19,225
Views
67
CrossRef citations to date
0
Altmetric
Review

Bioreactor concepts for cell culture-based viral vaccine production

, , &

References

  • Hilleman MR. Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. J Hum Virol 2000;3(2):63-76
  • WHO prequalified vaccines. World Health Organization. Available from: http://www.who.int/immunization_standards/vaccine_quality/PQ_vaccine_list_en/en/ [Last accessed January 2015]
  • US Food and Drug Administration. Complete List of Vaccines Licensed for Immunization and Distribution in the US. Available from: http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm093833.htm [Last accessed January 2015]
  • European Medicines Agency. Licensed vaccines by the European Medicines Agency. Available from: http://www.ema.europa.eu/ema/ [Last accessed April 2015]
  • Hilleman MR. History, precedent, and progress in the development of mammalian cell culture systems for preparing vaccines: safety considerations revisited. J Med Virol 1990;31(1):5-12
  • Peschel B, Frentzel S, Laske T, et al. Comparison of influenza virus yields and apoptosis-induction in an adherent and a suspension MDCK cell line. Vaccine 2013;31(48):5693-9
  • Centers of Disease Control and Prevention. Selecting the viruses in the seasonal influenza (Flu) vaccine. Available from: http://www.cdc.gov/flu/professionals/vaccination/virusqa.htm [Last accessed January 2015]
  • Centers of Disease Control and Prevention. Seasonal influenza vaccine & total doses distributed. Available from: http://www.cdc.gov/flu/professionals/vaccination/vaccinesupply.htm [Last accessed January 2015]
  • Draper SJ, Heeney JL. Viruses as vaccine vectors for infectious diseases and cancer. Nat Rev Microbiol 2010;8(1):62-73
  • The ad hoc expert group on WHO biosafety guidelines on production and quality control of H7N9 vaccines. 2013
  • World Health Organization. Containment verification of large-scale polio vaccine production and quality control facilities following the interruption of endemic poliomyelitis transmission. Discussion group on global containment strategies; Geneva, Switzerland: 2003
  • Siegrist CA. Vaccine immunology. In: Plotkin SA, Orenstein WA, Offit PA, editors. Vaccines. 6th edition. Elsevier Saunders, Philadelphia, USA; 2013. p. 14-32
  • Jordan I, Northoff S, Thiele M, et al. A chemically defined production process for highly attenuated poxviruses. Biologicals 2011;39(1):50-8
  • Jordan I, Woods N, Whale G, Sanding V. Production of a viral-vectored vaccine candidate against Tuberculosis. BioProcess International 2012;10:8
  • Jordan I, Sandig V. A novel genotype of MVA that efficiently replicates in single cell suspensions. BMC Proceedings 2013;7(Suppl 6):1
  • Jordan I, Horn D, John K, Sandig V. A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium. Viruses 2013;5(1):321-39
  • Klenk HD, Rott R, Orlich M, Blödorn J. Activation of influenza A viruses by trypsin treatment. Virology 1975;68(2):426-39
  • Lazarowitz SG, Choppin PW. Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 1975;68(2):440-54
  • Homma M, Ohuchi M. Trypsin action on the growth of sendai virus in tissue culture cells III. structural difference of sendai viruses grown in eggs and tissue culture cells. J virol 1973;12(6):1457-65
  • Arias CF, Romero P, Alvarez V, López S. Trypsin activation pathway of rotavirus infectivity. J virol 1996;70(9):5832-9
  • Kalter SS. Enteric viruses of nonhuman primates. Vet Pathol 1982;19(Suppl 7):33-43
  • Hundt B, Best C, Schlawin N, et al. Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave Bioreactor microcarrier culture in 1-10 l scale. Vaccine 2007;25(20):3987-95
  • Weis W, Brown JH, Cusack S, et al. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 1988;333(6172):426-31
  • Zhang J, Gauger PC. Isolation of swine influenza virus in cell cultures and embryonated chicken eggs. Methods Mol Biol 2014;1161:265-76
  • Genzel Y. Designing cell lines for viral vaccine production: Where do we stand? Biotechnol J 2015;10(5):728-40
