621
Views
8
CrossRef citations to date
0
Altmetric
SPECIAL FOCUS: RNA Vaccines - Review

In situ production of therapeutic monoclonal antibodies

&

References

  • Pharmaceutical Research and Manufacturers of America. Medicines in development: biologics. In: 2013 Biopharmaceutical Research Industry Profile. PhRMA; Washington, DC: 2013. Available from: http://www.phrma.org/sites/default/files/pdf/biologics2013.pdf
  • von Behring E, Kitasato S. [The mechanism of diphtheria immunity and tetanus immunity in animals. 1890]. Mol Immunol 1991;28(12):1317; 1319-1320
  • Robbins JB, Schneerson R, Szu SC. Specific acquired immunity. In: Baron S, editor. Medical microbiology. University of Texas Medical Branch, Galveston, TX: 1996
  • Bregenholt S, Haurum J. Pathogen-specific recombinant human polyclonal antibodies: biodefence applications. Expert Opin Biol Ther 2004;4(3):387-96
  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256(5517):495-7
  • Goldstein G. Overview of the development of Orthoclone OKT3: monoclonal antibody for therapeutic use in transplantation. Transplant Proc 1987;19(2 Suppl 1):1-6
  • Kimball JA, Norman DJ, Shield CF, et al. The OKT3 Antibody Response Study: a multicentre study of human anti-mouse antibody (HAMA) production following OKT3 use in solid organ transplantation. Transpl Immunol 1995;3(3):212-21
  • Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2010;2(3):256-65
  • Hammers CM, Stanley JR. Antibody phage display: technique and applications. J Invest Dermatol 2014;134(2):e17
  • Boder ET, Raeeszadeh-Sarmazdeh M, Price JV. Engineering antibodies by yeast display. Arch Biochem Biophys 2012;526(2):99-106
  • Schaffitzel C, Hanes J, Jermutus L, Pluckthun A. Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol Methods 1999;231(1-2):119-35
  • Ho RJY, Gibaldi M. Antibodies and derivatives. In: Ho RJY, editor. Biotechnology and biopharmaceuticals. Wiley-Blackwell, Hoboken, NJ 2013. p. 139-210
  • Green LL. Antibody engineering via genetic engineering of the mouse: xenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 1999;231(1-2):11-23
  • Lee EC, Liang Q, Ali H, et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat Biotechnol 2014;32(4):356-63
  • Georgiou G, Ippolito GC, Beausang J, et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 2014;32(2):158-68
  • Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001;1(2):118-29
  • Jones SD, Castillo FJ, Levine HL. Advances in the development of therapeutic monclonal antibodies. BioPharm International; 2007;20(10):97-113
  • Li F, Vijayasankaran N, Shen AY, et al. Cell culture processes for monoclonal antibody production. MAbs 2010;2(5):466-79
  • Dumiak M. Making it to manufacturing. IAVI Rep 2014;18(2):4-7
  • Farid SS. Process economic drivers in industrial monoclonal antibody manufacture. In: Process scale purification of antibodies. John Wiley & Sons, Inc; 2008. p. 239-61
  • Winnall WR, Beasley MD, Center RJ, et al. The maturation of antibody technology for the HIV epidemic. Immunol Cell Biol 2014;92(7):570-7
  • Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 1997;90(6):2188-95
  • Salmon SE, Smith BA. Immunoglobulin synthesis and total body tumor cell number in IgG multiple myeloma. J Clin Invest 1970;49(6):1114-21
  • Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity 1998;8(3):363-72
  • Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996;9(7):617-21
  • Noël D, Pelegrin M, Marin M, et al. In vitro and in vivo secretion of cloned antibodies by genetically modified myogenic cells. Hum Gene Ther 1997;8(10):1219-29
  • Noel D, Dazard JE, Pelegrin M, et al. Skin as a potential organ for ectopic monoclonal antibody production. J Invest Dermatol 2002;118(2):288-94
  • Noel D, Pelegrin M, Brockly F, et al. Sustained systemic delivery of monoclonal antibodies by genetically modified skin fibroblasts. J Invest Dermatol 2000;115(4):740-5
  • Compte M, Blanco B, Serrano F, et al. Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA x anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther 2007;14(4):380-8
  • Sanhadji K, Grave L, Touraine JL, et al. Gene transfer of anti-gp41 antibody and CD4 immunoadhesin strongly reduces the HIV-1 load in humanized severe combined immunodeficient mice. AIDS 2000;14(18):2813-22
