417
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Improving immunogenicity and efficacy of vaccines for genital herpes containing herpes simplex virus glycoprotein D

, &

References

  • Looker KJ, Garnett GP, Schmid GP. An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull World Health Organ 2008;86(10):805-12. A
  • Schiffer JT, Swan D, Al Sallaq R, et al. Rapid localized spread and immunologic containment define Herpes simplex virus-2 reactivation in the human genital tract. Elife 2013;2:e00288
  • Wald A, Zeh J, Selke S, et al. Reactivation of genital herpes simplex virus type 2 infection in asymptomatic seropositive persons. N Engl J Med 2000;342(12):844-50
  • Brown ZA, Selke S, Zeh J, et al. The acquisition of herpes simplex virus during pregnancy. N Engl J Med 1997;337(8):509-15
  • Gray RH, Wawer MJ, Brookmeyer R, et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. Lancet 2001;357(9263):1149-53
  • Kapiga SH, Sam NE, Bang H, et al. The role of herpes simplex virus type 2 and other genital infections in the acquisition of HIV-1 among high-risk women in northern Tanzania. J Infect Dis 2007;195(9):1260-9
  • Mertz GJ, Ashley R, Burke RL, et al. Double-blind, placebo-controlled trial of a herpes simplex virus type 2 glycoprotein vaccine in persons at high risk for genital herpes infection. J Infect Dis 1990;161(4):653-60
  • Stanberry LR, Spruance SL, Cunningham AL, et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med 2002;347(21):1652-61
  • Belshe RB, Leone PA, Bernstein DI, et al. Efficacy results of a trial of a herpes simplex vaccine. N Engl J Med 2012;366(1):34-43
  • Corey L, Langenberg AG, Ashley R, et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 1999;282(4):331-40
  • Eisenberg RJ, Atanasiu D, Cairns TM, et al. Herpes virus fusion and entry: a story with many characters. Viruses 2012;4(5):800-32
  • Wald A. Genital HSV-1 infections. Sex Transm Infect 2006;82(3):189-90
  • Awasthi S, Belshe RB, Friedman HM. Better neutralization of herpes simplex virus Type 1 (HSV-1) than HSV-2 by antibody from recipients of GlaxoSmithKline HSV-2 glycoprotein D2 subunit vaccine. J Infect Dis 2014;210(4):571-5
  • Leroux-Roels G, Clement F, Vandepapeliere P, et al. Immunogenicity and safety of different formulations of an adjuvanted glycoprotein D genital herpes vaccine in healthy adults: A double-blind randomized trial. Hum Vaccin Immunother 2013;9(6):1254-62
  • Straus SE, Corey L, Burke RL, et al. Placebo-controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes. Lancet 1994;343(8911):1460-3
  • Straus SE, Wald A, Kost RG, et al. Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: results of a placebo-controlled vaccine trial. J Infect Dis 1997;176(5):1129-34
  • Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protection after vaccination. Clin Infect Dis 2012;54(11):1615-17
  • Belshe RB, Gruber WC, Mendelman PM, et al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J Infect Dis 2000;181(3):1133-7
  • Ludwig B, Kraus FB, Allwinn R, et al. Loss of varicella zoster virus antibodies despite detectable cell mediated immunity after vaccination. Infection 2006;34(4):222-6
  • Li S, Chan IS, Matthews H, et al. Inverse relationship between six week postvaccination varicella antibody response to vaccine and likelihood of long term breakthrough infection. Pediatr Infect Dis J 2002;21(4):337-42
  • Michalik DE, Steinberg SP, Larussa PS, et al. Primary vaccine failure after 1 dose of varicella vaccine in healthy children. J Infect Dis 2008;197(7):944-9
  • LaRussa P, Steinberg S, Gershon AA. Varicella vaccine for immunocompromised children: results of collaborative studies in the United States and Canada. J infect dis 1996;174(Suppl 3):S320-3
  • Weinberg A, Zhang JH, Oxman MN, et al. Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J Infect Dis 2009;200(7):1068-77
  • Ashley RL, Dalessio J, Burchett S, et al. Herpes simplex virus-2 (HSV-2) type-specific antibody correlates of protection in infants exposed to HSV-2 at birth. J Clin Invest 1992;90(2):511-14
