455
Views
1
CrossRef citations to date
0
Altmetric
Review

Bacillus subtilis comes of age as a vaccine production host and delivery vehicle

&
Pages 1135-1148 | Published online: 31 May 2015

References

  • Esparza J. A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013;31(35):3502-18
  • Hawn TR, Day TA, Scriba TJ, et al. Tuberculosis vaccines and prevention of infection. Microbiol Mol Biol Rev 2014;78(4):650-71
  • Weekly epidemiological record. WHO 2014;89:517-28
  • Wer 2014. Available from: http://www.who.int/immunization/global_vaccine_action_plan/en/
  • Bauer UE, Briss PA, Goodman RA, et al. Prevention of chronic disease in the 21st century: elimination of the leading preventable causes of premature death and disability in the USA. Lancet 2014;384(9937):45-52
  • Simerska P, Moyle PM, Olive C, et al. Oral vaccine delivery--new strategies and technologies. Curr Drug Deliv 2009;6(4):347-58
  • Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol 2009;183(11):6883-92
  • Fujkuyama Y, Tokuhara D, Kataoka K, et al. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev Vaccines 2012;11(3):367-79
  • Correia-Pinto JF, Csaba N, Alonso MJ. Vaccine delivery carriers: insights and future perspectives. Int J Pharm 2013;440(1):27-38
  • Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 2012;12(8):592-605
  • Hernández M, Rosas G, Cervantes J, et al. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014;13(12):1523-36
  • Specht EA, Mayfield SP. Algae-based oral recombinant vaccines. Front Microbiol 2014;5:60
  • Ardiani A, Higgins JP, Hodge JW. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res 2010;10(8):1060-9
  • Yu Q, Zhu L, Kang H, et al. Mucosal Lactobacillus vectored vaccines. Hum Vaccin Immunother 2013;9(4):805-7
  • Amuguni H, Tzipori S. Bacillus subtilis: a t[emp]erature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother 2012;8(7):979-86
  • Cutting SM, Hong HA, Baccigalupi L, et al. Oral vaccine delivery by recombinant spore probiotics. Int Rev Immunol 2009;28(6):487-505
  • Tanasienko OA, Cheremshenko NL, Titova GP, et al. Elevation of the efficacy of antitumor vaccine prepared on the base of lectines from B. subtilis B-7025 upon its combined application with probiotics in vivo. Exp Oncol 2005;27(4):336-8
  • Duc Le H, Hong HA, Uyen NQ, et al. Intracellular fate and immunogenicity of B.subtilis spores. Vaccine 2004;22(15-16):1873-85
  • Casula G, Cutting SM. Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol 2002;68:2344-52
  • Ceragioli M, Cangiano G, Esin S, et al. Phagocytosis, germination and killing of Bacillus subtilis spores presenting heterologous antigens in human macrophages. Microbiology 2009;155:338-46
  • Mauriello EM, Cangiano G, Maurano F, et al. Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. Vaccine 2007;25:788-93
  • Hong HA, Duc H, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 2005;29:813-35
  • Schumann W. Production of recombinant proteins in Bacillus subtilis. Adv Appl Microbiol 2007;62:137-89
  • Minor PD. Live attenuated vaccines: Historical successes and current challenges. Virology 2015;479-480C:379-92
  • Rollier CS, Reyes-Sandoval A, Cottingham MG, et al. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol 2011;23(3):377-82
  • Lebron JA, Wolf JJ, Kaplanski CV, Ledwith BJ. Ensuring the quality, potency and safety of vaccines during preclinical development. Expert Rev Vaccines 2005;4(6):855-66
  • Desvaux M, Dumas E, Chafsey I, et al. Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 2006;256:1-15
  • Isticato R, Cangiano G, Tran HT, et al. Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 2001;183:6294-301
  • Setlow P. Dynamics of the assembly of a complex macromolecular structure – the coat of spores of the bacterium Bacillus subtilis. Mol Microbiol 2012;83:241-4
  • Henriques AO, Moran CPJr. Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 2007;61:555-88
  • Driks A. Surface appendages of bacterial spores. Mol Microbiol 2007;63:623-5
  • Warth AD, Ohye DF, Murrell WG. The composition and structure of bacterial spores. J Cell Biol 1963;16:579-92
  • McKenney PT, Eichenberger P. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol Microbiol 2012;83:245-60
  • McKenney PT, Driks A, Eskandarian HA, et al. A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 2010;20:934-8