  • Compte M, Alonso-Camino V, Santos-Valle P, et al. Factory neovessels: engineered human blood vessels secreting therapeutic proteins as a new drug delivery system. Gene Ther 2010;17(6):745-51
  • Compte M, Cuesta AM, Sanchez-Martin D, et al. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells 2009;27(3):753-60
  • Kasuya K, Shimazu M, Suzuki M, et al. Bispecific anti-HER2 and CD16 single-chain antibody production prolongs the use of stem cell-like cell transplantation against HER2-overexpressing cancer. Int J Mol Med 2010;25(2):209-15
  • Joseph A, Zheng JH, Chen K, et al. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 2010;84(13):6645-53
  • Frank RT, Edmiston M, Kendall SE, et al. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies. PLoS One 2009;4(12):e8314
  • Reagan MR, Kaplan DL. Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells 2011;29(6):920-7
  • Aboody KS, Brown A, Rainov NG, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000;97(23):12846-51
  • Sanz L, Santos-Valle P, Alonso-Camino V, et al. Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 2008;75(3):308-14
  • Nauta AJ, Kruisselbrink AB, Lurvink E, et al. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 2006;177(4):2080-7
  • Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449(7162):557-63
  • Lundstrom K. Gene therapy applications of viral vectors. Technol Cancer Res Treat 2004;3(5):467-77
  • Poliani PL, Brok H, Furlan R, et al. Delivery to the central nervous system of a nonreplicative herpes simplex type 1 vector engineered with the interleukin 4 gene protects rhesus monkeys from hyperacute autoimmune encephalomyelitis. Hum Gene Ther 2001;12(8):905-20
  • Furlan R, Poliani PL, Marconi PC, et al. Central nervous system gene therapy with interleukin-4 inhibits progression of ongoing relapsing-remitting autoimmune encephalomyelitis in Biozzi AB/H mice. Gene Ther 2001;8(1):13-19
  • Kruger C, Hu Y, Pan Q, et al. In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol 2002;20(7):702-6
  • Li M, Wu Y, Qiu Y, et al. 2A peptide-based, lentivirus-mediated anti-death receptor 5 chimeric antibody expression prevents tumor growth in nude mice. Mol Ther 2012;20(1):46-53
  • Vigna E, Pacchiana G, Mazzone M, et al. ‘Active’ cancer immunotherapy by anti-Met antibody gene transfer. Cancer Res 2008;68(22):9176-83
  • Jiang MH, Chen L, Li LF, et al. A gutless adenoviral vector expressing full-length anti-Her2 antibody. Clin Exp Pharmacol Physiol 2009;36(9):e26-31
  • Noel D, Pelegrin M, Kramer S, et al. High in vivo production of a model monoclonal antibody on adenoviral gene transfer. Hum Gene Ther 2002;13(12):1483-93
  • Whittington HA, Ashworth LJ, Hawkins RE. Recombinant adenoviral delivery for in vivo expression of scFv antibody fusion proteins. Gene Ther 1998;5(6):770-7
  • Afanasieva TA, Wittmer M, Vitaliti A, et al. Single-chain antibody and its derivatives directed against vascular endothelial growth factor: application for antiangiogenic gene therapy. Gene Ther 2003;10(21):1850-9
  • Jiang M, Shi W, Zhang Q, et al. Gene therapy using adenovirus-mediated full-length anti-HER-2 antibody for HER-2 overexpression cancers. Clin Cancer Res 2006;12(20 Pt 1):6179-85
  • Liu X, Wu J, Zhang S, et al. Novel strategies to augment genetically delivered immunotoxin molecular therapy for cancer therapy. Cancer Gene Ther 2009;16(11):861-72
  • Watanabe M, Boyer JL, Hackett NR, et al. Genetic delivery of the murine equivalent of bevacizumab (Avastin), an anti-vascular endothelial growth factor monoclonal antibody, to suppress growth of human tumors in immunodeficient mice. Hum Gene Ther 2008;19(3):300-10
  • Sofer-Podesta C, Ang J, Hackett NR, et al. Adenovirus-mediated delivery of an anti-V antigen monoclonal antibody protects mice against a lethal Yersinia pestis challenge. Infect Immun 2009;77(4):1561-8
  • Van Blarcom TJ, Sofer-Podesta C, Ang J, et al. Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge. Gene Ther 2010;17(7):913-21
  • Watanabe M, Boyer JL, Crystal RG. Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema. Hum Gene Ther 2009;20(6):598-610
