269
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Glycan surface antigens from Bacillus anthracis as vaccine targets: current status and future perspectives

References

  • Hanna P. Anthrax pathogenesis and host response. Curr Top Microbiol Immunol 1998;225:13-35
  • Wang JY, Roehrl MH. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin. Med Immunol 2005;4:4
  • Friedlander AM, Welkos SL, Pitt ML, et al. Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis 1993;167:1239-43
  • Lane HC, Montagne JL, Fauci AS. Bioterrorism: a clear and present danger. Nat Med 2001;7:1271-3
  • Bennett RL. Chemical or biological terrorist attacks: an analysis of the preparedness of hospitals for managing victims affected by chemical or biological weapons of mass destruction. Int J Environ Res Public Health 2006;3:67-75
  • Bouzanias DG. Current and future medical approaches to combat the anthrax threat. J Med Chem 2010;53:4305-31
  • Webb G. Being prepared: modeling the response to an anthrax attack. Ann Intern Med 2005;142:667-8
  • Klinman DM, Yamamoto M, Tross D, et al. Anthrax prevention and treatment: utility of therapy combining antibiotic plus vaccine. Expert Opin Biol Ther 2009;9(12):1477-86
  • Berti F, Adamo R. Recent mechanistic insights on glycoconjugate vaccines and future perspectives. ACS Chem Biol 2013;8:1653-63
  • Astronomo RD, Burton DR. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 2010;9:308-24
  • Meselson M, Guillemin J, Hugh-Jones M, et al. The Sverdlovsk anthrax outbreak of 1979;Science 1994;266:1202-8
  • Spencer RC. Bacillus anthracis. J Clin Pathol 2003;56:182-7
  • Young JA, Collier RJ. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu Rev Biochem 2007;76:243-65
  • Candela T, Fouet A. Bacillus anthracis CapD, belonging to the g-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 2005;57:717-26
  • Bouzanias DG. Potential biological targets of Bacillus anthracis in anti-infective approaches against the threat of bioterrorism. Expert Rev Anti Infect Ther 2007;5:665-84
  • Bouzanias DG. Medical countermeasures to protect humans from anthrax bioterrorism. Trends Microbiol 2009;17:522-8
  • Brey RN. Molecular basis for improved anthrax vaccines. Adv Drug Deliv Rev 2005;57:1266-92
  • Baillie LW. Past, imminent and future human medical countermeasures for anthrax. J Appl Microbiol 2006;101:594-606
  • Wimer-Mackin S, Hinchcliffe M, Petrie CR, et al. An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. Vaccine 2006;24:3953-63
  • Chabot DJ, Scorpio A, Tobery SA, et al. Anthrax capsule vaccine protects against experimental infection. Vaccine 2004;23:43-7
  • Welkos S, Little S, Friedlander A, et al. The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 2001;147:1677-85
  • Ducle H, Hong HA, Atkins HS, et al. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 2007;25:346-55
  • Williamson ED, Hodgson I, Walker NJ, et al. Immunogenicity of recombinant protective antigen and efficacy against aerosol challenge with anthrax. Infect Immun 2005;73:5978-87
  • Gorse GJ, Keitel W, Keyserling H, et al. Immunogenicity and tolerance of ascending doses of a recombinant protective antigen (rPA102) anthrax vaccine: a randomized, double blinded, controlled, multicenter trial. Vaccine 2006;33-4.5950-9
  • Lipton E. US cancels order for 75 million doses of anthrax vaccine. N. Y. Times; 2006. No A23
  • Fasanella A, Tonello F, Garofolo G, et al. Protective activity and immunogenicity of two recombinant anthrax vaccines for veterinary use. Vaccine 2008;26:5684-8
  • Joyce J, Cook J, Chabot D, et al. Immunogenicity and protective efficacy of Bacillus anthracis poly-gamma-D-glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J Biol Chem 2006;281:4831-43
  • Rhie GE, Roehrl MH, Mourez M, et al. A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc Natl Acad Sci USA 2003;100:10925-30
