601
Views
27
CrossRef citations to date
0
Altmetric
Review

Designing synthetic vaccines for HIV

, &

References

  • Gallo C, Montagnier L. The discovery of HIV as the cause of AIDS. N Eng J Med 2003;349:2283-5
  • UNAIDS report on the global AIDS epidemic 2013. Joint United Nations Programme on HIV/AIDS. Available from: www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2013/gr2013/UNAIDS_Global_Report_2013_en.pdf
  • McMichael AJ, Koff WC. Vaccines that stimulate T cell immunity to HIV-1: the next step. Nature Immunol 2014;15:319-22
  • Picker LJ, Hansen SG, Lifson JD. New paradigms for HIV/AIDS vaccine development. Annu Rev Med 2012;63:95-111
  • Baba TW, Liska V, Hofmann-Lehmann R, et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian−human immunodeficiency virus infection. Nat Med 2000;6:200-6
  • Mascola JR, Stiegler G, VanCott TC, et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 2000;6:207-10
  • Cohen J. Clinical research. A setback and an advance on the AIDS vaccine front. Science 2003;300:28-9
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009;361:2209-20
  • Vaccari M, Poonam P, Franchini G. Phase III HIV vaccine trial in Thailand: a step toward a protective vaccine for HIV. Expert Rev Vaccines 2010;9:997-1005
  • Haynes BF, Gilbert PB, McElrath MJ, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012;366:1275-86
  • Karpenko LI, Bazhan SI, Antonets DV, Belyakov IM. Novel approaches in polyepitope T-cell vaccine development against HIV-1. Expert Rev Vaccines 2014;13:155--73
  • Virgin HW, Walker BD. Immunology and the elusive AIDS vaccine. Nature 2010;464:224-31
  • Haynes BF, Verkoczy L. Host controls of HIV neutralizing antibodies. Science 2014;344:588-9
  • Verkoczy L, Chen Y, Zhang J, et al. Induction of HIV-1 broad neutralizing antibodies in 2F5 knock-in mice: selection against membrane proximal external region–associated autoreactivity limits T-dependent responses. J Immunol 2013;191:2538-50
  • Montefiori DC, Mascola JR. Neutralizing antibodies against HIV-1: can we elicit them with vaccines and how much do we need? Curr Opin HIV AIDS 2009;4:347-51
  • Hammer SM, Sobieszczyk ME, Janes H, et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med 2013;369:2083-92
  • McElrath MJ, Haynes BF. Induction of immunity to human immunodeficiency virus type-1 by vaccination. Immunity 2010;33:542-54
  • Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol Rev 2013;254:225-44
  • Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 2012;337:183-6
  • Huang J, Kang BH, Pancera M, et al. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature 2014;515:138-42
  • Falkowska E, Le KM, Ramos A, et al. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 2014;40:657-68
  • Scharf L, Scheid JF, Lee JH, et al. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Reports 2014;7:785-95
  • Blattner C, Lee JH, Sliepen K, et al. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 2014;40:669-80
  • Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998;280:1884-8
  • Johnson WE, Desrosiers RC. Viral persistence: HIV’s strategies of immune system evasion. Annu Rev Med 2002;53:499-518
  • Liao HX, Lynch R, Zhou T, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013;496:469-76
  • Wei X, Decker JM, Wang S, et al. Antibody neutralization and escape by HIV-1. Nature 2003;422:307-12
  • Kong L, Lee JH, Doores KJ, et al. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat Struct Mol Biol 2013;20:796-803
  • Sok D, Doores KJ, Briney B, et al. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 2014;6:236ra63
  • Garces F, Sok D, Kong L, et al. Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 2014;159:69-79
  • Doores KJ, Bonomelli C, Harvey DJ, et al. Envelope glycans of immunodeficiency virions are entirely oligomannose antigens. Proc Natl Acad Sci USA 2010;107:13800-5
  • Zhu X, Borchers C, Bienstock RJ, Tomer KB. Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry 2000;39:11194-204
  • Go EP, Hewawasam G, Liao HX, et al. Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry. J Virol 2011;85:8270-84
  • Go EP, Liao HX, Alam SM, et al. Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J Proteome Res 2013;12:1223-34
  • Bonomelli C, Doores KJ, Dunlop DC, et al. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 2011;6:e23521
  • Trkola A, Purtschner M, Muster T, et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 1996;70:1100-8
  • Hessell AJ, Rakasz EG, Poignard P, et al. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog 2009;5:e1000433
  • Sanders RW, Venturi M, Schiffner L, et al. The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 2002;76:7293-305
  • Scanlan CN, Pantophlet R, Wormald MR, et al. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of α1→2 mannose residues on the outer face of gp120. J Virol 2002;76:7306-21
  • Calarese DA, Scanlan CN, Zwick MB, et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 2003;300:2065-71
  • Wang LX, Ni J, Singh S, Li H. Binding of high-mannose-type oligosaccharides and synthetic oligomannose clusters to human antibody 2G12: implications for HIV-1 vaccine design. Chem Biol 2004;11:127-34
  • Lee HK, Scanlan CN, Huang CY, et al. Reactivity-based one-pot synthesis of oligomannoses: defining antigens recognized by 2G12, a broadly neutralizing anti-HIV-1 antibody. Angew Chem Int Ed 2004;43:1000-3
  • Adams EW, Ratner DM, Bokesch HR, et al. Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem Biol 2004;11:875-81
  • Calarese DA, Lee HK, Huang CY, et al. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci USA 2005;102:13372-7