  • Skaricic D, Traube C, De B, et al. Genetic delivery of an anti-RSV antibody to protect against pulmonary infection with RSV. Virology 2008;378(1):79-85
  • Pereboev A, Borisevich V, Tsuladze G, et al. Genetically delivered antibody protects against West Nile virus. Antiviral Res 2008;77(1):6-13
  • Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular and innate response, what’s important? Hum Vaccin Immunother 2014;10(9). [Epub ahead of print]
  • Hareendran S, Balakrishnan B, Sen D, et al. Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol 2013;23(6):399-413
  • Giacca M. Gene therapy. Springer; Dordrecht; New York: 2010
  • Jiang H, Pierce GF, Ozelo MC, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006;14(3):452-5
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008;21(4):583-93
  • Flotte TR, Trapnell BC, Humphries M, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther 2011;22(10):1239-47
  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008;358(21):2240-8
  • Cideciyan AV, Hauswirth WW, Aleman TS, et al. Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 2009;361(7):725-7
  • Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011;365(25):2357-65
  • Gaudet D, Methot J, Dery S, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 2013;20(4):361-9
  • Lewis AD, Chen R, Montefiori DC, et al. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J Virol 2002;76(17):8769-75
  • Johnson PR, Schnepp BC, Zhang J, et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 2009;15(8):901-6
  • Fang J, Qian JJ, Yi S, et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 2005;23(5):584-90
  • Han T, Abdel-Motal UM, Chang DK, et al. Human anti-CCR4 minibody gene transfer for the treatment of cutaneous T-cell lymphoma. PLoS One 2012;7(9):e44455
  • Lv F, Qiu Y, Zhang Y, et al. Adeno-associated virus-mediated anti-DR5 chimeric antibody expression suppresses human tumor growth in nude mice. Cancer Lett 2011;302(2):119-27
  • Shi J, Liu Y, Zheng Y, et al. Therapeutic expression of an anti-death receptor 5 single-chain fixed-variable region prevents tumor growth in mice. Cancer Res 2006;66(24):11946-53
  • Wang G, Qiu J, Wang R, et al. Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer. Cancer Gene Ther 2010;17(8):559-70
  • Watanabe M, Boyer JL, Crystal RG. AAVrh.10-mediated genetic delivery of bevacizumab to the pleura to provide local anti-VEGF to suppress growth of metastatic lung tumors. Gene Ther 2010;17(8):1042-51
  • Ho DT, Wykoff-Clary S, Gross CS, et al. Growth inhibition of an established A431 xenograft tumor by a full-length anti-EGFR antibody following gene delivery by AAV. Cancer Gene Ther 2009;16(2):184-94
  • Balazs AB, Ouyang Y, Hong CM, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 2014;20(3):296-300
  • Balazs AB, Chen J, Hong CM, et al. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2012;481(7379):81-4
  • Balazs AB, Bloom JD, Hong CM, et al. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat Biotechnol 2013;31(7):647-52
  • Zuber C, Mitteregger G, Schuhmann N, et al. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol 2008;89(Pt 8):2055-61
  • De BP, Hackett NR, Crystal RG, Boyer JL. Rapid/sustained anti-anthrax passive immunity mediated by co-administration of Ad/AAV. Mol Ther 2008;16(1):203-9
  • Deal C, Balazs AB, Espinosa DA, et al. Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice. Proc Natl Acad Sci USA 2014;111(34):12528-32
  • Balazs AB, West APJr. Antibody gene transfer for HIV immunoprophylaxis. Nat Immunol 2013;14(1):1-5
  • A Phase 1, Randomized, Blinded, Dose-escalation Study of rAAV1-PG9DP Recombinant AAV Vector Coding for PG9 Antibody in Healthy Male Adults. Available from: http://clinicaltrials.gov/ct2/show/NCT01937455
  • Hicks MJ, Rosenberg JB, De BP, et al. AAV-directed persistent expression of a gene encoding anti-nicotine antibody for smoking cessation. Sci Transl Med 2012;4(140):140ra187
  • Rosenberg JB, Hicks MJ, De BP, et al. AAVrh.10-mediated expression of an anti-cocaine antibody mediates persistent passive immunization that suppresses cocaine-induced behavior. Hum Gene Ther 2012;23(5):451-9
