154
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Identifying vaccine targets for anti-leishmanial vaccine development

&

References

  • Berman J. Visceral leishmaniasis in the New World & Africa. Indian J Med Res 2006;123:289-94
  • Alvar J, Velez ID, Bern C, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 2012;7:e35671
  • Handman E. Cell biology of Leishmania. Adv Parasitol 1999;44:1-39
  • Kedzierski L, Zhu Y, Handman E. Parasitology 2006;133(Suppl):S87-112
  • Okwor I, Liu D, Uzonna J. Qualitative differences in the early immune response to live and killed Leishmania major: implications for vaccination strategies against Leishmaniasis. Vaccine 2009;27:2554-62
  • Gupta S. Visceral leishmaniasis: experimental models for drug discovery. Indian J Med Res 2011;133:27-39
  • Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet 2005;366:1561-77
  • Anderson CF, Mendez S, Sacks DL. Nonhealing infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol 2005;174:2934-41
  • Liese J, Schleicher U, Bogdan C. The innate immune response against Leishmania parasites. Immunobiology 2008;213:377-87
  • Reiner SL, Locksley RM. The regulation of immunity to Leishmania major. Annu Rev Immunol 1995;13:151-77
  • Sanabria MX, Vargas-Inchaustegui DA, Xin L, Soong L. Role of natural killer cells in modulating dendritic cell responses to Leishmania amazonensis infection. Infect Immun 2008;76:5100-9
  • Belkaid Y, Von Stebut E, Mendez S, et al. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 2002;168:3992-4000
  • Dogra N, Warburton C, McMaster WR. Leishmania major abrogates gamma interferon-induced gene expression in human macrophages from a global perspective. Infect Immun 2007;75:3506-15
  • Rosenthal LA, Sutterwala FS, Kehrli ME, Mosser DM. Leishmania major-human macrophage interactions: cooperation between Mac-1 (CD11b/CD18) and complement receptor type 1 (CD35) in promastigote adhesion. Infect Immun 1996;64:2206-15
  • Vanloubbeeck Y, Jones DE. The immunology of Leishmania infection and the implications for vaccine development. Ann N Y Acad Sci 2004;1026:267-72
  • Ruiz JH, Becker I. CD8 cytotoxic T cells in cutaneous leishmaniasis. Parasite Immunol 2007;29:671-8
  • Nylen S, Sacks D. Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 2007;28:378-84
  • Noazin S, Modabber F, Khamesipour A, et al. First generation leishmaniasis vaccines: a review of field efficacy trials. Vaccine 2008;26:6759-67
  • Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L. How protozoan parasites evade the immune response. Trends Parasitol 2002;18:272-8
  • Solbach W, Laskay T. The host response to Leishmania infection. Adv Immunol 2000;74:275-317
  • Joshi T, Rodriguez S, Perovic V, et al. B7-H1 blockade increases survival of dysfunctional CD8(+) T cells and confers protection against Leishmania donovani infections. PLoS Pathog 2009;5:e1000431
  • Shio MT, Hassani K, Isnard A, et al. Host cell signalling and Leishmania mechanisms of evasion. J Trop Med 2012;2012:819512
  • Modabber F. Vaccines against Leishmaniasis. Ann Trop Med Parasitol 1995;89:83-8
  • Mayrink W, da Costa CA, Magalhaes PA, et al. A field trial of a vaccine against American dermal Leishmaniasis. Trans R Soc Trop Med Hyg 1979;73:385-7
  • Convit J, Castellanos PL, Rondon A, et al. Immunotherapy versus chemotherapy in localised cutaneous Leishmaniasis. Lancet 1987;1:401-5
  • Convit J, Ulrich M, Zerpa O, et al. Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990-99. Trans R Soc Trop Med Hyg 2003;97:469-72
  • Machado-Pinto J, Pinto J, da Costa CA, et al. Immunochemotherapy for cutaneous leishmaniasis: a controlled trial using killed Leishmania (Leishmania) amazonensis vaccine plus antimonial. Int J Dermatol 2002;41:73-8