  • Gershon AA. Symposium on infectious complications of neoplastic disease (Part II). Immunoprophylaxis of varicella-zoster infections. Am J Med 1984;76(4):672-7
  • Belshe RB, Heineman TC, Bernstein DI, et al. Correlate of immune protection against HSV-1 genital disease in vaccinated women. J Infect Dis 2014;209(6):828-36
  • Mossman KL, Saffran HA, Smiley JR. Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 2000;74(4):2052-6
  • Melroe GT, DeLuca NA, Knipe DM. Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol 2004;78(16):8411-20
  • Daubeuf S, Singh D, Tan Y, et al. HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood 2009;113(14):3264-75
  • Fakioglu E, Wilson SS, Mesquita PM, et al. Herpes simplex virus downregulates secretory leukocyte protease inhibitor: a novel immune evasion mechanism. J Virol 2008;82(19):9337-44
  • Peri P, Nuutila K, Vuorinen T, et al. Cathepsins are involved in virus-induced cell death in ICP4 and Us3 deletion mutant herpes simplex virus type 1-infected monocytic cells. J Gen Virol 2011;92(Pt 1):173-80
  • Johnson KE, Song B, Knipe DM. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology 2008;374(2):487-94
  • Melchjorsen J, Siren J, Julkunen I, et al. Induction of cytokine expression by herpes simplex virus in human monocyte-derived macrophages and dendritic cells is dependent on virus replication and is counteracted by ICP27 targeting NF-kappaB and IRF-3. J Gen Virol 2006;87(Pt 5):1099-108
  • Aubert M, Blaho JA. The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. J Virol 1999;73(4):2803-13
  • Orvedahl A, Alexander D, Talloczy Z, et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 2007;1(1):23-35
  • Cheng G, Feng Z, He B. Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. J Virol 2005;79(3):1379-88
  • Verpooten D, Ma Y, Hou S, et al. Control of TANK-binding kinase 1-mediated signaling by the gamma(1)34.5 protein of herpes simplex virus 1. J Biol Chem 2009;284(2):1097-105
  • Yokota S, Yokosawa N, Okabayashi T, et al. Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway. J Virol 2004;78(12):6282-6
  • Liang L, Roizman B. Expression of gamma interferon-dependent genes is blocked independently by virion host shutoff RNase and by US3 protein kinase. J Virol 2008;82(10):4688-96
  • Leib DA, Alexander DE, Cox D, et al. Interaction of ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J Virol 2009;83(23):12164-71
  • Hill A, Jugovic P, York I, et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995;375(6530):411-15
  • Elboim M, Grodzovski I, Djian E, et al. HSV-2 specifically down regulates HLA-C expression to render HSV-2-infected DCs susceptible to NK cell killing. PLoS Pathog 2013;9(3):e1003226
  • Yuan W, Dasgupta A, Cresswell P. Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat Immunol 2006;7(8):835-42
  • Hook LM, Friedman HM. Subversion of innate and adaptive immunity: immune evasion from antibody and complement. In: Arvin A, Campadelli-Fiume G, Mocarski E, et al. editors. Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press; Cambridge, UK: 2007;63:1137-50
  • Lachmann PJ, Davies A. Complement and immunity to viruses. Immunol Rev 1997;159:69-77
  • Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol 2004;5(10):981-6
  • Carroll MC. The complement system in B cell regulation. Mol Immunol 2004;41(2–3):141-6
  • Thurman JM, Renner B. Dynamic control of the complement system by modulated expression of regulatory proteins. Lab Invest 2011;91(1):4-11
  • Friedman HM, Cohen GH, Eisenberg RJ, et al. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 1984;309(5969):633-5
  • Eisenberg RJ, Ponce de Leon M, Friedman HM, et al. Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microb Pathog 1987;3(6):423-35
  • Fries LF, Friedman HM, Cohen GH, et al. Glycoprotein C of herpes simplex virus 1 is an inhibitor of the complement cascade. J Immunol 1986;137(5):1636-41
  • Seidel-Dugan C, Ponce de Leon M, Friedman HM, et al. Identification of C3b-binding regions on herpes simplex virus type 2 glycoprotein C. J Virol 1990;64(5):1897-906
