1,345
Views
45
CrossRef citations to date
0
Altmetric
Review

Biosynthetically engineered lipopolysaccharide as vaccine adjuvant

&

References

  • Maisonneuve C, Bertholet S, Philpott DJ, et al. Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci USA 2014;111(34):12294-9
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010;11(5):373-84
  • Janeway CAJr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216
  • Seltmann G, Holst O. The bacterial cell wall. Springer-Verlag Berlin Heidelberg, Germany; 2002
  • Mcaleer JP, Vella AT. Understanding how lipopolysaccharide impacts CD4 T-cell immunity. Crit Rev Immunol 2008;28(4):281-99
  • Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002;71:635-700
  • Rietschel ET, Kirikae T, Schade FU, et al. The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology 1993;187(3-5):169-90
  • Takada H, Kotani S. Structural requirements of lipid A for endotoxicity and other biological activities. Crit Rev Microbiol 1989;16(6):477-523
  • Raetz CR, Reynolds CM, Trent MS, et al. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem 2007;76:295-329
  • Geurtsen J, Banus HA, Gremmer ER, et al. Lipopolysaccharide analogs improve efficacy of acellular pertussis vaccine and reduce type I hypersensitivity in mice. Clin Vaccine Immunol 2007;14(7):821-9
  • Geurtsen J, Vandebriel RJ, Gremmer ER, et al. Consequences of the expression of lipopolysaccharide-modifying enzymes for the efficacy and reactogenicity of whole-cell pertussis vaccines. Microbes Infect 2007;9(9):1096-103
  • Kong Q, Six DA, Roland KL, et al. Salmonella synthesizing 1-dephosphorylated lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J Immunol 2011;187(1):412-23
  • Needham BD, Carroll SM, Giles DK, et al. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc Natl Acad Sci USA 2013;110(4):1464-9
  • Van de Waterbeemd B, Streefland M, van der Ley P, et al. Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine 2010;28(30):4810-16
  • Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 2008;65(20):3231-40
  • Garcon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 2011;10(4):471-86
  • Caroff M, Karibian D. Structure of bacterial lipopolysaccharides. Carbohydr Res 2003;338(23):2431-47
  • Caroff M, Karibian D, Cavaillon JM, et al. Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect 2002;4(9):915-26
  • Jennings HJ, Bhattacharjee AK, Kenne L, et al. The R-type lipopolysaccharides of Neisseria meningitidis. Can J Biochem 1980;58(2):128-36
  • Medzhitov R, Preston-Hurlburt P, Janeway CAJr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388(6640):394-7
  • Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282(5396):2085-8
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34(5):637-50
  • Li C, Guan Z, Liu D, et al. Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli. Proc Natl Acad Sci USA 2011;108(28):11387-92
  • Le Dur A, Caroff M, Chaby R, et al. A novel type of endotoxin structure present in Bordetella pertussis. Isolation of two different polysaccharides bound to lipid A. Eur J Biochem 1978;84(2):579-89
  • Zamze SE, Moxon ER. Composition of the lipopolysaccharide from different capsular serotype strains of Haemophilus influenzae. J Gen Microbiol 1987;133(6):1443-51
  • Van der Ley P, Steeghs L, Hamstra HJ, et al. Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect Immun 2001;69(10):5981-90
  • Steeghs L, den Hartog R, den Boer A, et al. Meningitis bacterium is viable without endotoxin. Nature 1998;392(6675):449-50
  • Babinski KJ, Kanjilal SJ, Raetz CR. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J Biol Chem 2002;277(29):25947-56
  • Moffatt JH, Harper M, Harrison P, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010;54(12):4971-7
  • Peng D, Hong W, Choudhury BP, et al. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 2005;73(11):7569-77
  • Piet JR, Zariri A, Fransen F, et al. Meningitis caused by a lipopolysaccharide deficient Neisseria meningitidis. J Infect 2014;69(4):352-7
