276
Views
7
CrossRef citations to date
0
Altmetric
Review

An overview of tuberculosis plant-derived vaccines

, &

References

  • Zumla A, Raviglione M, Hafner R, et al. Tuberculosis. N Engl J Med 2013;368(8):745-55
  • Marais BJ, Raviglione MC, Donald PR, et al. Scale-up of services and research priorities for diagnosis, management, and control of tuberculosis: a call to action. Lancet 2010;375(9732):2179-91
  • Zumla A, Kim P, Maeurer M, et al. Zero deaths from tuberculosis: progress, reality, and hope. Lancet Infect 2013;13(4):285-7
  • WHO. WHO report 2011. World Health Organization. Available from: www.who.int/tb/publications/global_report/en/ [Last accessed 13 September 2014]
  • Trunz BB, Fine P, Dye C, et al. Effect of BCG vaccination on childhood tuberculosis meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 2006;367(9517):1173-80
  • Flynn JL, Chan J. Tuberculosis: latency and reactivation. Infect Immun 2001;69(7):4195-201
  • Young D, Dye C. The development and impact of tuberculosis vaccines. Cell 2006;124(4):683-7
  • Marinova D, Gonzalo-Asensio J, Aguilo N, et al. Recent developments in tuberculosis vaccines. Expert Rev Vaccines 2013;12(12):1431-48
  • Pokkali S, Jain S. Novel vaccine strategies against tuberculosis: a road less travelled. Expert Rev Vaccines 2013;12(12):1373-5
  • Gröschel MI, Prabowo SA, Cardona PJ, et al. Therapeutic vaccines for tuberculosis-A systematic review. Vaccine 2014;32(26):3162-8
  • Andersen P, Woodworth JS. Tuberculosis vaccines - rethinking the current paradigm. Trends Immunol 2014;35(8):387-95
  • Ottenhoff TH, Kaufmann SH. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog 2012;8(5):e1002607
  • Frick M. The TB vaccines pipeline: where are we going, where have we been? In: Benzacar A, editor. The pipeline report: drugs, diagnostics, vaccines, preventive technologies, immune-based and gene therapies and research toward the cure. HIV i-Base/Treatment Action Group, London/New York; 2013. pp. 263-83
  • Andersen P. Tuberculosis vaccines—an update. Nature Rev Micro 2007;5(7):484-7
  • Agger EM, Rosenkrands I, Olsen AW. Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. Vaccine 2006;24(26):5452-60
  • Ly LH, McMurray DN. Tuberculosis: vaccines in the pipeline. Expert Rev Vaccines 2008;7(5):635-50
  • Andersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun 1994;62:2536-44
  • Langermans JA, Doherty TM, Vervenne RA, et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 2005;23:2740-50
  • Weinrich Olsen A, van Pinxteren LA, MengOkkels L, et al. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect Immun 2001;69:2773-8
  • Betts JC, Lukey PT, Robb LC, et al. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 2002;43(3):717-31
  • Skeiky YA, Alderson MR, Ovendale PJ, et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 2004;172:7618-28
  • Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 2013;381:1021-8
  • Achkar JM, Casadevall A. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe 2013;13(3):250-62
  • Li S, Luo X. Compendium of material medica (Bencaogangmu). Foreign Languages Press; Changchun City, Jilin Province, China: 2003
  • Kaufmann SH, Winau F. From bacteriology to immunology: the dualism of specificity. Nat Immunol 2005;6(11):1063-6
  • Bourinbaiar AS, Mezentseva MV, Butov DA, et al. Immune approaches in tuberculosis therapy: a brief overview. Expert Rev Anti Infect Ther 2012;10(3):381-9
  • Guo S, Zhao J. Immunotherapy for tuberculosis: what’s the better choice? Front Biosci 2012;17:2684-90
  • Vilaplana C, Montane E, Pinto S, et al. Double-blind, randomized, placebo-controlled Phase I Clinical Trial of therapeutical antituberculous vaccine RUTI. Vaccine 2010;28(4):1106-16
  • Stanford J, Stanford C, Grange J, et al. Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis. Front Biosci 2004;9:1701-19
  • Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 2009;27:393-422
  • Dalmia N, Ramsay AJ. Prime-boost approaches to tuberculosis vaccine development. Expert Rev Vaccines 2012;11(10):1221-33
  • TBVI Organization. Available from: www.tbvi.eu/about-us/organization/clinicaldevelopment-team.html [Last accessed 12 September 2014]
  • Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nature Rev Immunol 2012;12:592-605
  • Lawson LB, Norton EB, Clements JD. Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr Opin Immunol 2011;23:414-20
  • Dürr S, Müller B, Alonso S, et al. Differences in primary sites of infection between zoonotic and human tuberculosis: results from a worldwide systematic review. PLoS Negl Trop Dis 2013;7(8):e2399
  • Dharmadhikari AS, Nardell EA. What animal models teach humans about tuberculosis. Am J Respir Cell Mol Biol 2008;39(5):503-8
  • Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2006;72:211
  • Celik E, Calik P. Production of recombinant proteins by yeast cells. Biotechnol Adv 2012;30:1108-18
  • Marillonnet S. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 2004;101:6852-7
  • Marillonnet S, Thoeringer C, Kandzia R, et al. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 2005;23:718-23
  • Bosch D, Schots A. Plant glycans: friend or foe in vaccine development? Expert Rev Vaccines 2010;9(8):835-42
  • Medicago. Available from: www.medicago.com/ [Last accessed 20 October 2014]
  • Rosales-Mendoza S, Govea-Alonso DO, Monreal-Escalante E, et al. Developing plant-based vaccines against neglected tropical diseases: where are we? Vaccine 2012;31(1):40-8
  • Yusibov V, Streatfield SJ, Kushnir N, et al. Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 2011;7(3):313-21
  • Govea-Alonso DO, Rybicki E, Rosales-Mendoza S. Plant-based vaccines as a global vaccination approach: current perspectives. In: Genetically engineered plants as a source of vaccines against wide spread diseases -An integrated view. Springer Science Business Media, LLC; 233 Spring Street, New York, NY 10013, U.S.A: 2014
  • Kwon KC, Verma D, Singh ND, et al. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 2013;65(6):782-99
  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, et al. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 2010;8(2):223-42
  • Thanavala Y, Mahoney M, Pal S, et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci USA 2005;102(9):3378-82
  • Tacket CO, Mason HS, Losonsky G, et al. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med 1998;4(5):607-9
  • Tacket CO, Mason HS, Losonsky G, et al. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J Infect Dis 2000;182(1):302-5
  • Yusibov V, Hooper DC, Spitsin SV, et al. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 2002;20(25-26):3155-64
  • Hernández M, Rosas G, Cervantes J, et al. Transgenic plants: a five-year update on oral anti-pathogen vaccine development. Expert Rev Vaccines 2014;13(12):1523-36
  • Lössl AG, Waheed M. Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J 2011;9(5):527-39
  • Orellana Escobedo L, Korban SS, Rosales Mendoza S. Seed-based Expression Strategies. In: Rosales-Mendoza S, editor. Genetically engineered plants as a source of vaccines against wide spread diseases. an integrated view. Springer New York Heidelberg Dordrecht, London; 2014
  • Sabalza M, Vamvaka E, Christou P, et al. Seeds as a production system for molecular pharming applications: status and prospects. Curr Pharm Des 2013;19(31):5543-52
  • da Hora VP, Conceição FR, Dellagostin OA, et al. Non-toxic derivatives of LT as potent adjuvants. Vaccine 2011;29(8):1538-44
  • Freytag LC, Clements JD. Mucosal adjuvants. Vaccine 2005;23(15):1804-13
  • Rigano MM, Alvarez ML, Pinkhasov J, et al. Production of a fusion protein consisting of the enterotoxigenic Escherichia coli heat-labile toxin B subunit and a tuberculosis antigen in Arabidopsis thaliana. Plant Cell Rep 2004;22:502-8
  • Rigano MM, Dreitz S, Kipnis AP, et al. Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine 2006;24(5):691-5
  • Zhang Y, Chen S, Li J, et al. Oral immunogenicity of potato-derived antigens to Mycobacterium tuberculosis in mice. Acta Biochim Biophys Sin 2012;44(10):823-30
  • Hayden CA, Egelkrout EM, Moscoso AM, et al. Production of highly concentrated, heat-stable hepatitis B surface antigen in maize. Plant Biotechnol J 2012;10(8):979-84
  • Uvarova EA, Belavin PA, Permyakova NV, et al. Oral Immunogenicity of plant-made Mycobacterium tuberculosis ESAT6 and CFP10. Biomed Res Int 2013;2013:316304
  • Shaaltiel Y, Bartfeld D, Hashmueli S, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 2007;5(5):579-90
  • Grabowski GA, Golembo M, Shaaltiel Y. Taliglucerasealfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 2014;112(1):1-8
  • Protalix. Available from: www.protalix.com/index.asp [Last Accessed 20 October 2014]
  • Scheller J, Leps M, Conrad U, et al. Forcing single-chain variable fragment production in tobacco seeds by fusion to elastin-like polypeptides. Plant Biotech J 2006;4(2):243-9
  • Floss DM, Mockey M, Zanello G, et al. Expression and immunogenicity of the mycobacterial Ag85B/ESAT-6 antigens produced in transgenic plants by elastin-like peptide fusion strategy. J Biomed Biotechnol 2010;2010:274346
  • Pepponi I, Diogo GR, Stylianou E, et al. Plant-derived recombinant immune complexes as self-adjuvanting TB immunogens for mucosal boosting of BCG. Plant Biotechnol J 2014;12(7):840-50
