Clearance of Productively Infected Cells. PLoS Pathog. 6(1) (2010).
  • Klatt NR, Shudo E, Ortiz AM et al. CD8+Lymphocytes Control Viral Replication in SIVmac239-Infected Rhesus Macaques without Decreasing the Lifespan of Productively Infected Cells. PLoS Pathog. 6(1) (2010).
  • Wagner L, Yang OO, Garcia-Zepeda EA et al. beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391(6670), 908–911 (1998).
  • Price DA, Sewell AK, Dong T et al. Antigen-specific release of beta-chemokines by anti-HIV-1 cytotoxic T lymphocytes. Curr. Biol. 8(6), 355–358 (1998).
  • Appay V, Nixon DF, Donahoe SM et al. HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 192(1), 63–75 (2000).
  • Mckay PF, Schmitz JE, Barouch DH et al. Vaccine protection against functional CTL abnormalities in simian human immunodeficiency virus-infected rhesus monkeys. J. Immunol. 168(1), 332–337 (2002).
  • Acierno PM, Schmitz JE, Gorgone DA et al. Preservation of functional virus-specific memory CD8(+) T lymphocytes in vaccinated, simian human immunodeficiency virus-infected rhesus monkeys. J. Immunol. 176(9), 5338–5345 (2006).
  • Ogg GS, Jin X, Bonhoeffer S et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279(5359), 2103–2106 (1998).
  • Snyder JT, Alexander-Miller MA, Berzofsky JA, Belyakov IM. Molecular mechanisms and biological significance of CTL avidity. Curr. HIV Res. 1(3), 287–294 (2003).
  • Belyakov IM, Kuznetsov VA, Kelsall B et al. Impact of vaccine-induced mucosal high-avidity CD8(+)CTLs in delay of AIDS viral dissemination from mucosa. Blood 107(8), 3258–3264 (2006).
  • Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291(5512), 2413–2417 (2001).
  • Betts MR, Nason MC, West SM et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8(+) T cells. Blood 107(12), 4781–4789 (2006).
  • Amara RR, Villinger F, Altman JD et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292(5514), 69–74 (2001).
  • Barouch DH, Craiu A, Kuroda MJ et al. Augmentation of immune responses to HIV-1 and simian immunodeficiency virus DNA vaccines by IL-2/Ig plasmid administration in rhesus monkeys. Proc. Natl Acad. Sci. USA 97(8), 4192–4197 (2000).
  • Shiver JW, Fu TM, Chen L et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415(6869), 331–335 (2002).
  • Goldberg AL, Rock KL. Proteolysis, proteasomes and antigen presentation. Nature 357(6377), 375–379 (1992).
  • Rammensee HG, Falk K, Rotzschke O. MHC molecules as peptide receptors. Curr. Opin. Immunol. 5(1), 35–44 (1993).
  • York IA, Rock KL. Antigen processing and presentation by the class I major histocompatibility complex. Ann. Rev. Immunol. 14, 369–396 (1996).
  • Spencer JV, Braciale TJ. Incomplete CD8(+) T lymphocyte differentiation as a mechanism for subdominant cytotoxic T lymphocyte responses to a viral antigen. J. Exp. Med. 191(10), 1687–1698 (2000).
  • Lalvani A, Aidoo M, Allsopp CEM, Plebanski M, Whittle HC, Hill AVS. An hla-based approach to the design of a ctl-inducing vaccine against plasmodium-falciparum. Res. Immunol. 145(6), 461–468 (1994).
  • Sidney J, Grey HM, Kubo RT, Sette A. Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol. Today 17(6), 261–266 (1996).
  • Yewdell JTW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Ann. Rev. Immunol. 17, 51–88 (1999).
  • Chen WS, Anton LC, Bennink JR, Yewdell JW. Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12(1), 83–93 (2000).
  • Eisenlohr LC, Yewdell JW, Bennink JR. Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic lymphocytes-T. J. Exp. Med. 175(2), 481–487 (1992).
  • Dzutsev AH, Belyakov IM, Isakov DV, Margulies DH, Berzofsky JA. Avidity of CD8 T cells sharpens immunodominance. Int. Immunol. 19(4), 497–507 (2007).