  • Coler R, Reed S. Second-generation vaccines against leishmaniasis. Trends Parasitol 2005;21:244-9
  • Roberts M. Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br Med Bull 2006;75-76:115-30
  • Amaral VF, Teva A, Oliveira-Neto MP, et al. Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania) major vaccines in a rhesus monkey (Macaca mulatta) model of the human disease. Mem Inst Oswaldo Cruz 2002;97:1041-8
  • Breton M, Tremblay MJ, Ouellette M, Papadopoulou B. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun 2005;73:6372-82
  • Bruhn KW, Birnbaum R, Haskell J, et al. Killed but metabolically active Leishmania infantum as a novel whole-cell vaccine for visceral leishmaniasis. Clin Vaccine Immunol 2012;19:490-8
  • Cruz A, Coburn CM, Beverley SM. Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci USA 1991;88:7170-4
  • Muyombwe A, Olivier M, Harvie P, et al. Protection against Leishmania major challenge infection in mice vaccinated with live recombinant parasites expressing a cytotoxic gene. J Infect Dis 1998;177:188-95
  • Xu D, McSorley SJ, Chatfield SN, et al. Protection against Leishmania major infection in genetically susceptible BALB/c mice by gp63 delivered orally in attenuated Salmonella typhimurium (AroA- AroD-). Immunology 1995;85:1-7
  • Gonzalo RM, del Real G, Rodriguez JR, et al. A heterologous prime-boost regime using DNA and recombinant vaccinia virus expressing the Leishmania infantum P36/LACK antigen protects BALB/c mice from cutaneous leishmaniasis. Vaccine 2002;20:1226-31
  • Fiuza J, da Costa Santiago H, Selvapandiyan A, et al. Induction of immunogenicity by live attenuated Leishmania donovani centrin deleted parasites in dogs. Vaccine 2013;31:1785-92
  • Ghalib H, Modabber F. Consultation meeting on the development of therapeutic vaccines for post kala-azar dermal leishmaniasis. Kinetoplastid Biol Dis 2007;6:7
  • Chakravarty J, Kumar S, Trivedi S, et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine 2011;29:3531-7
  • Parra LE, Borja-Cabrera GP, Santos FN, et al. Safety trial using the Leishmune vaccine against canine visceral leishmaniasis in Brazil. Vaccine 2007;25:2180-6
  • Evans KJ, Kedzierski L. Development of vaccines against visceral Leishmaniasis. J Trop Med 2012;2012:892817
  • Yang DM, Fairweather N, Button LL, et al. Oral Salmonella typhimurium (AroA-) vaccine expressing a major leishmanial surface protein (gp63) preferentially induces T helper 1 cells and protective immunity against leishmaniasis. J Immunol 1990;145:2281-5
  • Guha R, Gupta D, Rastogi R, et al. Vaccination with Leishmania hemoglobin receptor-encoding DNA protects against visceral leishmaniasis. Sci Transl Med 2013;5:202ra121
  • Ramiro MJ, Zarate JJ, Hanke T, et al. Protection in dogs against visceral leishmaniasis caused by Leishmania infantum is achieved by immunization with a heterologous prime-boost regime using DNA and vaccinia recombinant vectors expressing LACK. Vaccine 2003;21:2474-84
  • Restifo NP, Ying H, Hwang L, Leitner WW. The promise of nucleic acid vaccines. Gene Ther 2000;7:89-92
  • Kedzierski L. Leishmaniasis vaccine: where are we today? J Glob Infect Dis 2010;2:177-85
  • Ilg T. Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO J 2000;19:1953-62
  • Singh B, Sundar S. Leishmaniasis: vaccine candidates and perspectives. Vaccine 2012;30:3834-42
  • Webb JR, Campos-Neto A, Ovendale PJ, et al. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect Immun 1998;66:3279-89
  • Campos-Neto A, Webb JR, Greeson K, et al. Vaccination with plasmid DNA encoding TSA/LmSTI1 leishmanial fusion proteins confers protection against Leishmania major infection in susceptible BALB/c mice. Infect Immun 2002;70:2828-36