  • Aulinger BA, Roehrl MH, Mekalanos JJ, et al. Combining anthrax vaccine and therapy: a dominant negative inhibitor of anthrax toxin is also a potent and safe immunogen for vaccines. Infect Immun 2005;73:3408-14
  • Kaur M, Singh S, Bhatnagar R. Anthrax vaccines: present status and future prospects. Expert Rev Vaccines 2013;12:955-70
  • Klinman DM. CpG oligonucleotides accelerate and boost the immune response elicited by AVA, the licensed anthrax vaccine. Expert Rev Vaccines 2006;5:365-9
  • Costantino P, Rappuoli R, Berti F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 2011;6:1045-67
  • Baddiley J. Teichoic acids in walls and the molecular structure of bacterial walls. Proc R Soc Lond B Biol Sci 1968;170:331-48
  • Coley J, Duckworth M, Baddiley J. The occurrence of lipoteichoic acids in the membranes of Gram-positive bacteria. J Gen Microbiol 1972;73:587-91
  • Gründling A, Schneewind O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 2007;104:8478-83
  • Garufi G, Hendrickx AP, Beeri K, et al. Synthesis of lipoteichoic acids in Bacillus anthracis. J Bacteriol 2012;194:4312-21
  • Robert A, Samuelson P, Andreoni C, et al. Surface display on staphylococci: a comparative study. FEBS Lett 1996;390:327-33
  • Kuo LM, Davies HC, Smith L. Monoclonal antibodies to cytochrome c from paracoccus denitrificans: effects on electron transport reactions. Biochim Biophys Acta 1985;809:388-95
  • Sorensen UB, Henrichsen J, Chen HC, Szu SC. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb Pathog 1990;8:325-34
  • He LM, Neu MP, Vanderberg LA. Bacillus licheniformis γ −glutamyl exopolymer: physicochemical characterization and U(VI) interaction. Environ Sci Technol 2000;34:1694-701
  • Barua S, Iver JK, Houghes MA, et al. Toxin inhibition of antimicrobial factors peptidoglycan in human blood induced by Bacillus anthracis. Infect Immun 2013;81:3693-702
  • Langer M, Malykhin A, Maeda K, et al. Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway. PLoS One 2008;3:e3706
  • Sun D, Popescu NI, Raisley B, et al. RII and complement Bacillus anthracis peptidoglycan activates human platelets through Fcg. J Biol Chem 2013;122:571-9
  • Qiu P, Li Y, Shiloach J, et al. Bacillus anthracis cell wall peptidoglycan but not Lethal or Edema toxins produces changes consistent with disseminated intravascular coagulation in a rat model. J Infect Dis 2013;208:978-89
  • S Schäffer C, Messner P. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 2005;151:643-51
  • Mesnage S, Tosi-Couture E, Mock M, Fouet A. The S-layer homology domain as a means for anchoring heterologous proteins on the cell surface of Bacillus anthracis. J Appl Microbiol 1999;87:256-60
  • Kern J, Ryan C, Faull K, et al. Bacillus anthracis surface-layer proteins assemble by binding to the secondary cell wall polysaccharide in a manner that requires csaB and tagO. J Mol Biol 2010;401:757-75
  • Leoff C, Saile E, Rauvolfova J, et al. Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested. Glycobiology 2009;19:65-673
  • Choudhury B, Leoff C, Saile E, et al. Species-specific polysaccharide of Bacillus anthracis is the structure of the major cell wall. J Biol Chem 2006;281:27932-41
  • Oberli MA, Bindschadler P, Werz DB, et al. Synthesis of a hexasaccharide repeating unit from Bacillus anthracis vegetative cell walls. Org Lett 2008;10:905-8
  • Forsberg LS, Choudhury B, Leoff C, et al. Secondary cell wall polysaccharides from Bacillus cereus strains G9241, 03BB87 and 03BB102 causing fatal pneumonia share similar glycosyl structures with the polysaccharides from Bacillus anthracis. Glycobiology 2011;21:934-48
  • Ganguly J, Low LY, Kamal N, et al. The secondary cell wall polysaccharide of Bacillus anthracis provides the specific binding ligand for the C-terminal cell wall-binding domain of two phage endolysins, PlyL and PlyG. Glycobiology 2013;23:820-32
  • Mo K-F, Li X, Li H, et al. Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity. J Am Chem Soc 2012;134:15556-62