  • Le Ru A, Jacob D, Transfiguracion J, et al. Scalable production of influenza virus in HEK-293 cells for efficient vaccine manufacturing. Vaccine 2010;28(21):3661-71
  • Lohr V, Rath A, Genzel Y, et al. New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: Studies on growth, metabolism and virus propagation. Vaccine 2009;27(36):4975-82
  • Sanders BP, Edo-Matas D, Custers JHHV, et al. PER.C6® cells as a serum-free suspension cell platform for the production of high titer poliovirus: A potential low cost of goods option for world supply of inactivated poliovirus vaccine. Vaccine 2013;31(5):850-6
  • Cox RJ, Madhun AS, Hauge S, et al. A phase I clinical trial of a PER.C6 cell grown influenza H7 virus vaccine. Vaccine 2009;27(13):1889-97
  • Valneva. EB66 cell-based pandemic influenza vaccine manufacturing. Available from: http://www.valneva.com [Last accessed April 2015]
  • Anti-Ebola MVA Vaccine Produced on ProBioGen’s Avian AGE1. CR® Cell Line Platform in Clinical Trials. (Press Release). ProBioGen. Available from: http://www.probiogen.de/news-events/press-article/article/anti_ebola_m.html?tx_ttnews[backPid]=20&cHash=570019fc74c039a57b2ff555b2369801 [Last accessed 02 June 2015]
  • Doroshenko A, Halperin SA. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines 2009;8(6):679-88
  • Lohr V, Genzel Y, Behrendt I, et al. A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor. Vaccine 2010;28(38):6256-64
  • Brown SW, Mehtali M. The Avian EB66(R) Cell Line, Application to Vaccines, and Therapeutic Protein Production. PDA J Pharm Sci Technol 2010;64(5):419-25
  • Rourou S, van der Ark A, Majoul S, et al. A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor. Appl Microbiol Biotechnol 2009;85(1):53-63
  • Genzel Y, Fischer M, Reichl U. Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture. Vaccine 2006;24(16):3261-72
  • Thisyakorn U, Thisyakorn C. Latest developments and future directions in dengue vaccines. Ther Adv Vaccines 2014;2(1):3-9
  • Vlecken DH, Pelgrim RP, Ruminski S, et al. Comparison of initial feasibility of host cell lines for viral vaccine production. J Virol Methods 2013;193(1):28-41
  • Thomassen YE, van’t Oever AG, van Oijen MG, et al. Next generation inactivated polio vaccine manufacturing to support post polio-eradication biosafety goals. PLoS One 2013;8(12):e83374
  • Monath TP, Fowler E, Johnson CT, et al. An Inactivated Cell-Culture Vaccine against Yellow Fever. N Engl J Med 2011;364(14):1326-33
  • Rolli G. Progress Toward A Low COGs PER.C6® based IPV. 11th WHO/UNICEF Consultation with OPV/IPV Manufacturers and NRAs; Geneva, Switzerland: 2012
  • Wodal W, Schwendinger MG, Savidis-Dacho H, et al. Immunogenicity and Protective Efficacy of a Vero Cell Culture-Derived Whole-Virus H7N9 Vaccine in Mice and Guinea Pigs. PLoS One 2015;10(2):e0113963
  • Crucell. Crucell Research & development. Available from: http://crucell.com/researchdevelopment [Last accessed March 2015]
  • van Oers MM. Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv Virus Res 2006;68:193-253
  • Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2011;10(7):1063-81
  • Cox MM. Recombinant protein vaccines produced in insect cells. Vaccine 2012;30(10):1759-66
  • Marek M, van Oers MM, Devaraj FF, et al. Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol Bioeng 2011;108(5):1056-67
  • Musthaq SS, Kwang J. Oral vaccination of Baculovirus-expressed VP28 displays enhanced protection against white spot syndrome virus in Penaeus monodon. PloS One 2011;6(11):e26428
  • Airenne KJ, Hu YC, Kost TA, et al. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 2013;21(4):739-49
  • Lu HY, Chen YH, Liu HJ. Baculovirus as a vaccine vector. Bioengineered 2012;3(5):271-4
  • Yamaji H, Nakamura M, Kuwahara M, et al. Efficient production of Japanese encephalitis virus-like particles by recombinant lepidopteran insect cells. Appl Microbiol Biotechnol 2013;97(3):1071-9
  • van Oers MM. Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 2011;107(Suppl):S3-15
