815
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Toll-like receptor-based adjuvants: enhancing the immune response to vaccines against infectious diseases of chicken

, , &

References

  • Bowersock TL. Evolving importance of biologics and novel delivery systems in the face of microbial resistance. AAPS PharmSci 2002;4(4):1-7
  • Mohan CM, Dey S, Rai A, Kataria JM. Recombinant haemagglutinin neuraminidase antigen-based single serum dilution ELISA for rapid serological profiling of Newcastle disease virus. J Virol Methods 2006;138(1):117-22
  • Dey S, Upadhyay C, Mohan MC, et al. Formation of subviral particles of the capsid protein VP2 of infectious bursal disease virus and its application in serological diagnosis. J Virol Methods 2009;157(1):84-9
  • Lillehoj HS, Dalloul RA, Min W. Enhancing intestinal immunity to coccidiosis. World Poult 2003;19:18-21
  • O’Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng 2001;18(3):69-85
  • Min W, Lillehoj HS, Burnside J, et al. Adjuvant effects of IL-1beta, IL-2, IL-8, IL-15, IFN-alpha, IFN-gamma TGF-beta4 and lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine 2001;20:267-74
  • Li K, Gao H, Gao L, et al. Adjuvant effects of interleukin-18 in DNA vaccination against infectious bursal disease virus in chickens. Vaccine 2013;31(14):1799-805
  • Fraser CK, Diener KR, Brown MP, Hayball JD. Improving vaccines by incorporating immunological coadjutants. Expert Rev Vaccines 2007;6(4):559-78
  • Heegaard PMH, Dedieu L, Johnson N, et al. Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch Virol 2011;156(2):183-202
  • Schmidt P, Erhard MH, Wanke R, et al. Local reactions after the application of several adjuvants in the chicken. ALTEX 1996;13(5):30-4
  • Wanke R, Schmidt P, Erhard MH, et al. Freunds complete adjuvant in the chicken: efficient immunostimulation but severe local inflammation. J Vet Med A 1996;43(4):243-53
  • Gupta RK. Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 1998;32(3):155-72
  • Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20(1):197-216
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2(8):675-80
  • Shi Z, Cai Z, Sanchez A, et al. A novel Toll-like receptor that recognizes vesicular stomatitis virus. J Biol Chem 2011;286(6):4517-24
  • Beutler BA. TLRs and innate immunity. Blood 2009;113(7):1399-407
  • Schwandner R, Dziarski R, Wesche H, et al. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999;274(25):17406-9
  • Chow JC, Young DW, Golenbock DT, et al. Toll-like receptor-4 mediates lipopolysaccharide the induced signal transduction. J Biol Chem 1999;274:10689-92
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature 2001;413:732-8
  • Heil F, Ahmad-Nejad P, Hemmi H, et al. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 2003;33:2987-97
  • Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single stranded RNA. Science 2004;303:1529-31
  • Takeshita F, Leifer CA, Gursel I, et al. Cutting edge: role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 2001;167:3555-8
  • Yarovinsky F, Zhang D, Andersen JF, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005;308(5728):1626-9
  • Koblansky AA, Jankovic D, Oh H, et al. Recognition of profilin by toll-like receptor 12 is critical for host resistance to toxoplasma gondii. Immunity 2013;38:119-30
  • Manzoor Z, Koh YS. Bacterial 23S Ribosomal RNA, a ligand for toll-like receptor 13. J Bact Virol 2012;42(4):357-8
  • Iqbal M, Philbin VJ, Smith AL. Expression patterns of chicken Toll like receptor mRNA in tissues, immune cell subsets, and cell lines. Vet Immunol Immunopathol 2005;104:117-27