  • Vasan M, Rauvolfova J, Wolfert MA, et al. Chemical synthesis and immunological properties of oligosaccharides derived from the vegetative cell wall of Bacillus anthracis. ChemBioChem 2008;9:1716-20
  • Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev 1993;57:1-33
  • G Gerhardt P. Cytology of Bacillus anthracis. Fed Proc 1967;26:1504-17
  • Roels S, Losick R. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J Bacteriol 1995;177:6263-75
  • Steichen C, Chen P, Kearney JF, et al. Indentification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 2003;185:1903-10
  • Daubenspeck JM, Zeng H, Chen P, et al. Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J Biol Chem 2004;279:30945-53
  • Saksena R, Adamo R, Kováč P. Studies toward a conjugate vaccine for anthrax. Synthesis and characterization of anthrose [4,6-dideoxy-4-(3-hydroxy-3-methylbutanamido)-2-O-methyl-D-glucopyranose] and its methyl glycosides. Carbohydr Res 2005;340:1591-600
  • Werz DB, Seeberger PH. Total synthesis of antigen bacillus anthracis tetrasaccharide-creation of an anthrax vaccine candidate. Angew Chem Int Ed. Engl 2005;44:6315-18
  • Adamo R, Saksena R, Kováč P. Synthesis of the beta anomer of the spacer-equipped tetrasaccharide side chain of the major glycoprotein of the Bacillus anthracis exosporium. Carbohydr Res 2005;340:2579-82
  • Saksena R, Adamo R, Kováč P. Synthesis of the tetrasaccharide side chain of the major glycoprotein of the Bacillus anthracis exosporium. Bioorg Med Chem Lett 2006;16:615-17
  • Adamo R, Saksena R, Kováč P. Studies towards a conjugate vaccine for anthrax: synthesis of the tetrasaccharide side chain of the Bacillus anthracis exosporium. Helv Chim Acta 2006;89:1075-88
  • Saksena R, Adamo R, Kováč P. Immunogens related to the synthetic tetrasaccharide side chain of the Bacillus anthracis exosporium. Bioorg Med Chem 2007;15:4283-310
  • Mehta AS, Saile E, Zhong W, et al. Synthesis and antigenic analysis of the BclA glycoprotein oligosaccharide from the Bacillus anthracis exosporium. Chemistry 2006;12:9136-49
  • Crich D, Vinogradova O. Synthesis of the antigenic tetrasaccharide side chain from the major glycoprotein of Bacillus anthracis exosporium. J Org Chem 2007;72:6513-20
  • Milhomme O, Dhénin SGY, Djedaïni-Pilard F, et al. Synthetic studies toward the anthrax tetrasaccharide: alternative synthesis of this antigen. Carbohydr Res 2012;356:115-31
  • Guo H, O’Doherty GA. De novo asymmetric synthesis of the anthrax tetrasaccharide by a palladium-catalyzed glycosylation reaction. Angew Chem Int Ed Engl 2007;46:5206-8
  • Dhenin SG, Moreau V, Morel N, et al. Synthesis of an anthrose derivative and production of polyclonal antibodies for the detection of anthrax spores. Carbohydr Res 2008;343:2101-10
  • Hou S, Kovác P. A convenient synthesis of furanose-free D-Fucose per-O-acetates and a precursor for anthrose. Eur J Org Chem 2008;1947-52
  • Kováč P, Hou S. Conjugation-amenable tetrasaccharide of the side chain of the major glycoprotein of the Bacillus anthracis exosporium: a large-scale preparation. Synthesis 2009;2009:545-50
  • Milhomme O, Grandjean C. Synthetic efforts towards glycoconjugate-based vaccines active against anthrax. Curr Org Synth 2014;18:291-311
  • Oberli MA, Horlacher T, Werz DB, Seeberger PH. Synthetic oligosaccharide bacterial antigens to produce monoclonal antibodies for diagnosis and treatment of disease using Bacillus anthracis as a case study from anti carbohydrate antibodies, Chapter 2 In: Kosma P, Müller-Loennies S, editors. Molecular basis to clinical application. Springer; 2012. 37-54
  • Werz DB, Adibekian A, Seeberger PH. Synthesis of a spore surface pentasaccharide of Bacillus anthracis. Eur J Org Chem 2007;2007:1976-82
  • Tamborrini M, Werz DB, Frey J, et al. Anti-carbohydrate antibodies for the detection of anthrax spores. Angew Chem Int Ed Engl 2006;45:6581-2
  • Wang D. Carbohydrate microarrays. Proteomics 2003;3:2167-75
  • Wang D, Carroll GT, Turro NJ, et al. Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium. Proteomics 2007;7:180-4