  • Park BS, Song DH, Kim HM, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009;458(7242):1191-5
  • Pupo E, Hamstra HJ, Meiring H, et al. Lipopolysaccharide engineering in Neisseria meningitidis: structural analysis of different pentaacyl lipid A mutants and comparison of their modified agonist properties. J Biol Chem 2014;289(12):8668-80
  • Ohto U, Fukase K, Miyake K, et al. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci USA 2012;109(19):7421-6
  • Maeshima N, Fernandez RC. Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 2013;3:3
  • Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013;11(7):467-81
  • Kawano M, Manabe T, Kawasaki K. Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation enhances its intracellular growth within macrophages. FEBS Lett 2010;584(1):207-12
  • Montminy SW, Khan N, Mcgrath S, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 2006;7(10):1066-73
  • Ernst RK, Adams KN, Moskowitz SM, et al. The Pseudomonas aeruginosa lipid A deacylase: selection for expression and loss within the cystic fibrosis airway. J Bacteriol 2006;188(1):191-201
  • Ernst RK, Moskowitz SM, Emerson JC, et al. Unique lipid a modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J Infect Dis 2007;196(7):1088-92
  • Ernst RK, Yi EC, Guo L, et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 1999;286(5444):1561-5
  • Kanistanon D, Powell DA, Hajjar AM, et al. Role of Francisella lipid A phosphate modification in virulence and long-term protective immune responses. Infect Immun 2012;80(3):943-51
  • Wang X, Ribeiro AA, Guan Z, et al. Attenuated virulence of a Francisella mutant lacking the lipid A 4’-phosphatase. Proc Natl Acad Sci USA 2007;104(10):4136-41
  • Fransen F, Heckenberg SG, Hamstra HJ, et al. Naturally occurring lipid A mutants in neisseria meningitidis from patients with invasive meningococcal disease are associated with reduced coagulopathy. PLoS Pathog 2009;5(4):e1000396
  • Fransen F, Hamstra HJ, Boog CJ, et al. The structure of Neisseria meningitidis lipid A determines outcome in experimental meningococcal disease. Infect Immun 2010;78(7):3177-86
  • Zhou X, Gao X, Broglie PM, et al. Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea. Infect Immun 2014;82(1):184-92
  • Schielke S, Schmitt C, Spatz C, et al. The transcriptional repressor FarR is not involved in meningococcal fatty acid resistance mediated by the FarAB efflux pump and dependent on lipopolysaccharide structure. Appl Environ Microbiol 2010;76(10):3160-9
  • Viau C, Le Sage V, Ting DK, et al. Absence of PmrAB-mediated phosphoethanolamine modifications of Citrobacter rodentium lipopolysaccharide affects outer membrane integrity. J Bacteriol 2011;193(9):2168-76
  • John CM, Liu M, Phillips NJ, et al. Lack of lipid A pyrophosphorylation and functional lptA reduces inflammation by Neisseria commensals. Infect Immun 2012;80(11):4014-26
  • Takahashi H, Carlson RW, Muszynski A, et al. Modification of lipooligosaccharide with phosphoethanolamine by LptA in Neisseria meningitidis enhances meningococcal adhesion to human endothelial and epithelial cells. Infect Immun 2008;76(12):5777-89
  • Lewis LA, Shafer WM, Dutta Ray T, et al. Phosphoethanolamine residues on the lipid A moiety of Neisseria gonorrhoeae lipooligosaccharide modulate binding of complement inhibitors and resistance to complement killing. Infect Immun 2013;81(1):33-42
  • Hobbs MM, Anderson JE, Balthazar JT, et al. Lipid A’s structure mediates Neisseria gonorrhoeae fitness during experimental infection of mice and men. MBio 2013;4(6):e00892-13
  • Rolin O, Muse SJ, Safi C, et al. Enzymatic modification of lipid A by ArnT protects Bordetella bronchiseptica against cationic peptides and is required for transmission. Infect Immun 2014;82(2):491-9
  • Beceiro A, Moreno A, Fernandez N, et al. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob Agents Chemother 2014;58(1):518-26