  • Pushko P, Tumpey TM, Bu F, et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 2005;23(50):5751-9
  • Bright RA, Carter DM, Daniluk S, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 2007;25(19):3871-8
  • King JCJr, Cox MM, Reisinger K, et al. Evaluation of the safety, reactogenicity and immunogenicity of FluBlok trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy children aged 6-59 months. Vaccine 2009;27(47):6589-94
  • Chung YC, Ho MS, Wu JC, et al. Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine 2008;26(15):1855-62
  • Lee DH, Park JK, Lee YN, et al. H9N2 avian influenza virus-like particle vaccine provides protective immunity and a strategy for the differentiation of infected from vaccinated animals. Vaccine 2011;29(23):4003-7
  • Wagner JM, Pajerowski JD, Daniels CL, et al. Enhanced production of Chikungunya virus-like particles using a high-pH adapted spodoptera frugiperda insect cell line. PLoS One 2014;9(4):e94401
  • Raghunandan R, Lu H, Zhou B, et al. An insect cell derived respiratory syncytial virus (RSV) F nanoparticle vaccine induces antigenic site II antibodies and protects against RSV challenge in cotton rats by active and passive immunization. Vaccine 2014;32(48):6485-92
  • Cox MM, Hashimoto Y. A fast track influenza virus vaccine produced in insect cells. J Invertebr Pathol 2011;107(Suppl):S31-41
  • Clements DE, Coller BA, Lieberman MM, et al. Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine 2010;28(15):2705-15
  • Coller BA, Clements DE, Bett AJ, et al. The development of recombinant subunit envelope-based vaccines to protect against dengue virus induced disease. Vaccine 2011;29(42):7267-75
  • Metz SW, Gardner J, Geertsema C, et al. Effective chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl Trop Dis 2013;7(3):e2124
  • de Jongh W. Resende Md, Leisted C, et al. Development of a Drosophila S2 insect-cell based placental malaria vaccine production process. BMC Proceedings 2013;7(Suppl 6):P20
  • Charoensri N, Suphatrakul A, Sriburi R, et al. An optimized expression vector for improving the yield of dengue virus-like particles from transfected insect cells. J Virol Methods 2014;205:C116-23
  • Chung CY, Chen CY, Lin SY, et al. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine 2010;28(43):6951-7
  • Smith G, Raghunandan R, Wu Y, et al. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS One 2012;7(11):e50852
  • Hahn TJ, Courbron D, Hamer M, et al. Rapid Manufacture and Release of a GMP Batch of Avian Influenza A(H7N9) Virus-Like Particle Vaccine Made Using Recombinant Baculovirus-Sf9 Insect Cell Culture Technology. BioProcessing Journal 2013;12(2):4
  • Lee HS, Kim YJ, Yang J, et al. Alternative purification method for recombinant measles viral nucleoprotein expressed in insect cells by ion-exchange chromatography. J Virol Methods 2014;197:55-62
  • Smith GE, Flyer DC, Raghunandan R, et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 2013;31(40):4305-13
  • Wolf MW, Reichl U. Downstream processing of cell culture-derived virus particles. Expert Rev Vaccines 2011;10(10):1451-75
  • Tap Biosystems. GMP manufacture of biologics. Cellmate-batch production of biologics. Available from: http://www.tapbiosystems.com/tap/applications/biologics.htm [Last accessed April 2015]
  • Tap Biosystems. Automated roller bottle processing – Cellmate. Available from: http://www.tapbiosystems.com/a/automated-roller-bottle-processing-gp.htm [Last accessed April 2015]
  • RollerCell40. RollerCell40. Available from: http://www.rollercell40.com/ [Last accessed April 2015]
  • Human Vaccines. IDT Biologika GmbH. Available from: http://www.idt-biologika.com/get.php?f=4ec26f0bb4f160794d811d22cf3ce986.pdf&m=download [Last accessed May 2015]
  • Corning. Growing more cells: A simple guide to small volume cell culture scale-up. Available from: http://csmedia2.corning.com/LifeSciences/media/pdf/cc_scale_up_guide.pdf [Last accessed May 2015]