  • Anton LC, Yewdell JW, Bennink JR. MHC class I-associated peptides produced from endogenous gene products with vastly different efficiencies. J. Immunol. 158(6), 2535–2542 (1997).
  • Porgador A, Yewdell JW, Deng YP, Bennink JR, Germain RN. Localization, quantitation, and in situ detection of specific peptide MHC class I complexes using a monoclonal antibody. Immunity 6(6), 715–726 (1997).
  • Luckey CJ, King GM, Marto JA et al. Proteasomes can either generate or destroy MHC class I epitopes: Evidence for nonproteasomal epitope generation in the cytosol. J. Immunol. 161(1), 112–121 (1998).
  • Fu TM, Mylin LM, Schell TD et al. An endoplasmic reticulum-targeting signal sequence enhances the immunogenicity of an immunorecessive simian virus 40 large T antigen cytotoxic T-lymphocyte epitope. J. Virol. 72(2), 1469–1481 (1998).
  • Snyder HL, Bacik I, Yewdell JW, Behrens TW, Bennink JR. Promiscuous liberation of MHC-class I-binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. Eur. J. Immunol. 28(4), 1339–1346 (1998).
  • Varshavsky A, Turner G, Du FY, Xie YM. The ubiquitin system and the N-end rule pathway. Biol. Chem. 381(9–10), 779–789 (2000).
  • Delval M, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH. Efficient processing of an antigenic sequence for presentation by mhc class-i molecules depends on its neighboring residues in the protein. Cell 66(6), 1145–1153 (1991).
  • Ishioka GY, Fikes J, Hermanson G et al. Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes. J. Immunol. 162(7), 3915–3925 (1999).
  • Kuttler C, Nussbaum AK, Dick TP, Rammensee HG, Schild H, Hadeler KP. An algorithm for the prediction of proteasomal cleavages. J. Mol. Biol. 298(3), 417–429 (2000).
  • Livingston BD, Newman M, Crimi C, Mckinney D, Chesnut R, Sette A. Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine 19(32), 4652–4660 (2001).
  • Uebel S, Tampe R. Specificity of the proteasome and the TAP transporter. Curr. Opin. Immunol. 11(2), 203–208 (1999).
  • Peters B, Bulik S, Tampe R, Van Endert PM, Holzhutter HG. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 171(4), 1741–1749 (2003).
  • Cardinaud S, Bouziat R, Rohrlich PS et al. Design of a HIV-1-derived HLA-B07.02-restricted polyepitope construct. AIDS 23(15), 1945–1954 (2009).
  • Schneider SC, Ohmen J, Fosdick L et al. Cutting edge: Introduction of an endopeptidase cleavage motif into a determinant flanking region of hen egg lysozyme results in enhanced T cell determinant display. J. Immunol. 165(1), 20–23 (2000).
  • Zhu H, Liu KC, Cerny J, Imoto T, Moudgil KD. Insertion of the dibasic motif in the flanking region of a cryptic self-determinant leads to activation of the epitope-specific T cells. J. Immunol. 175(4), 2252–2260 (2005).
  • Rowell JF, Ruff AL, Guarnieri FG et al. Lysosome-associated membrane protein-1-mediated targeting of the HIV-1 envelope protein to an endosomal/lysosomal compartment enhances its presentation to mhc class ii-restricted T-cells. J. Immunol. 155(4), 1818–1828 (1995).
  • Ruff AL, Guarnieri FG, Staveleyocarroll K, Siliciano RF, August JT. The enhanced immune response to the HIV gp160/LAMP chimeric gene product targeted to the lysosome membrane protein trafficking pathway. J. Biol. Chem. 272(13), 8671–8678 (1997).
  • Wu TC, Guarnieri FG, Staveleyocarroll KF et al. Engineering an intracellular pathway for major histocompatibility complex class-ii presentation of antigens. Proc. Natl Acad. Sci. USA 92(25), 11671–11675 (1995).
  • Guarnieri FG, Arterburn LM, Penno MB, Cha Y, August JT. The motif TYR-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein-1. J. Biol. Chem. 268(3), 1941–1946 (1993).
  • Bazhan SI, Karpenko LI, Lebedev LR et al. A synergistic effect of a combined bivalent DNA-protein anti-HIV-I vaccine containing multiple T- and B-cell epitopes of HIV-1 proteins. Mol. Immunol. 45(3), 661–669 (2008).