  • Imamura D, Kuwana R, Takamatsu H, et al. Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol 2011;193:4075-80
  • Mauriello EM, Duc le H, Isticato R, et al. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 2004;22:1177-87
  • Kim JH, Lee CS, Kim BG. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem Biophys Res Comm 2005;331:210-14
  • Li Q, Ning D, Wu C. Surface display of GFP using CotX as a molecular vector on Bacillus subtilis spores. Sheng Wu Gong Cheng Xue Bao 2010;26(2):264-9
  • Nguyen VA, Huynh HA, Hoang TV, et al. Killed Bacillus subtilis spores expressing streptavidin: a novel carrier of drugs to target cancer cells. J Drug Target 2013;21:528-41
  • Huang JM, Hong HA, Van Tong H, et al. Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 2010;28:1021-30
  • Pan JG, Choi SK, Jung HC, et al. Display of native proteins on Bacillus subtilis spores. FEMS Microbiol Lett 2014;358(2):209-17
  • Sirec T, Strazzulli A, Isticato R, et al. Adsorption of beta-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis. Microb Cell Fact 2012;11:100
  • Isticato R, Sirec T, Treppiccione L, et al. Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 2013;12:98
  • Tavares Batista M, Souza RD, Paccez JD, et al. Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect Immun 2014;82(4):1414-23
  • Aväll-Jääskeläinen S, Lindholm A, Palva A. Surface display of the receptor- binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells. Appl Environ Microbiol 2003;69:2230-6
  • Rhee KJ, Sethupathi P, Driks A, et al. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 2004;172:1118-24
  • Huang JM, La Ragione RM, Nunez A, et al. Immunostimulatory activity of Bacillus spores. FEMS Immunol Med Microbiol 2008;53(2)):195-203
  • Valdez A, Yepiz-Plascencia G, Ricca E, et al. First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis spores surface. J Appl Microbiol 2014;117(2):347-57
  • Nguyen AT, Pham CK, Pham HT, et al. Bacillus subtilis spores expressing the VP28 antigen: a potential oral treatment to protect Litopenaeus vannamei against white spot syndrome. FEMS Microbiol Lett 2014;358(2):202-8
  • Esparza-Gonzalez SC, Troy AR, Izzo AA. Comparative analysis of Bacillus subtilis spores and monophosphoryl lipid A as adjuvants of protein-based Mycobacterium tuberculosis-based vaccines: partial requirement for interleukin-17a for induction of protective immunity. Clin Vaccine Immunol 2014;21(4):501-8
  • Hughes MA, Green CS, Lowchyj L, et al. MyD88-dependent signaling contributes to protection following Bacillus anthracis spore challenge of mice: implications for Toll-like receptor signaling. Infect Immun 2005;73(11):7535-40
  • Song M, Hong HA, Huang JM, et al. Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 2012;30(22):3266-77
  • Sibley L, Reljic R, Radford DS, et al. Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett 2014;358(2):170-9
  • Hinc K, Stasiłojć M, Piątek I, et al. Mucosal adjuvant activity of IL-2 presenting spores of Bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS ONE 2014;9(4):e95187
  • Zhou Z, Gong S, Li X, et al. Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. J Med Microbiol 2015;64(Pt 1):104-10
  • Ning D, Leng X, Li Q, et al. Surface-displayed. VP28 on Bacillus subtilis spores induce protection against White spot syndrome virus in crayfish by oral administration. J Appl Microbiol 2011;111(6):1327-36
  • Fu LL, Li WF, Du HH, et al. Oral vaccination with envelope protein VP28 against white spot syndrome virus in Procambarus clarkii using Bacillus subtilis as delivery vehicles. Lett Appl Microbiol 2008;46(5):581-6
  • Wang X, Chen W, Tian Y, et al. Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 2014;32(12):1338-45
  • Zhou Z, Xia H, Hu X, et al. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 2008;26(15):1817-25
  • Amuguni H, Lee S, Kerstein K, et al. Sublingual immunization with an engineered Bacillus subtilis strain expressing tetanus toxin fragment C induces systemic and mucosal immune responses in piglets. Microbes Infect 2012;14(5):447-56
  • Duc le H, Hong HA, Fairweather N, et al. Bacterial spores as vaccine vehicles. Infect Immun 2003;71:2810-18
  • Amuguni JH, Lee S, Kerstein KO, et al. Sublingually administered Bacillus subtilis cells expressing tetanus toxin C fragment induce protective systemic and mucosal antibodies against tetanus toxin in mice. Vaccine 2011;29(29-30):4778-84