  • Thermo Scientific. Nunc™ Cell Factory™ Systems. Available from: http://www.thermoscientific.com/en/product/nunc-cell-factory-systems.html [Last accessed February 2015]
  • Hagen A, Aunins J, DePhillips P, et al. Development, preparation, and testing of VAQTA (R), a highly purified hepatitis A vaccine. Bioprocess Eng 2000;23(5):439-49
  • Devitt G, Thomas M, Klibanov AM, et al. Optimized protocol for the large scale production of HIV pseudovirions by transient transfection of HEK293T cells with linear fully deacylated polyethylenimine. J Virol Methods 2007;146(1-2):298-304
  • Moran E. A microcarrier-based cell culture process for the production of a bovine respiratory syncytial virus vaccine. Cytotechnology 1999;29(2):135-49
  • Thermo Scientific. Nunc™ Automatic Cell Factory™ Manipulator System (ACFM). Available from: http://www.thermoscientific.com/en/product/nunc-automatic-cell-factory-manipulator-system-acfm.html [Last accessed February 2015]
  • Thomassen YE, van ’t Oever AG, Vinke M, et al. Scale-down of the inactivated polio vaccine production process. Biotechnol Bioeng 2013;110(5):1354-65
  • Mirro R, Voll K. Which impeller is right for your cell line? A guide to impeller selection for stirred-tank bioreactors. BioProcess International 2009;7:52-7
  • Flickinger MC. Upstream industrial biotechnology. Volume 2 John Wiley & Sons Inc; Hoboken, New Jersey: 2013
  • van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 1967;216(5110):64-5
  • Thomassen YE, van der Welle JE, van Eikenhorst G, et al. Transfer of an adherent Vero cell culture method between two different rocking motion type bioreactors with respect to cell growth and metabolic rates. Process Biochem 2012;47(2):288-96
  • Rourou S, Ben Ayed Y, Trabelsi K, et al. An animal component free medium that promotes the growth of various animal cell lines for the production of viral vaccines. Vaccine 2014;32(24):2767-9
  • Pettman GR, Mannix CJ. Efficient serial propagation of WI38 cells on porous microcarriers (Cultispher GL). In: Animal cell technology. Butterworth-Heinemann; MacDonald; 1992. p. 508-10
  • Aycardi E. Producing human rabies vaccines at low cost. Gen Eng News 2002;22:52
  • Thomassen YE, Rubingh O, Wijffels RH, et al. Improved poliovirus D-antigen yields by application of different Vero cell cultivation methods. Vaccine 2014;32(24):2782-8
  • Kistner O, Howard MK, Spruth M, et al. Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine 2007;25(32):6028-36
  • Baxter Healthcare SA. Method for large scale production of virus antigen. CA2469644; 2013
  • Baxter Healthcare S.A. Method for large scale production of virus antigen. EP 2330189 B1; 2014
  • Pohlscheidt M, Langer U, Minuth T, et al. Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium. Vaccine 2008;26(12):1552-65
  • Frazzati-Gallina NM, Paoli RL, Mourao-Fuches RM, et al. Higher production of rabies virus in serum-free medium cell cultures on microcarriers. J Biotechnol 2001;92(1):67-72
  • Warnock J, Al-Rubeai M. Production of biologics from animal cell cultures. In: Nedović V, Willaert R, editors. Applications of cell immobilisation biotechnology. Springer; Netherlands: 2005. p. 423-38
  • Sun L, Xiong Z, Zhou W, et al. Novel konjac glucomannan microcarriers for anchorage-dependent animal cell culture. Biochem Eng J 2015;96:46-54
  • TideCell, High-Density Cell Culture System. CESCO BioProducts web page. Available from: http://www.cescobio.com.tw/products_list.php?CNo=19&Sub=13 [Last accessed July 2015]
  • Eppendorf. Single-Use Scalability. Available from: http://newbrunswick.eppendorf.com/fileadmin/nbs/data/pdf/AA257_Single-Use-Scalability.pdf [Last accessed November 2012]
  • Pall. iCELLis Bioreactor. Available from: http://www.pall.com/pdfs/Biopharmaceuticals/14-6073_USD2941(1)_iCELLis_SS.pdf [Last accessed May 2015]
  • Preissmann A, Wiesmann R, Buchholz R, et al. Investigations on oxygen limitations of adherent cells growing on macroporous microcarriers. Cytotechnology 1997;24(2):121-34