  • Coler RN, Skeiky YA, Bernards K, et al. Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect Immun 2002;70:4215-25
  • Fujiwara RT, Vale AM, Franca da Silva JC, et al. Immunogenicity in dogs of three recombinant antigens (TSA, LeIF and LmSTI1) potential vaccine candidates for canine visceral leishmaniasis. Vet Res 2005;36:827-38
  • Ghaffarifar F, Jorjani O, Sharifi Z, et al. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major. APMIS 2013;121:290-8
  • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000;273:793-8
  • Gasser SM, Cockell MM. The molecular biology of the SIR proteins. Gene 2001;279:1-16
  • Zemzoumi K, Sereno D, Francois C, et al. Leishmania major: cell type dependent distribution of a 43 kDa antigen related to silent information regulatory-2 protein family. Biol Cell 1998;90:239-45
  • Tavares J, Ouaissi A, Kong Thoo Lin P, et al. Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1. ChemMedChem 2010;5:140-7
  • Silvestre R, Cordeiro-da-Silva A, Tavares J, et al. Leishmania cytosolic silent information regulatory protein 2 deacetylase induces murine B-cell differentiation and in vivo production of specific antibodies. Immunology 2006;119:529-40
  • Santarem N, Silvestre R, Tavares J, et al. Immune response regulation by Leishmania secreted and nonsecreted antigens. J Biomed Biotechnol 2007;2007:85154
  • Freedman RB, Hirst TR, Tuite MF. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 1994;19:331-6
  • Ben Achour Y, Chenik M, Louzir H, Dellagi K. Identification of a disulfide isomerase protein of Leishmania major as a putative virulence factor. Infect Immun 2002;70:3576-85
  • Chenik M, Lakhal S, Ben Khalef N, et al. Approaches for the identification of potential excreted/secreted proteins of Leishmania major parasites. Parasitology 2006;132:493-509
  • Kumari S, Samant M, Misra P, et al. Th1-stimulatory polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1 kDa offers long-lasting protection against experimental visceral leishmaniasis. Vaccine 2008;26:5700-11
  • Noiva R. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 1999;10:481-93
  • Ferrari DM, Soling HD. The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 1999;339(Pt 1):1-10
  • Samant M, Gupta R, Kumari S, et al. Immunization with the DNA-encoding N-terminal domain of proteophosphoglycan of Leishmania donovani generates Th1-type immunoprotective response against experimental visceral leishmaniasis. J Immunol 2009;183:470-9
  • Scott P, Pearce E, Heath S, Sher A. Identification of T-cell-reactive antigens that protect BALB/c mice against Leishmania major. Ann Inst Pasteur Immunol 1987;138:771-4
  • Bretscher PA, Ogunremi O, Menon JN. Distinct immunological states in murine cutaneous leishmaniasis by immunising with different amounts of antigen: the generation of beneficial, potentially harmful, harmful and potentially extremely harmful states. Behring Inst Mitt 1997(98):153-9
  • Liew FY, Li Y, Millott S. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 1990;145:4306-10
  • Melby PC, Chandrasekar B, Zhao W, Coe JE. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 2001;166:1912-20
  • Noben-Trauth N, Lira R, Nagase H, et al. The relative contribution of IL-4 receptor signaling and IL-10 to susceptibility to Leishmania major. J Immunol 2003;170:5152-8
  • Kushawaha PK, Gupta R, Tripathi CD, et al. Evaluation of Leishmania donovani protein disulfide isomerase as a potential immunogenic protein/vaccine candidate against visceral Leishmaniasis. PLoS One 2012;7:e35670
  • Ilg T, Stierhof YD, Etges R, et al. Secreted acid phosphatase of Leishmania mexicana: a filamentous phosphoglycoprotein polymer. Proc Natl Acad Sci USA 1991;88:8774-8