  • Higgs R, Cormican P, Cahalane S, et al. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun 2006;74:1692-8
  • Ruan WK, Zheng SJ. Polymorphisms of chicken toll-like receptor 1 type 1 and type 2 in different breeds. Poult Sci 2011;90:1941-7
  • Keestra AM, van Putten JP. Unique properties of the chicken TLR4/MD-2 complex: selective lipopolysaccharide activation of the MyD88-dependent pathway. J Immunol 2008;181:4354-62
  • Smith KD, Andersen-Nissen E, Hayashi F, et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol 2003;4:1247-53
  • Boyd AC, Peroval MY, Hammond JA, et al. TLR15 is unique to avian and reptilian lineages and recognizes a yeast-derived agonist. J Immunol 2012;189(10):4930-8
  • Brownlie R, Zhu J, Allan B, et al. Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 2009;46:3163-70
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124(4):783-801
  • Beutler B, Jiang Z, Georgel P, et al. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev Immunol 2006;24:353-89
  • Okamura M, Matsumoto W, Seike F, et al. Efficacy of soluble recombinant flic protein from salmonella enterica serovar enteritidis as a potential vaccine candidate against homologous challenge in chickens. Avian Dis 2012;56(2):354-8
  • Khalifeh MS, Amawi MM, Abu-Basha EA, Yonis IB. Assessment of humoral and cellular-mediated immune response in chickens treated with tilmicosin, florfenicol, or enrofloxacin at the time of Newcastle disease vaccination. Poult Sci 2009;88(10):2118-24
  • Gupta SK, Deb R, Gaikwad S, et al. Recombinant flagellin and its cross-talk with lipopolysaccharide–Effect on pooled chicken peripheral blood mononuclear cells. Res Vet Sci 2013;95(3):930-5
  • Suzuki N, Suzuki S, Yeh WC. IRAK-4 as the central TIR signalling mediator in innate immunity. Trends Immunol 2002;23(10):503
  • O’Neill LA. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr Top Microbiol immunol 2002;270:47-61
  • Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun 2009;388(4):621-5
  • Doyle SE, Sagar AV, O’Connell R, et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 2002;17:251-63
  • St. Paul M, Paolucci S, Sharif S. Treatment with ligands for toll-like receptors 2 and 5 induces a mixed t-helper 1-and 2-like response in chicken splenocytes. J Interferon Cytokine Res 2012;32(12):592-8
  • Diehl L, den Boer AT, Schoenberger SP, et al. CD40 activation in-vivo overcomes peptide-induced peripheral cytotoxic T lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 1999;5:774-9
  • Blander JM, Medzhitov R. Regulation of phagosome maturation by signals from toll-like receptors. Science 2004;304:1014-18
  • Doyle SE, O’Connell RM, Miranda GA, et al. Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 1999;199:81-90
  • Datta SK, Vanessa R, Kiley R, et al. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol 2003;170:4102-10
  • Muskett JC, Reed NE, Thornton DH. Increased virulence of an infectious bursal disease live virus vaccine after passage in chicks. Vaccine 1985;3:309-12
  • Wang Y, Shan C, Ming S, et al. Immuno-adjuvant effects of bacterial genomic DNA and CpG oligodeoxynucleotides on avian influenza virus subtype H5N1 inactivated oil emulsion vaccine in chicken. Res Vet Sci 2009;86(3):399-405
  • Lewis PJ, Babiuk LA. DNA vaccines: a review. Adv Virus Res 1999;54:129-88
  • Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 2007;25(30):5637-44
  • Treanor JJ, Campbell JD, Zangwill KM, et al. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. N Engl J Med 2006;354(13):1343-51
  • Vogel FR, Hem SL. Immunologic adjuvants. In: Vaccines. 4th edition. Saunders; Philadelphia, PA, USA: 2004. p. 69-79