  • Marohn ME, Barry EM. Live attenuated tularemia vaccines: recent developments and future goals. Vaccine 2013;31(35):3485-91
  • Wang X, Zhang X, Zhou D, et al. Live-attenuated Yersinia pestis vaccines. Expert Rev Vaccines 2013;12(6):677-86
  • Knirel YA, Lindner B, Vinogradov EV, et al. Temperature-dependent variations and intraspecies diversity of the structure of the lipopolysaccharide of Yersinia pestis. Biochemistry 2005;44(5):1731-43
  • Sun W, Six D, Kuang X, et al. A live attenuated strain of Yersinia pestis KIM as a vaccine against plague. Vaccine 2011;29(16):2986-98
  • Szaba FM, Kummer LW, Wilhelm LB, et al. D27-pLpxL, an avirulent strain of Yersinia pestis, primes T cells that protect against pneumonic plague. Infect Immun 2009;77(10):4295-304
  • Feodorova VA, Pan’kina LN, Savostina EP, et al. A Yersinia pestis lpxM-mutant live vaccine induces enhanced immunity against bubonic plague in mice and guinea pigs. Vaccine 2007;25(44):7620-8
  • Feodorova VA, Pan’kina LN, Savostina EP, et al. Pleiotropic effects of the lpxM mutation in Yersinia pestis resulting in modification of the biosynthesis of major immunoreactive antigens. Vaccine 2009;27(16):2240-50
  • Shahabi V, Maciag PC, Rivera S, et al. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs 2010;1(4):235-43
  • Wang S, Kong Q, Curtiss R3rd. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 2013;58:17-28
  • Kong Q, Yang J, Liu Q, et al. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect Immun 2011;79(10):4227-39
  • Kong Q, Liu Q, Roland KL, et al. Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar typhimurium vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen. Infect Immun 2009;77(12):5572-82
  • Low KB, Ittensohn M, Le T, et al. Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 1999;17(1):37-41
  • Kong Q, Six DA, Liu Q, et al. Palmitoylation state impacts induction of innate and acquired immunity by the Salmonella enterica serovar typhimurium msbB mutant. Infect Immun 2011;79(12):5027-38
  • Geurtsen J, Steeghs L, Hamstra HJ, et al. Expression of the lipopolysaccharide-modifying enzymes PagP and PagL modulates the endotoxic activity of Bordetella pertussis. Infect Immun 2006;74(10):5574-85
  • Geurtsen J, Dzieciatkowska M, Steeghs L, et al. Identification of a novel lipopolysaccharide core biosynthesis gene cluster in Bordetella pertussis, and influence of core structure and lipid A glucosamine substitution on endotoxic activity. Infect Immun 2009;77(7):2602-11
  • Marr N, Hajjar AM, Shah NR, et al. Substitution of the Bordetella pertussis lipid A phosphate groups with glucosamine is required for robust NF-kappaB activation and release of proinflammatory cytokines in cells expressing human but not murine Toll-like receptor 4-MD-2-CD14. Infect Immun 2010;78(5):2060-9
  • Bager RJ, Persson G, Nesta B, et al. Outer membrane vesicles reflect environmental cues in Gallibacterium anatis. Vet Microbiol 2013;167(3-4):565-72
  • Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 2010;64:163-84
  • Van de Waterbeemd B, Mommen GP, Pennings JL, et al. Quantitative proteomics reveals distinct differences in the protein content of outer membrane vesicle vaccines. J Proteome Res 2013;12(4):1898-908
  • Van de Waterbeemd B, Streefland M, van Keulen L, et al. Identification and optimization of critical process parameters for the production of NOMV vaccine against Neisseria meningitidis. Vaccine 2012;30(24):3683-90
  • Van de Waterbeemd B, Zomer G, Kaaijk P, et al. Improved production process for native outer membrane vesicle vaccine against Neisseria meningitidis. PLoS One 2013;8(5):e65157
  • Zollinger WD, Donets MA, Schmiel DH, et al. Design and evaluation in mice of a broadly protective meningococcal group B native outer membrane vesicle vaccine. Vaccine 2010;28(31):5057-67
  • Koeberling O, Giuntini S, Seubert A, et al. Meningococcal outer membrane vesicle vaccines derived from mutant strains engineered to express factor H binding proteins from antigenic variant groups 1 and 2. Clin Vaccine Immunol 2009;16(2):156-62