  • Ilg T, Overath P, Ferguson MA, et al. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans. J Biol Chem 1994;269:24073-81
  • Ilg T, Harbecke D, Wiese M, Overath P. Monoclonal antibodies directed against Leishmania secreted acid phosphatase and lipophosphoglycan. Partial characterization of private and public epitopes. Eur J Biochem 1993;217:603-15
  • Wiese M, Ilg T, Lottspeich F, Overath P. Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase. EMBO J 1995;14:1067-74
  • Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J Biol Chem 2003;278:174-9
  • Kuppner MC, Gastpar R, Gelwer S, et al. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol 2001;31:1602-9
  • Tobian AA, Canaday DH, Boom WH, Harding CV. Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 2004;172:5277-86
  • Descoteaux A, Avila HA, Zhang K, et al. Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO J 2002;21:4458-69
  • Brochu C, Haimeur A, Ouellette M. The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperones 2004;9:294-303
  • Webb JR, Campos-Neto A, Skeiky YA, Reed SG. Molecular characterization of the heat-inducible LmSTI1 protein of Leishmania major. Mol Biochem Parasitol 1997;89:179-93
  • Webb JR, Kaufmann D, Campos-Neto A, Reed SG. Molecular cloning of a novel protein antigen of Leishmania major that elicits a potent immune response in experimental murine leishmaniasis. J Immunol 1996;157:5034-41
  • Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 2005;18:293-305
  • Zanin FH, Coelho EA, Tavares CA, et al. Evaluation of immune responses and protection induced by A2 and nucleoside hydrolase (NH) DNA vaccines against Leishmania chagasi and Leishmania amazonensis experimental infections. Microbes Infect 2007;9:1070-7
  • Pascalis H, Lavergne A, Bourreau E, et al. Th1 cell development induced by cysteine proteinases A and B in localized cutaneous leishmaniasis due to Leishmania guyanensis. Infect Immun 2003;71:2924-6
  • Zadeh-Vakili A, Taheri T, Taslimi Y, et al. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine 2004;22:1930-40
  • da Costa Pinheiro PH, de Souza Dias S, Eulalio KD, et al. Recombinant cysteine proteinase from Leishmania (Leishmania) chagasi implicated in human and dog T-cell responses. Infect Immun 2005;73:3787-9
  • Rafati S, Nazgouee F. Prime-boost vaccination using cysteine proteinases type I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine 2006;24:2169-75
  • Rafati S, Nakhaee A, Taheri T, et al. Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine 2005;23:3716-25
  • Doroud D, Zahedifard F, Vatanara A, et al. Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice. Parasite Immunol 2011;33:335-48
  • Khoshgoo N, Zahedifard F, Azizi H, et al. Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals. Vaccine 2008;26:5822-9
  • Schumperli D. Multilevel regulation of replication-dependent histone genes. Trends Genet 1988;4:187-91
  • Smirlis D, Bisti SN, Xingi E, et al. Leishmania histone H1 overexpression delays parasite cell-cycle progression, parasite differentiation and reduces Leishmania infectivity in vivo. Mol Microbiol 2006;60:1457-73
  • Meddeb-Garnaoui A, Toumi A, Ghelis H, et al. Cellular and humoral responses induced by Leishmania histone H2B and its divergent and conserved parts in cutaneous and visceral leishmaniasis patients, respectively. Vaccine 2010;28:1881-6
  • Wang Y, Chen Y, Xin L, et al. Differential microbicidal effects of human histone proteins H2A and H2B on Leishmania promastigotes and amastigotes. Infect Immun 2011;79:1124-33
  • Melby PC, Ogden GB, Flores HA, et al. Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect Immun 2000;68:5595-602