  • Chaung HC, Cheng LT, Hung LH, et al. Salmonella flagellin enhances mucosal immunity of avian influenza vaccine in chickens. Vet Microbiol 2012;157:69-77
  • Liang J, Fu J, Kang H, et al. Comparison of 3 kinds of Toll-like receptor ligands for inactivated avian H5N1 influenza virus intranasal immunization in chicken. Poultry Sci 2013;92(10):2651-60
  • Hung LH, Tsai PC, Wang CH, et al. Immunoadjuvant efficacy of plasmids with multiple copies of a CpG motif coadministrated with avian influenza vaccine in chickens. Vaccine 2011;29(29):4668-75
  • Fu J, Liang J, Kang H, et al. Effects of different CpG oligodeoxynucleotides with inactivated avian H5N1 influenza virus on mucosal immunity of chickens. Poultry Sci 2013;92(11):2866-75
  • Xiaowen Z, Qinghua Y, Xiaofei Z, Qian Y. Co-administration of inactivated avian influenza virus with CpG or rIL-2 strongly enhances the local immune response after intranasal immunization in chicken. Vaccine 2009;27(41):5628-32
  • St. Paul M, Mallick AI, Read LR, et al. Prophylactic treatment with Toll-like receptor ligands enhances host immunity to avian influenza virus in chickens. Vaccine 2012;30(30):4524-31
  • Huckriede A, Bungener L, ter Veer W, et al. Influenza virosomes: combining optimal presentation of hemagglutinin with immunopotentiating activity. Vaccine 2003;21(9–10):925-31
  • Gluck R, Metcalfe IC. Novel approaches in the development of immunopotentiating reconstituted influenza virosomes as efficient antigen carrier systems. Vaccine 2003;21(7–8):611-15
  • Mallick AI, Parvizi P, Read LR, et al. Enhancement of immunogenicity of a virosome-based avian influenza vaccine in chickens by incorporating CpG-ODN. Vaccine 2011;29(8):1657-65
  • Stewart CR, Bagnaud-Baule A, Karpala AJ, et al. Toll-like receptor 7 ligands inhibit influenza A infection in chickens. J Inter Cyt Res 2012;32(1):46-51
  • Ben-Yedidia T, Arnon R. Epitope-based vaccine against influenza. Expert Rev Vacccine 2007;6:939-48
  • Huleatt JW, Jacobs AR, Tang J, et al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine 2007;25(4):763-75
  • Huleatt JW, Nakaar V, Desai P, et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 2008;26(2):201-14
  • Song L, Zhang Y, Yun NE, et al. Superior efficacy of a recombinant flagellin: H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine 2009;27(42):5875-84
  • Liu G, Song L, Reiserova L, et al. Flagellin-HA vaccines protect ferrets and mice against H5N1 highly pathogenic avian influenza virus (HPAIV) infections. Vaccine 2012;30(48):6833-88
  • Senne DA, King DJ, Kapczynski DR. Control of Newcastle disease by vaccination. Dev Biol (Basel) 2004;119:165-70
  • Perozo F, Villegas P, Dolz R, et al. The VG/GA strain of Newcastle disease virus: mucosal immunity, protection against lethal challenge and molecular analysis. Avian Pathol 2008;37(3):237-45
  • McCluskie MJ, Weeratna RD, Payette PJ, Davis HL. The potential of CpG oligodeoxynucleotides as mucosal adjuvants. Crit Rev Immunol 2001;21:103-20
  • Zhang L, Zhang M, Li J, et al. Enhancement of mucosal immune responses by intranasal co-delivery of Newcastle disease vaccine plus CpG oligonucleotide in SPF chickens in vivo. Res Vet Sci 2008;85(3):495-502
  • Linghua Z, Xingshan T, Fengzhen Z. Vaccination with Newcastle disease vaccine and CpG oligodeoxynucleotides induces specific immunity and protection against Newcastle disease virus in SPF chicken. Vet Immunol Immunopathol 2007;115(3):216-22
  • Marcus PI, Sekellick MJ. Combined sequential treatment with interferon and dsRNA abrogates virus resistance to interferon action. J Interferon Cytokine Res 2001;21(6):423-9