  • Moncaubeig F. Simpler and more efficient viral vaccine manufacturing. BioProc Int 2013
  • Rajendran R, Lingala R, Vuppu SK, et al. Assessment of packed bed bioreactor systems in the production of viral vaccines. AMB Express 2014;4:25
  • Hassanzadeh SM, Zavareh A, Shokrgozar MA, et al. High vero cell density and rabies virus proliferation on fibracel disks versus cytodex-1 in spinner flask. Pakistan journal of biological sciences: PJBS 2011;14(7):441-8
  • Sun B, Yu X, Kong W, et al. Production of influenza H1N1 vaccine from MDCK cells using a novel disposable packed-bed bioreactor. Appl Microbiol Biotechnol 2013;97(3):1063-70
  • Drugmand JC, Esteban G, Alaoui N, et al. On-line Monitoring: Animal Cell Cultivation in iCELLis™ Fixed-Bed Reactor Using Dielectric Measurements. In: ESACT Proceedings 5. Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT). Dublin, Ireland, 2009
  • Silva A, Roldão A, Teixeira A, et al. Cell immobilization for the production of viral vaccines. In: Al-Rubeai M, editor. Animal cell culture. Volume 9 Springer International Publishing, Cham, Switzerland; 2015. p. 541-63
  • Sanofi Pasteur initiates phase II trial of cell culture-based seasonal influenza vaccine. 2007. Available from: www.sanofipasteur.com/en/Documents/PDF/PR/20071107-Sanofi-Pasteur-initiates-phase-II-trial-of-cell-culture-based-seasonal-influenza-vaccine.pdf
  • Warnock JN, Al-Rubeai M. Bioreactor systems for the production of biopharmaceuticals from animal cells. Biotechnol Appl Biochem 2006;45(1):1-12
  • Frey S, Vesikari T, Szymczakiewicz-Multanowska A, et al. Clinical Efficacy of Cell Culture—Derived and Egg-Derived Inactivated Subunit Influenza Vaccines in Healthy Adults. Clin Infect Dis 2010;51(9):997-1004
  • Agathos SN. Insect cell bioreactors. Cytotechnology 1996;20(1-3):173-89
  • Roldão A, Cox M, Alves P, et al. Industrial large scale of suspension culture of insect cells. In: Industrial scale suspension culture of living cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany; 2014. p. 348-89
  • Buckland B, Boulanger R, Fino M, et al. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine 2014;32(42):5496-502
  • Chan LC, Young PR, Bletchly C, Reid S. Production of the baculovirus-expressed dengue virus glycoprotein NS1 can be improved dramatically with optimised regimes for fed-batch cultures and the addition of the insect moulting hormone, 20-Hydroxyecdysone. J Virol Methods 2002;105(1):87-98
  • Meghrous J, Mahmoud W, Jacob D, et al. Development of a simple and high-yielding fed-batch process for the production of influenza vaccines. Vaccine 2009;28(2):309-16
  • Sarkar A. Cells in artificial environment. In: Animal stem cells. Discovery publishing house, New Delhi; 2009. p. 127-8
  • Langer ES. Trends in Perfusion Bioreactors: The Next Revolution in Bioprocessing? BioProcess International 2011;9(10):18-22
  • Johnson J. Progression of the continuous biomanufacturing Platform for the Production of Biologics. Massachusetts Biologics Council Conference, 2013
  • Mercier SM, Diepenbroek B, Martens D, et al. Characterization of apoptosis in PER.C6® batch and perfusion cultures. Biotechnol Bioeng 2015;112(3):569-78
  • Seth G, Hamilton RW, Stapp TR, et al. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Biotechnol Bioeng 2013;110(5):1376-85
  • Wright B, Bruninghaus M, Vrabel M, et al. A novel seed-train process: using high-density cell banking, a disposable bioreactor, and perfusion technologies. BioProcess International 2015;13
  • Shevitz J, Bonham-Carter J. A brief history of perfusion biomanufacturing. In: Bonham-Carter J, editor, Continuous bioprocessing - current practice & future potential. Refine Technology, New Jersey, USA; 2013. p. 9-20
  • Production of poliovirus at high titers for vaccine production Crucell Holland B.V. Patent US8546123 B2;2013
  • Genzel Y, Vogel T, Buck J, et al. High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells. Vaccine 2014;32(24):2770-81