  • Iborra S, Soto M, Carrion J, et al. Vaccination with a plasmid DNA cocktail encoding the nucleosomal histones of Leishmania confers protection against murine cutaneous leishmaniosis. Vaccine 2004;22:3865-76
  • Carrion J, Folgueira C, Alonso C. Transitory or long-lasting immunity to Leishmania major infection: the result of immunogenicity and multicomponent properties of histone DNA vaccines. Vaccine 2008;26:1155-65
  • Dominguez-Bernal G, Horcajo P, Orden JA, et al. Mitigating an undesirable immune response of inherent susceptibility to cutaneous leishmaniosis in a mouse model: the role of the pathoantigenic HISA70 DNA vaccine. Vet Res 2012;43:59
  • Moller W, Schrier PI, Maassen JA, et al. Ribosomal proteins L7/L12 of Escherichia coli. Localization and possible molecular mechanism in translation. J Mol Biol 1983;163:553-73
  • Soto M, Requena JM, Quijada L, Alonso C. Specific serodiagnosis of human leishmaniasis with recombinant Leishmania P2 acidic ribosomal proteins. Clin Diagn Lab Immunol 1996;3:387-91
  • Kemp M, Hansen MB, Theander TG. Recognition of Leishmania antigens by T lymphocytes from nonexposed individuals. Infect Immun 1992;60:2246-51
  • Levin MJ, Vazquez M, Kaplan D, Schijman AG. The Trypanosoma cruzi ribosomal P protein family: classification and antigenicity. Parasitol Today 1993;9:381-4
  • Iborra S, Parody N, Abanades DR, et al. Vaccination with the Leishmania major ribosomal proteins plus CpG oligodeoxynucleotides induces protection against experimental cutaneous leishmaniasis in mice. Microbes Infect 2008;10:1133-41
  • Iborra S, Carrion J, Anderson C, et al. Vaccination with the Leishmania infantum acidic ribosomal P0 protein plus CpG oligodeoxynucleotides induces protection against cutaneous leishmaniasis in C57BL/6 mice but does not prevent progressive disease in BALB/c mice. Infect Immun 2005;73:5842-52
  • Bhardwaj S, Vasishta RK, Arora SK. Vaccination with a novel recombinant Leishmania antigen plus MPL provides partial protection against Leishmania donovani challenge in experimental model of visceral leishmaniasis. Exp Parasitol 2009;121:29-37
  • Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene 2006;367:17-37
  • Kushawaha PK, Gupta R, Sundar S, et al. Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-gamma and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. J Immunol 2011;187:6417-27
  • Kelly BL, Stetson DB, Locksley RM. Leishmania major LACK antigen is required for efficient vertebrate parasitization. J Exp Med 2003;198:1689-98
  • Julia V, Glaichenhaus N. CD4(+) T cells which react to the Leishmania major LACK antigen rapidly secrete interleukin-4 and are detrimental to the host in resistant B10.D2 mice. Infect Immun 1999;67:3641-4
  • Ahmed SB, Bahloul C, Robbana C, et al. A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine 2004;22:1631-9
  • Hezarjaribi HZ, Ghaffarifar F, Dalimi A, et al. Effect of IL-22 on DNA vaccine encoding LACK gene of Leishmania major in BALB/c mice. Exp Parasitol 2013;134:341-8
  • Afonso LC, Scharton TM, Vieira LQ, et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 1994;263:235-7
  • Vannier-Santos MA, Urbina JA, Martiny A, et al. Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 1995;42:337-46
  • Brodskyn C, Beverley SM, Titus RG. Virulent or avirulent (dhfr-ts-) Leishmania major elicit predominantly a type-1 cytokine response by human cells in vitro. Clin Exp Immunol 2000;119:299-304
  • Kushawaha PK, Gupta R, Tripathi CD, et al. Leishmania donovani triose phosphate isomerase: a potential vaccine target against visceral leishmaniasis. PLoS One 2012;7:e45766