  • Alving CR. Liposomes as carriers of antigens and adjuvants. J Immunol Methods 1991;140:1-13
  • Tseng LP, Chiou CJ, Chen CC, et al. Effect of lipopolysaccharide on intranasal administration of liposomal Newcastle disease virus vaccine to SPF chickens. Vet Immunol Immunopathol 2009;131(3):285-9
  • Müller H, Islam MR, Raue R. Research on infectious bursal disease – the past, the present and the future. Vet Microbiol 2003;97:153-65
  • Ploegaert TCW, Reilingh GDV, Nieuwland MGB, et al. Intratracheally administered pathogen-associated molecular patterns affect antibody responses of poultry. Poultry Sci 2007;86(8):1667-76
  • Negash T, Liman M, Rautenschlein S. Mucosal application of cationic poly (d, l-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine 2013;31(36):3656-62
  • Mahmood MS, Siddique M, Hussain I, et al. Protection capability of recombinant plasmid DNA vaccine containing VP2 gene of very virulent infectious bursal disease virus in chickens adjuvanted with CpG oligodeoxynucleotide. Vaccine 2006;24(22):4838-46
  • Wang X, Jiang P, Deen S, et al. Efficacy of DNA vaccines against infectious bursal disease virus in chickens enhanced by coadministration with CpG oligodeoxynucleotide. Avian Dis 2003;47(4):1305-12
  • Roh HJ, Sung HW, Kwon HM. Effects of DDA, CpG-ODN, and plasmid-encoded chicken IFN-γ on protective immunity by a DNA vaccine against IBDV in chickens. J Vet Sci 2006;7(4):361-8
  • Dolz R, Vergara-Alert J, Perez M, et al. New insights on infectious bronchitis virus pathogenesis: characterization of Italy 02 serotype in chicks and adult hens. Vet Microbiol 2012;156:256-64
  • Cook JK, Smith HW, Huggins MB. Infectious bronchitis immunity: its study in chickens experimentally infected with mixtures of infectious bronchitis virus and Escherichia coli. J Gen Virol 1986;67:1427-34
  • Tang M, Wang H, Zhou S, Tian G. Enhancement of the immunogenicity of an infectious bronchitis virus DNA vaccine by a bicistronic plasmid encoding nucleocapsid protein and interleukin-2. J Virol Methods 2008;149(1):42-8
  • Dar A, Potter A, Tikoo S, et al. CpG oligodeoxynucleotides activate innate immune response that suppresses infectious bronchitis virus replication in chicken embryos. Avian Dis 2009;53(2):261-7
  • Gimeno IM. Marek’s disease vaccines: a solution for today but a worry for tomorrow? Vaccine 2008;26:31-41
  • Parvizi P, Mallick AI, Haq K, et al. A Toll-like receptor 3 ligand enhances protective effects of vaccination against marek’s disease virus and hinders tumor development in chickens. Viral Immunol 2012;25(5):394-401
  • He H, Genovese KJ, Nisbet DJ, Kogut MH. Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. Mol Immunol 2007;44:3234-42
  • Djeraba A, Bernardet N, Dambrine G, Quéré P. Nitric oxide inhibits Marek’s disease virus replication but is not the single decisive factor in interferon-γ-mediated viral inhibition. Virology 2000;277(1):58-65
  • Xing Z, Schat KA. Expression of cytokine genes in Marek’s disease virus-infected chickens and chicken embryo fibroblast cultures. Immunology 2000;100(1):70-6
  • Parvizi P, Abdul-Careem MF, Mallick AI, et al. The effects of administration of ligands for Toll-like receptor 4 and 21 against Marek’s disease in chickens. Vaccine 2014;32(17):1932-8
  • Pertile TL, Karaca K, Walser MM, Sharma JM. Suppressor macrophages mediate depressed lymphoproliferation in chickens infected with avian reovirus. Vet Immunol Immunopathol 1996;53(1):129-45
  • Haddadi S, Kim DS, Jasmine H, et al. Induction of Toll-like receptor 4 signaling in avian macrophages inhibits infectious laryngotracheitis virus replication in a nitric oxide dependent way. Vet Immunol Immunopathol 2013;155(4):270-5