  • Oberli MA, Tamborrini M, Tsai Y-H, et al. Molecular analysis of carbohydrate-antibody interactions: case study using a Bacillus anthracis tetrasaccharide. J Am Chem Soc 2010;132:10239-102419
  • Kuehn A, Kovac P, Saksena R, et al. Development of antibodies against anthrose tetrasaccharide for specific detection of Bacillus anthracis spores. Clin Vaccine Immunol 2009;16:1728-37
  • Saile E, Boons GJ, Buskas T, et al. Antibody responses to a spore carbohydrate antigen as a marker of nonfatal inhalation anthrax in rhesus macaques. Clin Vaccine Immunol 2011;18:743-8
  • Tamborrini M, Holzer M, Seeberger PH, Schurch N and Pluschke G. Anthrax spore detection by a Luminex assay based on monoclonal antibodies that recognize anthrose-containing oligosaccharides. Clin Vaccine Immunol 2010;17:1446-51
  • Milhomme O, Köhler SM, Ropartz D, et al. Synthesis and immunochemical evaluation of a non-methylated disaccharide analogue of the anthrax tetrasaccharide. Org Biomol Chem 2012;10:8524-32
  • Gauthier YP, Tournier J-N, Paucod J-C, et al. Efficacy of a vaccine based on Protective Antigen and killed spores against experimental inhalational anthrax. Infect Immune 2009;77:1197-207
  • Daniel WB, Seeberger PH, Tamborrini M, et al. Antibodies for the detection of Bacillus anthracis and vaccine against B. anthracis infections. From PCT Int Appl 2007; WO 2007125089 A2 20071108
  • Bacillus anthracis oligosaccharide variant conjugates as vaccines against anthrax and kits comprising antibodies for diagnosis of anthrax. Russell CW, Boons GJ, Buskas T, et al. From U.S. Pat Appl Publ., US 2009; 20090246200 A1 20091001
  • Raab CP. Passive Immunization. Prim Care 2011;38:681-91
  • Brahmbhatt TN, Darnell SC, Carvalho HM, et al. Recombinant exosporium protein BclA of Bacillus anthracis is effective as a booster for mice primed with suboptimal amounts of protective antigen. Infect Immun 2007;75:5240-7
  • Xia G, Kohler T, Peschel A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 2010;300:148-54
  • Capparelli R, Nocerino N, Medaglia C, et al. The Staphylococcus aureus peptidoglycan protects mice against the pathogen and eradicates experimentally induced infection. PLoS One 2011;6:e28377
  • Peachman KK, Li Q, Matyas GR, et al. Anthrax vaccine antigen-adjuvant formulations completely protect New Zealand white rabbits against challenge with Bacillus anthracis Ames strain spores. Clin Vaccine Immunol 2012;19:11-16
  • Rynkiewicz D, Rathkopf M, Sim I, et al. Marked enhancement of the immune response to BioThrax® (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers. Infect Immun 2011;29(37):6313-20
  • Sloat BR, Cui Z. Nasal immunization with a dual antigen anthrax vaccine induced strong mucosal and systemic immune responses against toxins and bacilli. Vaccine 2006;24:6405-13
  • Devera TS, Joshi SK, Aye LM, et al. Regulation of anthrax toxin-specific antibody titers by natural killer T cell-derived IL-4 and IFNγ. PLoS One 2011;6:e23817
  • Merkel TJ, Perera PY, Kelly VK, et al. Development of a highly efficacious vaccinia-based dual vaccine against smallpox and anthrax, two important bioterror entities. Proc Natl Acad Sci USA 2010;107:18091-6
  • Flick-Smith HC, Eyles JE, Hebdon R, et al. Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infect Immun 2002;70:2022-8
  • Bielinska AU, Janczak KW, Landers JJ, et al. Mucosal immunization with a novel nanoemulsion-based recombinant anthrax protective antigen vaccine protects against Bacillus anthracis spore challenge. Infect Immun 2007;75:4020-9
  • Petersen LK, Phanse Y, Ramer-Tait AE, et al. Amphiphilic polyanhydride nanoparticles stabilize Bacillus anthracis protective antigen. Mol Pharm 2012;9:874-82
  • Liu TH, Oscherwitz J, Schnepp B, et al. Genetic vaccines for anthrax based on recombinant adeno-associated virus vectors. Mol Ther 2009;17:373-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.