  • Strauss PR, Wang JC. The TOP2 gene of Trypanosoma brucei: a single-copy gene that shares extensive homology with other TOP2 genes encoding eukaryotic DNA topoisomerase II. Mol Biochem Parasitol 1990;38:141-50
  • Matos DC, Faccioli LA, Cysne-Finkelstein L, et al. Kinetoplastid membrane protein-11 is present in promastigotes and amastigotes of Leishmania amazonensis and its surface expression increases during metacyclogenesis. Mem Inst Oswaldo Cruz 2010;105:341-7
  • Requena JM, Soto M, Doria MD, Alonso C. Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Vet Immunol Immunopathol 2000;76:269-81
  • Guha R, Das S, Ghosh J, et al. Heterologous priming-boosting with DNA and vaccinia virus expressing kinetoplastid membrane protein-11 induces potent cellular immune response and confers protection against infection with antimony resistant and sensitive strains of Leishmania (Leishmania) donovani. Vaccine 2013;31:1905-15
  • Basu R, Bhaumik S, Basu JM, et al. Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol 2005;174:7160-71
  • Ramirez JR, Gilchrist K, Robledo S, et al. Attenuated Toxoplasma gondii ts-4 mutants engineered to express the Leishmania antigen KMP-11 elicit a specific immune response in BALB/c mice. Vaccine 2001;20:455-61
  • Agallou M, Margaroni M, Karagouni E. Cellular vaccination with bone marrow-derived dendritic cells pulsed with a peptide of Leishmania infantum KMP-11 and CpG oligonucleotides induces protection in a murine model of visceral leishmaniasis. Vaccine 2011;29:5053-64
  • Bhaumik S, Basu R, Sen S, et al. KMP-11 DNA immunization significantly protects against Leishmania donovani infection but requires exogenous IL-12 as an adjuvant for comparable protection against L. major. Vaccine 2009;27:1306-16
  • Kurtzhals JA, Hey AS, Jardim A, et al. Dichotomy of the human T cell response to Leishmania antigens. II. Absent or Th2-like response to gp63 and Th1-like response to lipophosphoglycan-associated protein in cells from cured visceral leishmaniasis patients. Clin Exp Immunol 1994;96:416-21
  • Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999;112(Pt 17):2799-809
  • Ilg T. Lipophosphoglycan of the protozoan parasite Leishmania: stage- and species-specific importance for colonization of the sand fly vector, transmission and virulence to mammals. Med Microbiol Immunol 2001;190:13-17
  • Bogdan C, Moll H, Solbach W, Rollinghoff M. Tumor necrosis factor-alpha in combination with interferon-gamma, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. Eur J Immunol 1990;20:1131-5
  • Wilhelm P, Ritter U, Labbow S, et al. Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF. J Immunol 2001;166:4012-19
  • Tonui WK, Mpoke SS, Orago AS, et al. Leishmania donovani-derived lipophosphoglycan plus BCG induces a Th1 type immune response but does not protect Syrian golden hamsters (Mesocricetus auratus) and BALB/c mice against Leishmania donovani. Onderstepoort J Vet Res 2003;70:255-63
  • Tonui WK, Mbati PA, Anjili CO, et al. Transmission blocking vaccine studies in leishmaniasis: I. Lipophosphoglycan is a promising transmission blocking vaccine molecule against cutaneous leishmaniasis. East Afr Med J 2001;78:84-9
  • Palatnik CB, Borojevic R, Previato JO, Mendonca-Previato L. Inhibition of Leishmania donovani promastigote internalization into murine macrophages by chemically defined parasite glycoconjugate ligands. Infect Immun 1989;57:754-63
  • Palatnik-de-Sousa CB, Dutra HS, Borojevic R. Leishmania donovani surface glycoconjugate GP36 is the major immunogen component of the fucose-mannose ligand (FML). Acta Trop 1993;53:59-72
  • Palatnik CB, Previato JO, Mendonca-Previato L, Borojevic R. A new approach to the phylogeny of Leishmania: species specificity of glycoconjugate ligands for promastigote internalization into murine macrophages. Parasitol Res 1990;76:289-93