  • Chargelegue D, Drake P, Obregon P, et al. Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plants. Infect Immun 2005;73:5915-22
  • Phoolcharoen W, Bhoo S, Lai H, et al. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J 2011;9:807-16
  • Gleba YY, Tusé D, Giritch A, et al. Plant viral vectors for delivery by Agrobacterium. Curr Top Microbiol Immunol 2014;375:155-92
  • Salazar-González JA, Rosales-Mendoza S, Bañuelos-Hernández B. Viral Vector-based Expression Strategies. In: Rosales-Mendoza S, editor. Genetically engineered plants as a source of vaccines against wide spread diseases. an integrated view. Springer New York Heidelberg Dordrecht, London; 2014
  • Zelada AM, Calamante G, de la Paz Santangelo M, et al. Expression of tuberculosis antigen ESAT-6 in Nicotiana tabacum using a potato virus X-based vector. Tuberculosis (Edinb) 2006;86(3-4):263-7
  • Dorokhov YL, Sheveleva AA, Frolova OY, et al. Superexpression of tuberculosis antigens in plant leaves. Tuberculosis (Edinb) 2007;87(3):218-24
  • Salazar-González JA, Monreal-Escalante E, Herrera Díaz A, et al. Modalities for expression of antigens in plants: plastid-based expression strategies. In: Rosales-Mendoza S, editor. Genetically engineered plants as a source of vaccines against wide spread diseases. an integrated view. Springer New York Heidelberg Dordrecht, London; 2014
  • Lakshmi PS, Verma D, Yang X, et al. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One 2013;8(1):e54708
  • Rosales-Mendoza S, Salazar-González JA. Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 2014;13(6):737-49
  • Streatfield SJ. Delivery of plant-derived vaccines. Expert Opin Drug Deliv 2005;2(4):719-28
  • Beltrán-Beck B, Ballesteros C, Vicente J, et al. Progress in Oral Vaccination against Tuberculosis in Its Main Wildlife Reservoir in Iberia, the Eurasian Wild Boar. Vet Med Int 2012;2012:978501
  • Beltrán-Beck B, de la Fuente J, Garrido JM, et al. Oral vaccination with heat inactivated Mycobacterium bovis activates the complement system to protect against tuberculosis. PLoS One 2014;9(5):e98048. 201.4
  • Carroll MV, Lack N, Sim E, et al. Multiple routes of complement activation by Mycobacterium bovis BCG. Mol Immunol 2009;46:3367-78
  • Jeon BY, Eoh H, Ha SJ, et al. Co-immunization of plasmid DNA encoding IL-12 and IL-18 with Bacillus Calmette-Guérin vaccine against progressive tuberculosis. Yonsei Med J 2011;52(6):1008-15
  • Protalix. Available from: www.protalix.com/index.asp [Last accessed 20 October 2014]
  • Romero-Maldonado A, Salazar-González JA, Rosales-Mendoza S. Plant-based vaccines against influenza. In: Rosales-Mendoza S, editor. Genetically engineered plants as a source of vaccines against wide spread diseases. An integrated view. Springer New York Heidelberg Dordrecht, London; 2014
  • [WHO] World Health Organization. Available from: www.who.int/medicines/areas/quality_safety/quality_assurance/gmp/en/ [Last accessed September 2014]
  • Bock R. Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 2013;83:21-31
  • Lu Y, Rijzaani H, Karcher D, et al. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci USA 2013;110(8):E623-32
  • Villarreal DO, Walters J, Laddy DJ, et al. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum Vaccin Immunother 2014;10(8):2188-98
  • Cayabyab MJ, Qin L, Kashino SS, et al. An unbiased peptide-wide discovery approach to select Mycobacterium tuberculosis antigens that target CD8+ T cell response during infection. Vaccine 2013;31(42):4834-40
  • West NP, Thomson SA, Triccas JA, et al. Delivery of a multivalent scrambled antigen vaccine induces broad spectrum immunity and protection against tuberculosis. Vaccine 2011;29(44):7759-65
  • Ocampo M, Patarroyo MA, Vanegas M, et al. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Crit Rev Microbiol 2014;40(2):117-45
  • Li X, Xu W, Xiong S. A novel tuberculosis DNA vaccine in an HIV-1 p24 protein backbone confers protection against Mycobacterium tuberculosis and simultaneously elicits robust humoral and cellular responses to HIV-1. Clin Vaccine Immunol 2012;19(5):723-30
  • Gao H, Yue Y, Hu L, et al. A novel DNA vaccine containing multiple TB-specific epitopes casted in a natural structure (ECANS) confers protective immunity against pulmonary mycobacterial challenge. Vaccine 2009;27(39):5313-19
  • Gao H, Li K, Yu S, et al. A novel DNA vaccine containing multiple TB-specific epitopes cast in a natural structure elicits enhanced Th1 immunity compared with BCG. Microbiol Immunol 2009;53(10):541-9
  • Pniewski T. Is an oral plant-based vaccine against hepatitis B virus possible? Curr Pharm Biotechnol 2012;13(15):2692-704

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.