  • Hung SL, Srinivasan S, Friedman HM, et al. Structural basis of C3b binding by glycoprotein C of herpes simplex virus. J Virol 1992;66(7):4013-27
  • Hung SL, Peng C, Kostavasili I, et al. The interaction of glycoprotein C of herpes simplex virus types 1 and 2 with the alternative complement pathway. Virology 1994;203(2):299-312
  • Kostavasili I, Sahu A, Friedman HM, et al. Mechanism of complement inactivation by glycoprotein C of herpes simplex virus. J Immunol 1997;158(4):1763-71
  • Harris SL, Frank I, Yee A, et al. Glycoprotein C of herpes simplex virus type 1 prevents complement-mediated cell lysis and virus neutralization. J Infect Dis 1990;162(2):331-7
  • Hook LM, Lubinski JM, Jiang M, et al. Herpes simplex virus type 1 and 2 glycoprotein C prevents complement-mediated neutralization induced by natural immunoglobulin M antibody. J Virol 2006;80(8):4038-46
  • Lubinski J, Wang L, Mastellos D, et al. In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J Exp Med 1999;190(11):1637-46
  • Lubinski JM, Jiang M, Hook L, et al. Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J Virol 2002;76(18):9232-41
  • Johnson DC, Feenstra V. Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 1987;61(7):2208-16
  • Basu S, Dubin G, Basu M, et al. Characterization of regions of herpes simplex virus type 1 glycoprotein E involved in binding the Fc domain of monomeric IgG and in forming a complex with glycoprotein I. J Immunol 1995;154(1):260-7
  • Frank I, Friedman HM. A novel function of the herpes simplex virus type 1 Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J Virol 1989;63(11):4479-88
  • Sprague ER, Wang C, Baker D, Bjorkman PJ. Crystal structure of the HSV-1 Fc receptor bound to fc reveals a mechanism for antibody bipolar bridging. PLoS Biol 2006;4(6):e148
  • Ndjamen B, Farley AH, Lee T, et al. The Herpes Virus Fc Receptor gE-gI Mediates Antibody Bipolar Bridging to Clear Viral Antigens from the Cell Surface. PLoS Pathog 2014;10(3):e1003961
  • Sprague ER, Martin WL, Bjorkman PJ. pH dependence and stoichiometry of binding to the Fc region of IgG by the herpes simplex virus Fc receptor gE-gI. J Biol Chem 2004;279(14):14184-93
  • Dubin G, Socolof E, Frank I, Friedman HM. Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol 1991;65(12):7046-50
  • Lubinski JM, Lazear HM, Awasthi S, et al. The herpes simplex virus 1 IgG fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. J Virol 2011;85(7):3239-49
  • Awasthi S, Lubinski JM, Shaw CE, et al. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J Virol 2011;85(20):10472-86
  • Awasthi S, Huang J, Shaw C, Friedman HM. Blocking HSV-2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes. J Virol 2014;88(15):8421-32
  • Awasthi S, Lubinski JM, Friedman HM. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine. Vaccine 2009;27(49):6845-53
  • Awasthi S, Balliet JW, Flynn JA, et al. Protection provided by a herpes simplex virus 2 (HSV-2) glycoprotein C and D subunit antigen vaccine against genital HSV-2 infection in HSV-1-seropositive guinea pigs. J Virol 2014;88(4):2000-10
  • Whitbeck JC, Huang ZY, Cairns TM, et al. Repertoire of epitopes recognized by serum IgG from humans vaccinated with herpes simplex virus type 2 glycoprotein D. J Virol 2014;88(14):7786-95
  • Bernstein DI, Earwood JD, Bravo FJ, et al. Effects of herpes simplex virus type 2 glycoprotein vaccines and CLDC adjuvant on genital herpes infection in the guinea pig. Vaccine 2011;29(11):2071-8
  • Cairns TM, Fontana J, Huang ZY, et al. Mechanism of neutralization of herpes simplex virus by antibodies directed at the fusion domain of glycoprotein B. J Virol 2014;88(5):2677-89
  • Zhu J, Koelle DM, Cao J, et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 2007;204(3):595-603
  • Strick LB, Wald A, Celum C. Management of herpes simplex virus type 2 infection in HIV type 1-infected persons. Clin Infect Dis 2006;43(3):347-56
  • Nakayamada S, Takahashi H, Kanno Y, O’Shea JJ. Helper T cell diversity and plasticity. Curr Opin Immunol 2012;24(3):297-302
  • Posavad CM, Zhao L, Mueller DE, et al. Persistence of mucosal T-cell responses to herpes simplex virus type 2 in the female genital tract. Mucosal Immunol 2014. [Epub ahead of print]