  • Bonehill A, Heirman C, Tuyaerts S et al. Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J. Immunol. 172(11), 6649–6657 (2004).
  • Bonini C, Lee SP, Riddell SR, Greenberg PD. Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4(+) and CD8(+) T cells. J. Immunol. 166(8), 5250–5257 (2001).
  • Fassnacht M, Lee J, Milazzo C et al. Induction of CD4(+) and CD8(+) T-cell responses to the human stroma antigen, fibroblast activation protein: Implication for cancer immunotherapy. Clin. Cancer Res. 11(15), 5566–5571 (2005).
  • Kim TW, Hung CF, Boyd D et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J. Immunol. 171(6), 2970–2976 (2003).
  • Su Z, Vieweg J, Weizer AZ et al. Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res. 62(17), 5041–5048 (2002).
  • Andre S, Seed B, Eberle J, Schraut W, Bultmann A, Haas J. Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J. Virol. 72(2), 1497–1503 (1998).
  • Deml L, Bojak A, Steck S et al. Multiple effects of codon usage optimization on expression and immunogenicity of DNA candidate vaccines encoding the human immunodeficiency virus type 1 Gag protein. J. Virol. 75(22), 10991–11001 (2001).
  • Assarsson E, Sidney J, Oseroff C et al. A quantitative analysis of the variables affecting the repertoire of T cell specificities recognized after vaccinia virus infection. J. Immunol. 178(12), 7890–7901 (2007).
  • Lundegaard C, Lund O, Nielsen M. Predictions versus high-throughput experiments in T-cell epitope discovery: competition or synergy? Exp. Rev. Vaccin. 11(1), 43–54 (2012).
  • Zhang LM, Udaka K, Mamitsuka H, Zhu SF. Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools. Brief. Bioinform. 13(3), 350–364 (2012).
  • Lundegaard C, Lund O, Buus S, Nielsen M. Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology 130(3), 309–318 (2010).
  • Lafuente EM, Reche PA. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr. Pharm. Design 15(28), 3209–3220 (2009).
  • Mustafa AS, Shaban FA. ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis 86(2), 115–124 (2006).
  • Adotevi O, Mollier K, Neuveut C et al. Immunogenic HLA-B*0702-restricted epitopes derived from human telomerase reverse transcriptase that elicit antitumor cytotoxic T-cell responses. Clin. Cancer Res. 12(10), 3158–3167 (2006).
  • Hunderner M, Schmidt S, Condomines M et al. Identitication of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma. Exp. Hematol. 34(4), 486–496 (2006).
  • Sundar K, Boesen A, Coico R. Computational prediction and identification of HLA-A2.1-specific Ebola virus CTL epitopes. Virology 360(2), 257–263 (2007).
  • Wen JS, Jiang LF, Zhou JM, Yan HJ, Fang DY. Computational prediction and identification of dengue virus-specific CD4(+) T-cell epitopes. Virus Res. 132(1–2), 42–48 (2008).
  • Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351(6324), 290–296 (1991).
  • Pamer EG, Harty JT, Bevan MJ. Precise prediction of a dominant class-i MHC-restricted epitope of listeria-monocytogenes. Nature 353(6347), 852–855 (1991).
  • Rotzschke O, Falk K, Stevanovic S, Jung G, Walden P, Rammensee HG. Exact prediction of a natural T-cell epitope. Eur. J. Immunol. 21(11), 2891–2894 (1991).
  • Singh H, Raghava GPS. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19(8), 1009–1014 (2003).
  • Hattotuwagama CK, Guan PP, Doytchinova IA, Zygouri C, Flower DR. Quantitative online prediction of peptide binding to the major histocompatibility complex. J. Mol. Graph. Model. 22(3), 195–207 (2004).
  • Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56(6), 405–419 (2004).
  • Donnes P, Elofsson A. Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3, 25 (2002).
  • Nielsen M, Lundegaard C, Worning P et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20(9), 1388–1397 (2004).
  • Wan J, Liu W, Xu QQ, Ren YL, Flower DR, Li TB. SVRMHC prediction server for MHC-binding peptides. BMC Bioinformatics 7(2006).