  • Koeberling O, Seubert A, Granoff DM. Bactericidal antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed factor H-binding protein and genetically attenuated endotoxin. J Infect Dis 2008;198(2):262-70
  • Keiser PB, Biggs-Cicatelli S, Moran EE, et al. A phase 1 study of a meningococcal native outer membrane vesicle vaccine made from a group B strain with deleted lpxL1 and synX, over-expressed factor H binding protein, two PorAs and stabilized OpcA expression. Vaccine 2011;29(7):1413-20
  • Keiser PB, Gibbs BT, Coster TS, et al. A phase 1 study of a group B meningococcal native outer membrane vesicle vaccine made from a strain with deleted lpxL2 and synX and stable expression of opcA. Vaccine 2010;28(43):6970-6
  • Leitner DR, Feichter S, Schild-Prufert K, et al. Lipopolysaccharide modifications of a cholera vaccine candidate based on outer membrane vesicles reduce endotoxicity and reveal the major protective antigen. Infect Immun 2013;81(7):2379-93
  • Rossi O, Pesce I, Giannelli C, et al. Modulation of endotoxicity of Shigella generalized modules for membrane antigens (GMMA) by genetic lipid A modifications: relative activation of TLR4 and TLR2 pathways in different mutants. J Biol Chem 2014;289(36):24922-35
  • Asensio CJ, Gaillard ME, Moreno G, et al. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 2011;29(8):1649-56
  • Jones HE, Copland A, Hamstra HJ, et al. LOS oligosaccharide modification enhances dendritic cell responses to meningococcal native outer membrane vesicles expressing a non-toxic lipid A. Cell Microbiol 2014;16(4):519-34
  • Steeghs L, van Vliet SJ, Uronen-Hansson H, et al. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol 2006;8(2):316-25
  • Nagaputra JC, Rollier CS, Sadarangani M, et al. Neisseria meningitidis Native Outer Membrane Vesicles Containing Different Lipopolysaccharide Glycoforms as Adjuvants for Meningococcal and Nonmeningococcal Antigens. Clin Vaccine Immunol 2014;21(2):234-42
  • Lee DH, Kim SH, Kang W, et al. Adjuvant effect of bacterial outer membrane vesicles with penta-acylated lipopolysaccharide on antigen-specific T cell priming. Vaccine 2011;29(46):8293-301
  • Findlow J, Borrow R, Snape MD, et al. Multicenter, open-label, randomized phase II controlled trial of an investigational recombinant Meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy. Clin Infect Dis 2010;51(10):1127-37
  • Snape MD, Dawson T, Oster P, et al. Immunogenicity of two investigational serogroup B meningococcal vaccines in the first year of life: a randomized comparative trial. Pediatr Infect Dis J 2010;29(11):e71-9
  • Chen DJ, Osterrieder N, Metzger SM, et al. Delivery of foreign antigens by engineered outer membrane vesicle vaccines. Proc Natl Acad Sci USA 2010;107(7):3099-104
  • Kim SH, Kim KS, Lee SR, et al. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles. Biochim Biophys Acta 2009;1788(10):2150-9
  • Muralinath M, Kuehn MJ, Roland KL, et al. Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect Immun 2011;79(2):887-94
  • Zhang Y, Gaekwad J, Wolfert MA, et al. Innate immune responses of synthetic lipid A derivatives of Neisseria meningitidis. Chemistry (Easton) 2008;14(2):558-69
  • Berezow AB, Ernst RK, Coats SR, et al. The structurally similar, penta-acylated lipopolysaccharides of Porphyromonas gingivalis and Bacteroides elicit strikingly different innate immune responses. Microb Pathog 2009;47(2):68-77
  • Bainbridge BW, Coats SR, Pham TT, et al. Expression of a Porphyromonas gingivalis lipid A palmitylacyltransferase in Escherichia coli yields a chimeric lipid A with altered ability to stimulate interleukin-8 secretion. Cell Microbiol 2006;8(1):120-9
  • Steeghs L, Berns M, Ten Hove J, et al. Expression of foreign LpxA acyltransferases in Neisseria meningitidis results in modified lipid A with reduced toxicity and retained adjuvant activity. Cell Microbiol 2002;4(9):599-611