  • Leveque G, Forgetta V, Morroll S, et al. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immunol 2003;71(3):1116-24
  • Santos AC, Roberts JA, Cook AJC, et al. Salmonella Typhimurium and Salmonella Enteritidis in England: costs to patients, their families, and primary and community health services of the NHS. Epidemiol Infect 2011;139(5):742-53
  • Xie H, Raybourne RB, Babu US, et al. CpG-induced immunomodulation and intracellular bacterial killing in a chicken macrophage cell line. Dev Comp Immunol 2003;27(9):823-34
  • He H, Lowry VK, Swaggerty CL, et al. In vitro activation of chicken leukocytes and in vivo protection against Salmonella enteritidis organ invasion and peritoneal S. enteritidis infection-induced mortality in neonatal chickens by immunostimulatory CpG oligodeoxynucleotide. FEMS Immunol Med Microbiol 2005;43(1):81-9
  • Shahrokhi V, Rad M, Kalidari GA. Treatment of newly hatched chicken with CpG oligodeoxynucleotides decreases liver/spleen colonization of Salmonella enteritidis in broiler chickens. Comp Clin Pathol 2013;22(5):1-5
  • Swaggerty CL, He H, Genovese KJ, et al. Loxoribine pretreatment reduces Salmonella Enteritidis organ invasion in 1-day-old chickens. Poultry Sci 2012;91(4):1038-42
  • Mackinnon KM, He H, Swaggerty CL, et al. In ovo treatment with CpG oligodeoxynucleotides decreases colonization of Salmonella enteriditis in broiler chickens. Vet Immunol Immunopathol 2009;127(3):371-5
  • Hartley C, Salisbury AM, Wigley P. CpG oligonucleotides and recombinant interferon-γ in combination improve protection in chickens to Salmonella enterica serovar Enteritidis challenge as an adjuvant component, but have no effect in reducing Salmonella carriage in infected chickens. Avian Pathol 2012;41(1):77-82
  • Taghavi A, Allan B, Mutwiri G, et al. Protection of neonatal broiler chicks against Salmonella Typhimurium septicemia by DNA containing CpG motifs. Avian Dis 2008;52(3):398-406
  • Genovese KJ, He H, Lowry VK, et al. Dynamics of the avian inflammatory response to Salmonella following administration of the toll-like receptor 5 agonist flagellin. FEMS Immunol Med Microbiol 2007;51(1):112-17
  • Gross WG. Diseases due to Escherichia coli in poultry. In: Gyles CL, editor. Escherichia coli in domestic animals and humans. CAB International, Wallingford, UK; 1994. p. 237-59
  • Ewers C, Janßen T, Wieler LH. Avian pathogenic Escherichia coli (APEC). Berl Munch Tierarztl Wochenschr 2003;116(9-10):381
  • Gomis S, Babiuk L, Godson DL, et al. Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infect Immunol 2003;71(2):857-63
  • Gomis S, Babiuk L, Allan B, et al. Protection of neonatal chicks against a lethal challenge of Escherichia coli using DNA containing cytosine-phosphodiester-guanine motifs. Avian Dis 2004;48(4):813-22
  • Gomis S, Babiuk L, Allan B, et al. Protection of chickens against a lethal challenge of escherichia coli by a vaccine containing CpG oligodeoxynucleotides as an adjuvant. Avian Dis 2007;51(1):78-83
  • Taghavi A, Allan B, Mutwiri G, et al. Enhancement of immunoprotective effect of CpG-ODN by formulation with polyphosphazenes against E. coli septicemia in neonatal chickens. Curr Drug Deliv 2009;6(1):76-82
  • Colles FM, Jones TA, McCarthy ND, et al. Campylobacter infection of broiler chickens in a free-range environment. Environ Microbiol 2008;10(8):2042-50
  • Huang JL, Yin YX, Pan ZM, et al. Intranasal immunization with chitosan/pCAGGS-flaA nanoparticles inhibits Campylobacter jejuni in a White Leghorn model. J Biomed Biotechnol 2010. [ Epub ahead of print]