  • Liao WWP, Arthur JW. Predicting peptide binding to Major Histocompatibility Complex molecules. Autoimmun. Rev. 10(8), 469–473 (2011).
  • Patronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol. 3(2013).
  • He YQ, Rappuoli R, De Groot AS, Chen RT. Emerging Vaccine Informatics. J. Biomed. Biotechnol., 1–26 (2010).
  • Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152(1), 163–175 (1994).
  • Sturniolo T, Bono E, Ding JY et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 17(6), 555–561 (1999).
  • Peters B, Tong WW, Sidney J, Sette A, Weng ZP. Examining the independent binding assumption for binding of peptide epitopes to MHC-1 molecules. Bioinformatics 19(14), 1765–1772 (2003).
  • Hattotuwagama CEA. Empirical, AI, and QSAR Approaches to Peptide-MHC Binding Prediction. In: In Silico Immunology SE. Timmis DFJ ( Ed. Springer US, 139–175 (2007).
  • Antonets DV, Maksyutov AZ. TEpredict: Software for T-Cell epitope prediction. Mol. Biol. 44(1), 119–127 (2010).
  • Robinson J, Mistry K, Mcwilliam H, Lopez R, Parham P, Marsh SGE. The IMGT/HLA database. Nucleic Acids Res. 39, D1171–D1176 (2011).
  • Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res. 39, D913–D919 (2011).
  • Peters B, Sidney J, Bourne P et al. The immune epitope database and analysis resource: From vision to blueprint. PLoS Biol. 3(3), 379–381 (2005).
  • Sette A, Sidney J. HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr. Opin. Immunol. 10(4), 478–482 (1998).
  • Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50(3–4), 201–212 (1999).
  • Doytchinova IA, Flower DR. In silico identification of supertypes for class II MHCs. J. Immunol. 174(11), 7085–7095 (2005).
  • Kangueane P, Sakharkar MK, Rajaseger G et al. A framework to sub-type HLA supertypes. Front. Biosci. 10, 879–886 (2005).
  • Sette A, Newman M, Livingston B et al. Optimizing vaccine design for cellular processing, MHC binding and TCR recognition. Tissue Antigens 59(6), 443–451 (2002).
  • Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr. Opin. Immunol. 15(4), 461–470 (2003).
  • Ribeiro SP, Rosa DS, Fonseca SG et al. A Vaccine Encoding Conserved Promiscuous HIV CD4 Epitopes Induces Broad T Cell Responses in Mice Transgenic to Multiple Common HLA Class II Molecules. PLoS ONE 5(6) (2010).
  • Nielsen M, Lundegaard C, Blicher T et al. Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan. PLoS Comput. Biol. 4(7) (2008).
  • Toes REM, Nussbaum AK, Degermann S et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194(1), 1–12 (2001).
  • Doytchinova IA, Guan PP, Flower DR. Identifiying human MHC supertypes using bioinformatic methods. J. Immunol. 172(7), 4314–4323 (2004).
  • Ren YG, Wu B, Pan YZ et al. Characterization of the binding profile of peptide to transporter associated with antigen processing (TAP) using Gaussian process regression. Comput. Biol. Med. 41(9), 865–870 (2011).
  • Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8 (2007).
  • Peters B, Bui HH, Frankild S et al. A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput. Biol. 2(6), 574–584 (2006).
  • Lin HH, Ray S, Tongchusak S, Reinherz EL, Brusic V. Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research. BMC Immunol. 9(2008).
  • Moutaftsi M, Peters B, Pasquetto V et al. A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nat. Biotechnol. 24(7), 817–819 (2006).
  • Larsen MV, Lundegaard C, Lamberth K et al. An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur. J. Immunol. 35(8), 2295–2303 (2005).
  • Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6), 357–368 (2010).
  • Im EJ, Hong JP, Roshorm Y et al. Protective efficacy of serially up-ranked subdominant CD8(+) T cell epitopes against virus challenges. PLoS Pathog. 7(5)(2011).
  • Newman MJ, Livingston B, Mckinney DM, Chesnut RW, Sette A. T-lymphocyte epitope identification and their use in vaccine development for HIV-1. Front. Biosci. 7, D1503–D1515 (2002).