  • Zughaier SM, Zimmer SM, Datta A, et al. Differential induction of the toll-like receptor 4-MyD88-dependent and -independent signaling pathways by endotoxins. Infect Immun 2005;73(5):2940-50
  • Ulrich JT, Myers KR. Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm Biotechnol 1995;6:495-524
  • Mata-Haro V, Cekic C, Martin M, et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007;316(5831):1628-32
  • Gandhapudi SK, Chilton PM, Mitchell TC. TRIF is required for TLR4 mediated adjuvant effects on T cell clonal expansion. PLoS One 2013;8(2):e56855
  • Chilton PM, Hadel DM, To TT, et al. Adjuvant activity of naturally occurring monophosphoryl lipopolysaccharide preparations from mucosa-associated bacteria. Infect Immun 2013;81(9):3317-25
  • Steeghs L, Keestra AM, van Mourik A, et al. Differential activation of human and mouse Toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Infect Immun 2008;76(8):3801-7
  • Wang X, Karbarz MJ, Mcgrath SC, et al. MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane: topography of francisella novicida LpxE expressed in Escherichia coli. J Biol Chem 2004;279(47):49470-8
  • Chen J, Tao G, Wang X. Construction of an Escherichia coli mutant producing monophosphoryl lipid A. Biotechnol Lett 2011;33(5):1013-19
  • Han Y, Li Y, Chen J, et al. Construction of monophosphoryl lipid A producing Escherichia coli mutants and comparison of immuno-stimulatory activities of their lipopolysaccharides. Mar Drugs 2013;11(2):363-76
  • Muroi M, Tanamoto K. The polysaccharide portion plays an indispensable role in Salmonella lipopolysaccharide-induced activation of NF-kappaB through human toll-like receptor 4. Infect Immun 2002;70(11):6043-7
  • Zughaier SM, Tzeng YL, Zimmer SM, et al. Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway. Infect Immun 2004;72(1):371-80
  • Ittig S, Lindner B, Stenta M, et al. The lipopolysaccharide from Capnocytophaga canimorsus reveals an unexpected role of the core-oligosaccharide in MD-2 binding. PLoS Pathog 2012;8(5):e1002667
  • Bergman MP, Engering A, Smits HH, et al. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 2004;200(8):979-90
  • Van Vliet SJ, Steeghs L, Bruijns SC, et al. Variation of Neisseria gonorrhoeae lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS Pathog 2009;5(10):e1000625
  • Zhang P, Snyder S, Feng P, et al. Role of N-acetylglucosamine within core lipopolysaccharide of several species of gram-negative bacteria in targeting the DC-SIGN (CD209). J Immunol 2006;177(6):4002-11
  • Guo Y, Feinberg H, Conroy E, et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 2004;11(7):591-8
  • Park D, Tosello-Trampont AC, Elliott MR, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007;450(7168):430-4
  • Das S, Owen KA, Ly KT, et al. Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci USA 2011;108(5):2136-41
  • Arenas J, van Dijken H, Kuipers B, et al. Coincorporation of LpxL1 and PagL mutant lipopolysaccharides into liposomes with Neisseria meningitidis opacity protein: influence on endotoxic and adjuvant activity. Clin Vaccine Immunol 2010;17(4):487-95
  • Bjerre A, Brusletto B, Rosenqvist E, et al. Cellular activating properties and morphology of membrane-bound and purified meningococcal lipopolysaccharide. J Endotoxin Res 2000;6(6):437-45
  • Leeson MC, Morrison DC. Induction of proinflammatory responses in human monocytes by particulate and soluble forms of lipopolysaccharide. Shock 1994;2(4):235-45
  • Watanabe S, Inoue J. Intracellular delivery of lipopolysaccharide induces effective Th1-immune responses independent of IL-12. PLoS One 2013;8(7):e68671
  • Hajjar AM, Ernst RK, Fortuno ES3rd, et al. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. PLoS Pathog 2012;8(10):e1002963
  • Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013;341(6151):1246-9
  • Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014;514(7521):187-92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.