  • Andersen-Nissen E, Smith KD, Strobe KL, et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA 2005;102:9247-52
  • de Zoete MR, Keestra AM, Roszczenko P, van Putten JP. Activation of human and chicken toll-like receptors by Campylobacter spp. Infect Immun 2010;78(3):1229-38
  • Gupta SK, Bajwa P, Deb R, et al. Flagellin-A TLR5 agonist as an adjuvant in chicken vaccines. Clin Vaccine Immunol 2014;21(3):261-70
  • Widders PR, Thomas LM, Long KA, et al. The specificity of antibody in chickens immunized to reduce intestinal colonization with Campylobacter jejuni. Vet Microbiol 1998;64(1):39-50
  • Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccine 2006;5(1):143-63
  • Innes EA, Vermeulen AN. Vaccination as a control strategy against the coccidial parasites eimeria, toxoplasma and neospora. Parasitology 2006;133(2):145-68
  • Dalloul RA, Lillehoj HS, Okamura M, et al. In vivo effects of CpG oligodeoxynucleotide on Eimeria infection in chickens. Avian Dis 2004;48(4):783-90
  • Dalloul RA, Lillehoj HS, Klinman DM, et al. In ovo administration of CpG oligodeoxynucleotides and the recombinant microneme protein MIC2 protects against Eimeria infections. Vaccine 2005;23(24):3108-13
  • Yin G, Qin M, Liu X, et al. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Biochem Biophys Res Commun 2013;440(3):437-42
  • Berczi I, Bertok L, Bereznai T. Comparative studies on the toxicity of E. coli lipopolysaccharide endotoxin in various animal species. Can J Microbiol 1966;12:1070-1
  • Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999;1489:69-84
  • Meng W, Yamazaki T, Nishida Y, Hanagata N. Nuclease-resistant immunostimulatory phosphodiester CpG oligodeoxynucleotides as human Toll-like receptor 9 agonists. BMC biotechnol 2011;11(1):88
  • Higuchi M, Matsuo A, Shingai M, et al. Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev Comp Immunol 2008;32:147-55
  • Hornung V, Rothenfusser S, Britsch S, et al. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002;168(9):4531-7
  • Yilmaz A, Shen S, Adelson DL, et al. Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics 2005;56:743-53
  • McCurdy JD, Olynych TJ, Maher LH, Marshall JS. Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol 2003;170(4):1625-9
  • Schwarz H, Schneider K, Ohnemus A, et al. Chicken toll-like receptor 3 recognizes its cognate ligand when ectopically expressed in human cells. J Interferon Cytokine Res 2007;27:97-101
  • Wang T, Town T, Alexopoulou L, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004;10(12):1366-73
  • Hornef MW, Normark BH, Vandewalle A, Normark S. Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 2003;198(8):1225-35
  • Gewirtz AT, Navas TA, Lyons S, et al. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001;167:1882-5
  • Philbin VJ, Iqbal M, Boyd Y, et al. Identification and characterization of a functional, alternatively spliced Toll like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 2005;114:507-21
  • Sivori S, Falco M, Della Chiesa M, et al. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. PNAS 2004;101(27):10116-21
  • St. Paul M, Neda B, Jennifer TB, et al. Effects of ligands for toll-like receptors 3, 4, and 21 as adjuvants on the immunogenicity of an avian influenza vaccine in chickens. Viral Immunol 2014;27(4):167-73
  • St. Paul M, Jennifer TB, Neda B, et al. Avian influenza virus vaccines containing toll-like receptors 2 and 5 ligand adjuvants promote protective immune responses in chickens. Viral Immunol 2014;27(4):160-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.