  • Borja-Cabrera GP, Santos FN, Santos FB, et al. Immunotherapy with the saponin enriched-Leishmune vaccine versus immunochemotherapy in dogs with natural canine visceral leishmaniasis. Vaccine 2010;28:597-603
  • Borja-Cabrera GP, Santos FN, Bauer FS, et al. Immunogenicity assay of the Leishmune vaccine against canine visceral leishmaniasis in Brazil. Vaccine 2008;26:4991-7
  • Santos FN, Borja-Cabrera GP, Miyashiro LM, et al. Immunotherapy against experimental canine visceral leishmaniasis with the saponin enriched-Leishmune vaccine. Vaccine 2007;25:6176-90
  • Topuzogullari M, Cakir Koc R, Dincer Isoglu S, et al. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis. J Biomed Sci 2013;20:35
  • Joshi PB, Kelly BL, Kamhawi S, et al. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 2002;120:33-40
  • Blanchette J, Racette N, Faure R, et al. Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 1999;29:3737-44
  • Mazumder S, Maji M, Das A, Ali N. Potency, efficacy and durability of DNA/DNA, DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice. PLoS One 2011;6:e14644
  • Sachdeva R, Akhil C, Banerjea AC, et al. Immunogenicity and efficacy of single antigen Gp63,Polytope and POLYTOPEHSP70 DNA vaccines against visceral Leishmaniasis in experimental mouse model. PLoS One 2009;4:e7880
  • Beetham JK, Donelson JE, Dahlin RR. Surface glycoprotein PSA (GP46) expression during short- and long-term culture of Leishmania chagasi. Mol Biochem Parasitol 2003;131:109-17
  • McKean PG, Trenholme KR, Rangarajan D, et al. Diversity in repeat-containing surface proteins of Leishmania major. Mol Biochem Parasitol 1997;86:225-35
  • Barral A, Honda E, Caldas A, et al. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg 2000;62:740-5
  • Bahia D, Gontijo NF, Leon IR, et al. Antibodies from dogs with canine visceral leishmaniasis recognise two proteins from the saliva of Lutzomyia longipalpis. Parasitol Res 2007;100:449-54
  • Belkaid Y, Kamhawi S, Modi G, et al. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 1998;188:1941-53
  • Morris RV, Shoemaker CB, David JR, et al. Sand fly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 2001;167:5226-30
  • Brodie TM, Smith MC, Morris RV, Titus RG. Immunomodulatory effects of the Lutzomyia longipalpis salivary gland protein maxadilan on mouse macrophages. Infect Immun 2007;75:2359-65
  • Valenzuela JG, Belkaid Y, Garfield MK, et al. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 2001;194:331-42
  • Rogers ME, Sizova OV, Ferguson MA, et al. Synthetic glycovaccine protects against the bite of Leishmania-infected sand flies. J Infect Dis 2006;194:512-18
  • Gomes R, Teixeira C, Teixeira MJ, et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 2008;105:7845-50
  • Kamhawi S, Belkaid Y, Modi G, et al. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 2000;290:1351-4
  • Kaur T, Sobti RC, Kaur S. Cocktail of gp63 and Hsp70 induces protection against Leishmania donovani in BALB/c mice. Parasite Immunol 2011;33:95-103
  • Montalvo-Alvarez AM, Folgueira C, Carrion J, et al. The Leishmania HSP20 is antigenic during natural infections, but, as DNA vaccine, it does not protect BALB/c mice against experimental Leishmania amazonensis infection. J Biomed Biotechnol 2008;2008:695432
  • Xu D, Liew FY. Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology 1995;84:173-6
  • Xu D, Liew FY. Genetic vaccination against leishmaniasis. Vaccine 1994;12:1534-6
  • Solioz N, Blum-Tirouvanziam U, Jacquet R, et al. The protective capacities of histone H1 against experimental murine cutaneous leishmaniasis. Vaccine 1999;18:850-9