  • Genzel Y, Rodig J, Rapp E, Reichl U. Vaccine production: upstream processing with adherent or suspension cell lines. Methods Mol Biol 2014;1104:371-93
  • Warikoo V, Godawat R, Brower K, et al. Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 2012;109(12):3018-29
  • Croughan MS, Konstantinov KB, Cooney C. The future of industrial bioprocessing: Batch or continuous? Biotechnol Bioeng 2015;112(4):648-51
  • Advancing Regulatory Science at FDA: A Strategic Plan. U.S. Food and Drug Administration. 2011. Available from: http://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/ucm267719.htm [Last accessed 2015]
  • Kadouri A, Spier RE. Some myths and messages concerning the batch and continuous culture of animal cells. Cytotechnology 1997;24(2):89-98
  • Frensing T, Heldt FS, Pflugmacher A, et al. Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles. PLoS One 2013;8(9):e72288
  • Pijlman GP, de Vrij J, van den End FJ, et al. Evaluation of baculovirus expression vectors with enhanced stability in continuous cascaded insect-cell bioreactors. Biotechnol Bioeng 2004;87(6):743-53
  • Ozturk SS. Comparison of product quality: disposable and stainless steel bioreactor cell growth. BioProduction 2006
  • Patrone M, Carinhas N, Sousa MQ, et al. Enhanced expression of full-length human cytomegalovirus fusion protein in non-swelling baculovirus-infected cells with a minimal fed-batch strategy. PLoS One 2014;9(3):e90753
  • Imseng N, Steiger N, Frasson D, et al. Single-use wave-mixed versus stirred bioreactors for insect-cell/BEVS-based protein expression at benchtop scale. Eng Life Sci 2014;14(3):264-71
  • Madeline B, Ribaud S, Xenopoulus A, et al. Culturing a Duck ES-derived cell line in single-use bioreactors. BioProcess International 2015;13:3
  • Hunt D. Plastic packaging systems and their materials of construction. United States Pharmacopoeia; Rockville, MD: 2013
  • Drugmand J, Dubois S, Dohogne Y, et al. Viral vaccine production at manufacturing scale using the iCELLis disposable fixed-bed reactor. Veterinary Vaccines; Duesseldorf: 2009
  • Farid SS, Washbrook J, Titchener-Hooker NJ. Decision-support tool for assessing biomanufacturing strategies under uncertainty: stainless steel versus disposable equipment for clinical trial material preparation. Biotechnol Prog 2005;21(2):486-97
  • Robinson JM. An Alternative to the Scale-up and Distribution of Pandemic Influenza Vaccine. BioPharm International 2009;22:12-20
  • Loeillot O. New production methods and convertible systems to increase epidemic or pandemic surge capacity. Second WHO consultation on global action plan for Influenza vaccines; Geneva, Switzerland: 2011
  • Eibl R, Kaiser S, Lombriser R, Eibl D. Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 2010;86(1):41-9
  • GE Healthcare Life Sciences. Bioreactors for cell culture. Available from: http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog/en/GELifeSciences-us/products/AlternativeProductStructure_24446/ [Last accessed January 2015]
  • Sartorius. Single use Bioreactors. Available from: http://www.sartorius.com/en/products/bioprocess/bioreactors-fermentors/single-use-bioreactors/ [Last accessed January 2015]
  • Thermo Scientific. Single-use Bioreactors. Available from: http://www.thermoscientific.com/content/tfs/en/products/singleuse-bioreactors.html [Last accessed January 2015]
  • Applikon-Biotechnology. Single-Use Bioreactors for Measurement and Control. Available from: https://www.applikon-biotechnology.us/products/single-use-systems [Last accessed January 2015]
  • Hahn TJ, Webb B, Kutney J, et al. Rapid manufacture and release of a GMP batch of zaire ebolavirus glycoprotein vaccine made using recombinant baculovirus-Sf9 insect cell culture technology. BioProcessing Journal 2015;14(1):6-14
  • Kaddar M. Global vaccine market features and trends. Available from: http://www.who.int/influenza_vaccines_plan/resources/session_10_kaddar.pdf [Last accessed July 2015]. Workshop on Business Modeling for Sustainable Influenza Vaccine Manufacturing, Washington DC; 2013