  • Yang J, Pattanayak A, Song M, et al. Muscle-directed anti-Abeta single-chain antibody delivery via AAV1 reduces cerebral Abeta load in an Alzheimer’s disease mouse model. J Mol Neurosci 2013;49(2):277-88
  • Mao Y, Kiss S, Boyer JL, et al. Persistent suppression of ocular neovascularization with intravitreal administration of AAVrh.10 coding for bevacizumab. Hum Gene Ther 2011;22(12):1525-35
  • Tjelle TE, Corthay A, Lunde E, et al. Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol Ther 2004;9(3):328-36
  • Kitaguchi K, Toda M, Takekoshi M, et al. Immune deficiency enhances expression of recombinant human antibody in mice after nonviral in vivo gene transfer. Int J Mol Med 2005;16(4):683-8
  • Perez N, Bigey P, Scherman D, et al. Regulatable systemic production of monoclonal antibodies by in vivo muscle electroporation. Genet Vaccines Ther 2004;2(1):2
  • Fang J, Yi S, Simmons A, et al. An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol Ther 2007;15(6):1153-9
  • Yamazaki T, Nagashima M, Ninomiya D, et al. Passive immune-prophylaxis against influenza virus infection by the expression of neutralizing anti-hemagglutinin monoclonal antibodies from plasmids. Jpn J Infect Dis 2011;64(1):40-9
  • Zabner J, Fasbender AJ, Moninger T, et al. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995;270(32):18997-9007
  • Karikó K, Muramatsu H, Keller JM, Weissman D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012;20(5):948-53
  • Zangi L, Lui KO, von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013;31(10):898-907
  • Kormann MS, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 2011;29(2):154-7
  • Su H, Takagawa J, Huang Y, et al. Additive effect of AAV-mediated angiopoietin-1 and VEGF expression on the therapy of infarcted heart. Int J Cardiol 2009;133(2):191-7
  • Deering RP, Kommareddy S, Ulmer JB, et al. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv 2014;11(6):885-99
  • Brito LA, Chan M, Shaw CA, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 2014;22(12):2118-29
  • Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 2012;109(36):14604-9
  • Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol 2013;25(2):152-9
  • Kamrud KI, Coffield VM, Owens G, et al. In vitro and in vivo characterization of microRNA-targeted alphavirus replicon and helper RNAs. J Virol 2010;84(15):7713-25
  • Tseng YS, Agbandje-McKenna M. Mapping the AAV capsid host antibody response toward the development of second generation gene delivery vectors. Front Immunol 2014;5:9
  • Basner-Tschakarjan E, Mingozzi F. Cell-mediated immunity to AAV vectors, evolving concepts and potential solutions. Front Immunol 2014;5:350
  • Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods 2013;24(2):59-67
  • Scallan CD, Jiang H, Liu T, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 2006;107(5):1810-17
  • Lee GK, Maheshri N, Kaspar B, Schaffer DV. PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng 2005;92(1):24-34
  • Huttner NA, Girod A, Perabo L, et al. Genetic modifications of the adeno-associated virus type 2 capsid reduce the affinity and the neutralizing effects of human serum antibodies. Gene Ther 2003;10(26):2139-47
  • Kotin RM. Large-scale recombinant adeno-associated virus production. Hum Mol Genet 2011;20(R1):R2-6
  • Wright JF, Wellman J, High KA. Manufacturing and regulatory strategies for clinical AAV2-hRPE65. Curr Gene Ther 2010;10(5):341-9
  • Aucoin MG, Perrier M, Kamen AA. Critical assessment of current adeno-associated viral vector production and quantification methods. Biotechnol Adv 2008;26(1):73-88
  • Mietzsch M, Grasse S, Zurawski C, et al. OneBac: platform for scalable and high-titer production of adeno-associated virus serotype 1-12 vectors for gene therapy. Hum Gene Ther 2014;25(3):212-22
  • Clement N, Knop DR, Byrne BJ. Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 2009;20(8):796-806
  • Muthumani K, Flingai S, Wise M, et al. Optimized and enhanced DNA plasmid vector based in vivo construction of a neutralizing anti-HIV-1 envelope glycoprotein Fab. Hum Vaccin Immunother 2013;9(10):2253-62
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014;15(8):541-55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.