  • Gilchuk P, Spencer CT, Conant SB et al. Discovering naturally processed antigenic determinants that confer protective T cell immunity. J. Clin. Invest. 123(5), 1976–1987 (2013).
  • Shang XY, Wang L, Niu W et al. Rational optimization of tumor epitopes using in silico analysis-assisted substitution of TCR contact residues. Eur. J. Immunol. 39(8), 2248–2258 (2009).
  • Luo M, Daniuk CA, Diallo TO et al. For protection from HIV-1 infection, more might not be better: a systematic analysis of HIV gag epitopes of two alleles associated with different outcomes of HIV-1 infection. J. Virol. 86(2), 1166–1180 (2012).
  • Ferguson ALEA. Translating HIV sequences into quantitative fitness landscapes predicts viral vulnerabilities for rational immunogen design. Immunity 38(3), 606–617 (2013).
  • Andersen BM, Ohlfest JR. Increasing the efficacy of tumor cell vaccines by enhancing cross priming. Cancer Lett. 325(2), 155–164 (2012).
  • Iurescia S, Fioretti D, Fazio VM, Rinaldi M. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: A biotech’s challenge. Biotechnol. Adv. 30(1), 372–383 (2012).
  • Pogue RR, Eron J, Frelinger JA, Matsui M. Amino-terminal alteration of the HLA-A-asterisk-0201-restricted human-immunodeficiency-virus pol peptide increases complex stability and in-vitro immunogenicity. Proc. Natl Acad. Sci. USA 92(18), 8166–8170 (1995).
  • Tangri S, Ishioka GY, Huang XQ et al. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J. Exp. Med. 194(6), 833–846 (2001).
  • Takahashi H, Nakagawa Y, Pendleton CD et al. Induction of broadly cross-reactive cytotoxic t-cells recognizing an HIV-1 envelope determinant. Science 255(5042), 333–336 (1992).
  • Iglesias MC, Mollier K, Beignon AS et al. Lentiviral vectors encoding HIV-1 polyepitopes induce broad CTL responses in vivo. Mol. Ther. 15(6), 1203–1210 (2007).
  • Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM. Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin. Cancer Res. 7(12), 4253–4261 (2001).
  • Tine JA, Firat H, Payne A et al. Enhanced multiepitope-based vaccines elicit CD8(+) cytotoxic T cells against both immunodominant and cryptic epitopes. Vaccine 23(8), 1085–1091 (2005).
  • Woodberry T, Gardner J, Mateo L et al. Immunogenicity of a human immunodeficiency virus (HIV) polytope vaccine containing multiple HLA A2 HIVCD8(+) cytotoxic T-cell epitopes. J. Virol. 73(7), 5320–5325 (1999).
  • Mateo L, Gardner J, Chen QY et al. An HLA-A2 polyepitope vaccine for melanoma immunotherapy. J. Immunol. 163(7), 4058–4063 (1999).
  • Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H. PAProC: a prediction algorithm for proteasomal cleavages available on the www. Immunogenetics 53(2), 87–94 (2001).
  • Nielsen M, Lundegaard C, Lund O, Kesmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57(1–2), 33–41 (2005).
  • Doytchinova I, Hemsley S, Flower DR. Transporter associated with antigen processing preselection of peptides binding to the MHC: A bioinformatic evaluation. J. Immunol. 173(11), 6813–6819 (2004).
  • Lee Y, Ferrari G, Lee SC. Estimating design space available for polyepitopes through consideration of major histocompatibility complex binding motifs. Biomed. Microdev. 12(2), 207–222 (2010).
  • Pinchuk I, Starcher BC, Livingston B et al. A CD8(+) T cell heptaepitope minigene vaccine induces protective immunity against Chlamydia pneumoniae. J. Immunol. 174(9), 5729–5739 (2005).
  • Antonets DV, Bazhan SI. PolyCTLDesigner: a computational tool for constructing polyepitope T-cell antigens. BMC Res. Notes 6(1), 407 (2013).
  • Singh H, Raghava GPS. ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12), 1236–1237 (2001).
  • Mudd PA, Martins MA, Ericsen AJ et al. Vaccine-induced CD8(+) T cells control AIDS virus replication. Nature 491(7422), 129–U152 (2012).