  • Poot J, Spreeuwenberg K, Sanderson SJ, et al. Vaccination with a preparation based on recombinant cysteine peptidases and canine IL-12 does not protect dogs from infection with Leishmania infantum. Vaccine 2006;24:2460-8
  • Courret N, Prina E, Mougneau E, et al. Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. Eur J Immunol 1999;29:762-73
  • Gomes DC, Pinto EF, de Melo LD, et al. Intranasal delivery of naked DNA encoding the LACK antigen leads to protective immunity against visceral leishmaniasis in mice. Vaccine 2007;25:2168-72
  • Ghosh A, Zhang WW, Matlashewski G. Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 2001;20:59-66
  • Rafati S, Salmanian AH, Taheri T, et al. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine 2001;19:3369-75
  • Carrion J. Mechanisms of immunity to Leishmania major infection in mice: the contribution of DNA vaccines coding for two novel sets of histones (H2A-H2B or H3-H4). Comp Immunol Microbiol Infect Dis 2011;34:381-6
  • Tapia E, Perez-Jimenez E, Lopez-Fuertes L, et al. The combination of DNA vectors expressing IL-12 + IL-18 elicits high protective immune response against cutaneous leishmaniasis after priming with DNA-p36/LACK and the cytokines, followed by a booster with a vaccinia virus recombinant expressing p36/LACK. Microbes Infect 2003;5:73-84
  • Stager S, Smith DF, Kaye PM. Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol 2000;165:7064-71
  • Tonui W, Mpoke S, Orago A, et al. Leishmania donovani-derived lipophosphoglycan plus BCG induces a Th1 type immune response but does not protect Syrian golden hamsters (Mesocricetus auratus) and BALB/c mice against Leishmania donovani. Onderstepoort J Vet Res 2003;70:255-63
  • Iborra S, Soto M, Carrion J, et al. The Leishmania infantum acidic ribosomal protein P0 administered as a DNA vaccine confers protective immunity to Leishmania major infection in BALB/c mice. Infect Immun 2003;71:6562-72
  • Moreno J, Vouldoukis I, Martin V, et al. Use of a LiESP/QA-21 vaccine (CaniLeish) stimulates an appropriate Th1-dominated cell-mediated immune response in dogs. PLoS Negl Trop Dis 2012;6:e1683
  • Tabbara KS, Peters NC, Afrin F, et al. Conditions influencing the efficacy of vaccination with live organisms against Leishmania major infection. Infect Immun 2005;73:4714-22
  • Gorczynski RM. Immunization of susceptible BALB/c mice against Leishmania braziliensis. II. Use of temperature-sensitive avirulent clones of parasite for vaccination purposes. Cell Immunol 1985;94:11-20
  • Titus RG, Gueiros-Filho FJ, de Freitas LA, Beverley SM. Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci USA 1995;92:10267-71
  • Uzonna JE, Spath GF, Beverley SM, Scott P. Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol 2004;172:3793-7
  • Silvestre R, Cordeiro-Da-Silva A, Santarem N, et al. SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol 2007;179:3161-70
  • Saravia NG, Escorcia B, Osorio Y, et al. Pathogenicity and protective immunogenicity of cysteine proteinase-deficient mutants of Leishmania mexicana in non-murine models. Vaccine 2006;24:4247-59
  • Mayrink W, Genaro O, Silva JC, et al. Phase I and II open clinical trials of a vaccine against Leishmania chagasi infections in dogs. Mem Inst Oswaldo Cruz 1996;91:695-7
  • Rhee EG, Mendez S, Shah JA, et al. Vaccination with heat-killed Leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection. J Exp Med 2002;195:1565-73
  • Srivastava JK, Misra A, Sharma P, et al. Prophylactic potential of autoclaved Leishmania donovani with BCG against experimental visceral leishmaniasis. Parasitology 2003;127:107-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.