  • Mandal M, Dudkin VY, Geng X, Danishefsky SJ. In pursuit of carbohydrate-based HIV vaccines, part 1: the total synthesis of hybrid-type gp120 fragments. Angew Chem Int Ed 2004;43:2557-61
  • Geng X, Dudkin VY, Mandal M, Danishefsky SJ. In pursuit of carbohydrate-based HIV vaccines, part 2: the total synthesis of high-mannose-type gp120 fragments – evaluation of strategies directed to maximal convergence. Angew Chem Int Ed 2004;43:2562-5
  • Likhosherstov LM, Novikova OS, Derevitskaja VA, Kochetkov NK. A new simple synthesis of amino sugar β-D-glycosylamines. Carbohydr Res 1986;146:C1-6
  • Cohen-Anisfeld ST, Lansbury PT Jr. A practical, convergent method for glycopeptide synthesis. J Am Chem Soc 1993;115:10531-7
  • Dudkin V, Orlova M, Geng X, et al. Toward fully synthetic carbohydrate-based HIV antigen design: on the critical role of bivalency. J Am Chem Soc 2004;126:9560-2
  • Krauss IJ, Joyce JG, Finnefrock AC, et al. Fully synthetic carbohydrate HIV antigens designed on the logic of the 2G12 antibody. J Am Chem Soc 2007;129:11042-4
  • Joyce JG, Krauss IJ, Song HC, et al. An oligosaccharide-based HIV-1 2G12 mimotope vaccine induces carbohydrate-specific antibodies that fail to neutralize HIV-1 virions. Proc Natl Acad Sci USA 2008;105:15684-9
  • Li H, Wang LX. Design and synthesis of a template-assembled oligomannose cluster as an epitope mimic for human HIV-neutralizing antibody 2G12. Org Biomol Chem 2004;2:483-8
  • Ni J, Song H, Wang Y, et al. Toward a carbohydrate-based HIV-1 vaccine: synthesis and immunological studies of oligomannose-containing glycoconjugates. Bioconjug Chem 2006;17:493-500
  • Wang J, Li H, Zou G, Wang LX. Novel template-assembled oligosaccharide clusters as epitope mimics for HIV-neutralizing antibody 2G12. Design, synthesis, and antibody binding study. Org Biomol Chem 2007;5:1529-40
  • Wang SK, Liang PH, Astronomo RD, et al. Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci USA 2008;105:3690-5
  • Astronomo RD, Lee HK, Scanlan CN, et al. A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. J Virol 2008;82:6359-68
  • Astronomo RD, Kaltgrad E, Udit AK, et al. Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem Biol 2010;17:357-70
  • Agrawal-Gamse C, Luallen RJ, Liu B, et al. Yeast-elicited cross-reactive antibodies to HIV Env glycans efficiently neutralize virions expressing exclusively high-mannose N-linked glycans. J Virol 2011;85:470-80
  • Doores KJ, Fulton Z, Hong V, et al. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci USA 2010;107:17107-12
  • Walker LM, Phogat SK, Chan-Hui P-Y, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009;326:285-9
  • Doores KJ, Burton DR. Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. J Virol 2010;84:10510-21
  • Bonsignori M, Hwang K-K, Chen X, et al. Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J Virol 2011;85:9998-10009
  • McLellan JS, Pancera M, Carrico C, et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 2011;480:336-43
  • Aussedat B, Vohra Y, Park PK, et al. Chemical synthesis of highly congested gp120 V1V2 N-glycopeptide antigens for potential HIV-1-directed vaccines. J Am Chem Soc 2013;135:13113-20
  • Wang P, Aussedat B, Vohra Y, Danishefsky SJ. An advance in the chemical synthesis of homogeneous N-linked glycopolypeptides by convergent aspartylation. Angew Chem Int Ed 2012;51:11571-5
  • Alam SM, Dennison SM, Aussedat B, et al. Recognition of synthetic glycopeptides by HIV-1 broadly neutralizing antibodies and their unmutated ancestors. Proc Natl Acad Sci USA 2013;110:18214-19
  • Liao HX, Bonsignori M, Alam SM, et al. Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity 2013;38:176-86
  • Wan Q, Danishefsky SJ. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed 2007;46:9248-52
  • Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012;30:423-33
  • Adam SM, Liao HX, Tomaras GD, et al. Antigenicity and immunogenicity of RV144 vaccine AIDSVAX clade E envelope immunogen is enhanced by a gp120 N-terminal deletion. J Virol 2013;87:1554-68
  • Julien JP, Lee JH, Cupo A, et al. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci USA 2013;110:4351-6
  • de Souza MS, Ratto-Kim S, Chuenarom W, et al. The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope. J Immunol 2012;188:5166-76
  • Amin MN, McLellan JS, Huang W, et al. Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies. Nat Chem Biol 2013;9:521-6
  • Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, et al. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat Struct Mol Biol 2013;20:804-13
  • Shivatare SS, Chang SH, Tsai TI, et al. Efficient convergent synthesis of bi-, tri-, and tetra-antennary complex type N-glycans and their HIV-1 antigenicity. J Am Chem Soc 2013;135:15382-91
  • Walker LM, Huber M, Doores KJ, et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011;477:466-70
  • Pejchal R, Doores KJ, Walker LM, et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 2011;334:1097-103
  • Zolla-Pazner S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 2004;4:199-210
  • Li H, Li B, Song H, et al. Chemoenzymatic synthesis of HIV-1 V3 glycopeptides carrying two N-glycans and effects of glycosylation on the peptide domain. J Org Chem 2005;70:9990-6
  • Orwenyo J, Amin MN, Lomino JV, Wang LX. Synthesis of homogeneous HIV-1 V3 glycopeptides for characterizing the glycan specificity of glycan-dependent HIV-neutralizing antibodies. CARB-64. Abstracts of Papers 247th National Meeting of the American Chemical Society, March 16-20, 2014, Dallas, TX
  • Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012;30:423-33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.