  • Kozlowski PA, Cuuvin S, Neutra MR, Flanigan TP. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun. 65(4), 1387–1394 (1997).
  • Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat. Rev. Genet. 9(10), 776–788 (2008).
  • Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Review of Vaccines 12(5), 537–554 (2013).
  • Belyakov IM, Ahlers JD. Simultaneous Approach Using Systemic, Mucosal and Transcutaneous Routes of Immunization For Development of Protective HIV-1 Vaccines. Current Medicinal Chemistry 18(26), 3953–3962 (2011).
  • Hansen SG, Piatak M Jr, Ventura AB et al. Immune clearance of highly pathogenic SIV infection. Nature 502(7469), 100–104 (2013).
  • Hansen SG, Sacha JB, Hughes CM et al. Cytomegalovirus Vectors Violate CD8(+) T Cell Epitope Recognition Paradigms. Science 340(6135), 940–+ (2013).
  • Launay O, Surenaud M, Desaint C et al. Long-term CD4(+) and CD8(+) T-cell responses induced in HIV-uninfected volunteers following intradermal or intramuscular administration of an HIV-lipopeptide vaccine (ANRS VAC16). Vaccine 31(40), 4406–4415 (2013).
  • Richert L, Hue S, Hocini H et al. Cytokine and gene transcription profiles of immune responses elicited by HIV lipopeptide vaccine in HIV-negative volunteers. AIDS 27(9), 1421–1431 (2013).
  • Belyakov IM, Ahlers JD, Brandwein BY et al. The importance of local mucosal HIV-specific CD8(+) cytotoxic T lymphocytes for resistance to mucosal viral transmission in mice and enhancement of resistance by local administration of IL-12. J. Clin. Invest. 102(12), 2072–2081 (1998).
  • Belyakov IM, Wyatt LS, Ahlers JD et al. Induction of a mucosal cytotoxic T-lymphocyte response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing human immunodeficiency virus 89.6 envelope protein. J. Virol. 72(10), 8264–8272 (1998).
  • Ahlers JD, Belyakov IM. Strategies for optimizing targeting and delivery of mucosal HIV vaccines. Eur. J. Immunol. 39(10), 2657–2669 (2009).
  • Karpenko LI, Nekrasova NA, Ilyichev AA et al. Comparative analysis using a mouse model of the immunogenicity of artificial VLP and attenuated Salmonella strain carrying a DNA-vaccine encoding HIV-1 polyepitope CTL-immunogen. Vaccine 22(13–14), 1692–1699 (2004).
  • Belyakov IM, Ahlers JD, Nabel GJ, Moss B, Berzofsky JA. Generation of functionally active HIV-1 specific CD8(+) CTL in intestinal mucosa following mucosal, systemic or mixed prime-boost immunization. Virology 381(1), 106–115 (2008).
  • Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12(8), 592–605 (2012).
  • Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11(12), 823–836 (2011).
  • Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4), 213–219 (1999).
  • Bhasin M, Raghava GPS. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J. Biosci. 32(1), 31–42 (2007).
  • Doytchinova IA, Guan PP, Flower DR. EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7(2006).
  • Altuvia Y, Margalit H. A structure-based approach for prediction of MHC-binding peptides. Methods 34(4), 454–459 (2004).
  • Kim Y, Sidney J, Pinilla C, Sette A, Peters B. Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. BMC Bioinformatics 10(2009).
  • Bui HH, Sidney J, Peters B et al. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57(5), 304–314 (2005).
  • Jojic N, Reyes-Gomez M, Heckerman D, Kadie C, Schueler-Furman O. Learning MHC I-peptide binding. Bioinformatics 22(14), E227–E235 (2006).
  • Jacob L, Vert JP. Efficient peptideMHC-I binding prediction for alleles with few known binders. Bioinformatics 24(3), 358–366 (2008).
  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res. 36, W509–W512 (2008).
  • Nielsen M, Lundegaard C, Blicher T et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2(8) (2007).
  • Lata S, Bhasin M, Raghava GP. Application of machine learning techniques in predicting MHC binders. Methods Mol. Biol. 409, 201–215 (2007).
  • Bordner AJ, Mittelmann HD. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes. BMC Bioinformatics 11(2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.