  • Posavad CM, Remington M, Mueller DE, et al. Detailed characterization of T cell responses to herpes simplex virus-2 in immune seronegative persons. J Immunol 2010;184(6):3250-9
  • Shin H, Iwasaki A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 2012;491(7424):463-7
  • Hosken N, McGowan P, Meier A, et al. Diversity of the CD8+ T-cell response to herpes simplex virus type 2 proteins among persons with genital herpes. J Virol 2006;80(11):5509-15
  • Safety and immunogenicity study of therapeutic HSV-2 vaccine. Available from: http://clinicaltrials.gov/ct2/results?term=NCT01667341&Search=Search
  • Skoberne M, Cardin R, Lee A, et al. An adjuvanted herpes simplex virus 2 subunit vaccine elicits a T cell response in mice and is an effective therapeutic vaccine in Guinea pigs. J Virol 2013;87(7):3930-42
  • Biological efficacy study of HerpV vaccine with QS-21 to treat subjects with recurrent genital herpes. Available from: http://clinicaltrials.gov/ct2/results?term=NCT01687595&Search=Search
  • Mo A, Musselli C, Chen H, et al. A heat shock protein based polyvalent vaccine targeting HSV-2: CD4(+) and CD8(+) cellular immunity and protective efficacy. Vaccine 2011;29(47):8530-41
  • Wald A, Koelle DM, Fife K, et al. Safety and immunogenicity of long HSV-2 peptides complexed with rhHsc70 in HSV-2 seropositive persons. Vaccine 2011;29(47):8520-9
  • Tronstein E, Johnston C, Huang ML, et al. Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. JAMA 2011;305(14):1441-9
  • Roldao A, Mellado MC, Castilho LR, et al. Virus-like particles in vaccine development. Expert Rev Vaccines 2010;9(10):1149-76
  • Wang JW, Roden RB. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 2013;12(2):129-41
  • GlaxoSmithKline Vaccine HPVSG. Romanowski B, de Borba PC, et al. Sustained efficacy and immunogenicity of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine: analysis of a randomised placebo-controlled trial up to 6.4 years. Lancet 2009;374(9706):1975-85
  • Jegerlehner A, Tissot A, Lechner F, et al. A molecular assembly system that renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine 2002;20(25-26):3104-12
  • Lechner F, Jegerlehner A, Tissot AC, et al. Virus-like particles as a modular system for novel vaccines. Intervirology 2002;45(4-6):212-17
  • Atmar RL, Bernstein DI, Harro CD, et al. Norovirus vaccine against experimental human Norwalk Virus illness. N Engl J Med 2011;365(23):2178-87
  • Kanekiyo M, Wei CJ, Yassine HM, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013;499(7456):102-6
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity 2010;33(4):492-503
  • Wee JL, Scheerlinck JP, Snibson KJ, et al. Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing. Mucosal Immunol 2008;1(6):489-96
  • McKee AS, MacLeod MK, Kappler JW, Marrack P. Immune mechanisms of protection: can adjuvants rise to the challenge? BMC Biol 2010;8:37
  • Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007;317(5844):1522-7
  • Garcon N, Chomez P, Van Mechelen M. GlaxoSmithKline adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines 2007;6(5):723-39
  • Kwant A, Rosenthal KL. Intravaginal immunization with viral subunit protein plus CpG oligodeoxynucleotides induces protective immunity against HSV-2. Vaccine 2004;22(23-24):3098-104
  • Ashkar AA, Bauer S, Mitchell WJ, et al. Local delivery of CpG oligodeoxynucleotides induces rapid changes in the genital mucosa and inhibits replication, but not entry, of herpes simplex virus type 2. J Virol 2003;77(16):8948-56
  • Wizel B, Persson J, Thorn K, et al. Nasal and skin delivery of IC31((R))-adjuvanted recombinant HSV-2 gD protein confers protection against genital herpes. Vaccine 2012;30(29):4361-8
  • Tengvall S, Lundqvist A, Eisenberg RJ, et al. Mucosal administration of CpG oligodeoxynucleotide elicits strong CC and CXC chemokine responses in the vagina and serves as a potent Th1-tilting adjuvant for recombinant gD2 protein vaccination against genital herpes. J Virol 2006;80(11):5283-91