  • Lee S, Belitsky BR, Brown DW, et al. Efficacy, heat stability and safety of intranasally administered Bacillus subtilis spore or vegetative cell vaccines expressing tetanus toxin fragment C. Vaccine 2010;28(41):6658-65
  • Permpoonpattana P, Hong HA, Phetcharaburanin J, et al. Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun 2011;79(6):2295-302
  • Hu B, Li C, Lu H, et al. Immune responses to the oral administration of recombinant Bacillus subtilis expressing multi-epitopes of foot-and- mouth disease virus and a cholera toxin B subunit. J Virol Methods 2011;171(1):272-9
  • Lee S, Belitsky BR, Brinker JP, et al. Development of a Bacillus subtilis-based rotavirus vaccine. Clin Vaccine Immunol 2010;17(11):1647-55
  • Hoang TH, Hong HA, Clark GC, et al. Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun 2008;76(11):5257-65
  • Ducle H, Hong HA, Atkins HS, et al. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 2007;25(2):346-55
  • Luiz WB, Cavalcante RC, Paccez JD, et al. Boosting systemic and secreted antibody responses in mice orally immunized with recombinant Bacillus subtilis strains following parenteral priming with a DNA vaccine encoding the enterotoxigenic Escherichia coli (ETEC) CFA/I fimbriae B subunit. Vaccine 2008;26(32):3998-4005
  • Baek JO, Seo JW, Kwon O, et al. Production of human papillomavirus type 33 L1 major capsid protein and virus-like particles from Bacillus subtilis to develop a prophylactic vaccine against cervical cancer. Enzyme Microb Technol 2012;50(3):173-80
  • Li L, Hu X, Wu Z, et al. Immunogenicity of self-adjuvanticity oral vaccine candidate based on use of Bacillus subtilis spore displaying Schistosoma japonicum 26 KDa GST protein. Parasitol Res 2009;105(6):1643-51
  • Negri A, Potocki W, Iwanicki A, et al. Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol 2013;62(Pt 9):1379-85
  • Gomes PA, Bentancor LV, Paccez JD, et al. Antibody responses elicited in mice immunized with Bacillus subtilis vaccine strains expressing Stx2B subunit of enterohaemorrhagic Escherichia coli O157:H7. Braz J Microbiol 2009;40(2):333-8
  • Tavares MB, Silva BM, Cavalcante RC, et al. Induction of neutralizing antibodies in mice immunized with an amino-terminal polypeptide of Streptococcus mutans P1 protein produced by a recombinant Bacillus subtilis strain. FEMS Immunol Med Microbiol 2010;59(2):131-42
  • Raychaudhuri S, Morrow WJ. Can soluble antigens induce CD8+ cytotoxic T-cell responses? A paradox revisited. Immunol Today 1993;14(7):344-8
  • Foged C, Hansen J, Agger EM. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur J Pharm Sci 2012;45(4):482-91
  • Stubbs AC, Martin KS, Coeshott C, et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med 2001;7(5):625-9
  • Kraan H, Vrieling H, Czerkinsky C, et al. Buccal and sublingual vaccine delivery. J Control Release 2014;190:580-92
  • Czerkinsky C, Cuburu N, Kweon MN, et al. Sublingual vaccination. Hum Vaccin 2011;7(1):110-14
  • WHO. 2014. Available from: http://gamapserver.who.int/mapLibrary/Files/Maps/HIV_all_2013.png
  • Nakagami H, Koriyama H, Morishita R. Therapeutic vaccines for hypertension and dyslipidemia. Int Heart J 2014;55(2):96-100
  • Aathira R, Jain V. Advances in management of type 1 diabetes mellitus. World J Diabetes 2014;5(5):689-96
  • Liaw YW, Lin CY, Lai YS, et al. A vaccine targeted at CETP alleviates high fat and high cholesterol diet-induced atherosclerosis and non-alcoholic steatohepatitis in rabbit. PLoS One 2014;9(12):e111529
  • Jing H, Yong L, Haiyan L, et al. Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice. Vaccine 2011;29(24):4102-9
  • Rosales-Mendoza S, Govea-Alonso DO, Monreal-Escalante E, et al. Developing plant-based vaccines against neglected tropical diseases: where are we? Vaccine 2012;31(1):40-8
  • Acheson DWK, Sonenshein AL, Leong JM, Keusch GT. Heat-stable spore-based vaccines: surface expression of invasin-cell wall fusion proteins in Bacillus subtilis. In: Vaccines 97, Cold Spring Laboratory Press; Cold Spring Harbor, NY: 1997
  • Acheson DWK, Sonenshein AL, Keusch GT. Bacterial spores as a heat stable vaccine delivery system. US5800821; 1998
  • Qu H, Xu Y, Sun H, et al. Systemic and local mucosal immune responses induced by orally delivered Bacillus subtilis spore expressing leucine aminopeptidase 2 of Clonorchis sinensis. Parasitol Res 2014;113(8):3095-103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.