  • Tross D, Klinman DM. Effect of CpG oligonucleotides on vaccine-induced B cell memory. J Immunol 2008;181(8):5785-90
  • Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv Drug Deliv Rev 2009;61(3):248-55
  • Heit A, Schmitz F, O’Keeffe M, et al. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J Immunol 2005;174(7):4373-80
  • Knipe DM, Corey L, Cohen JI, Deal CD. Summary and recommendations from a National Institute of Allergy and Infectious Diseases (NIAID) workshop on ‘Next Generation Herpes Simplex Virus Vaccines’. Vaccine 2014;32(14):1561-2
  • Vicetti Miguel RD, Hendricks RL, Aguirre AJ, et al. Dendritic cell activation and memory cell development are impaired among mice administered medroxyprogesterone acetate prior to mucosal herpes simplex virus type 1 infection. J Immunol 2012;189(7):3449-61
  • Stanberry LR, Kern ER, Richards JT, et al. Genital herpes in guinea pigs: pathogenesis of the primary infection and description of recurrent disease. J Infect Dis 1982;146(3):397-404
  • Ashley RL, Militoni J, Lee F, et al. Comparison of Western blot (immunoblot) and glycoprotein G-specific immunodot enzyme assay for detecting antibodies to herpes simplex virus types 1 and 2 in human sera. J Clin Microbiol 1988;26(4):662-7
  • Crostarosa F, Aravantinou M, Akpogheneta OJ, et al. A macaque model to study vaginal HSV-2/immunodeficiency virus co-infection and the impact of HSV-2 on microbicide efficacy. PLoS One 2009;4(11):e8060
  • London WT, Nahmias AJ, Naib ZM, et al. A nonhuman primate model for the study of the cervical oncogenic potential of herpes simplex virus type 2. Cancer Res 1974;34(5):1118-21
  • Meignier B, Martin B, Whitley RJ, Roizman B. In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J Infect Dis 1990;162(2):313-21
  • Salk D. Eradication of poliomyelitis in the United States. II. Experience with killed poliovirus vaccine. Rev Infect Dis 1980;2(2):243-57
  • Vazquez M, LaRussa PS, Gershon AA, et al. The effectiveness of the varicella vaccine in clinical practice. N Engl J Med 2001;344(13):955-60
  • Oxman MN, Levin MJ, Johnson GR, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 2005;352(22):2271-84
  • Chaves SS, Gargiullo P, Zhang JX, et al. Loss of vaccine-induced immunity to varicella over time. N Engl J Med 2007;356(11):1121-9
  • Awasthi S, Zumbrun EE, Si H, et al. Live attenuated herpes simplex virus 2 glycoprotein e deletion mutant as a vaccine candidate defective in neuronal spread. J Virol 2012;86(8):4586-98
  • Mundle ST, Hernandez H, Hamberger J, et al. High-purity preparation of HSV-2 vaccine candidate ACAM529 is immunogenic and efficacious in vivo. PLoS One 2013;8(2):e57224
  • Delagrave S, Hernandez H, Zhou C, et al. Immunogenicity and efficacy of intramuscular replication-defective and subunit vaccines against herpes simplex virus type 2 in the mouse genital model. PLoS One 2012;7(10):e46714
  • Izurieta HS, Strebel PM, Blake PA. Postlicensure effectiveness of varicella vaccine during an outbreak in a child care center. JAMA 1997;278(18):1495-9
  • Galil K, Lee B, Strine T, et al. Outbreak of varicella at a day-care center despite vaccination. N Engl J Med 2002;347(24):1909-15
  • Sharrar RG, LaRussa P, Galea SA, et al. The postmarketing safety profile of varicella vaccine. Vaccine 2000;19(7-8):916-23
  • Johnston C, Saracino M, Kuntz S, et al. Standard-dose and high-dose daily antiviral therapy for short episodes of genital HSV-2 reactivation: three randomised, open-label, cross-over trials. Lancet 2012;379(9816):641-7
  • Douglas JM, Critchlow C, Benedetti J, et al. A double-blind study of oral acyclovir for suppression of recurrences of genital herpes simplex virus infection. N Engl J Med 1984;310(24):1551-6
  • Safety and efficacy trial of DNA vaccines to treat genital herpes in adults. Available from: http://clinicaltrials.gov/ct2/results?term=NCT02030301&Search=Search
  • Study of the safety of a particular herpes vaccine in adults with or without herpes infection. Available from: http://clinicaltrials.gov/ct2/results?term=NCT01915212&Search=Search

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.