4,075
Views
95
CrossRef citations to date
0
Altmetric
SPECIAL FOCUS: RNA Vaccines - Review

Self-replicating alphavirus RNA vaccines

&

References

  • Liu MA. Immunologic basis of vaccine vectors. Immunity 2010;33(4)):504-15
  • Liu MA. Gene-based vaccines: Recent developments. Curr Opin Mol Ther 2010;12(1):86-93
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev 2011;239(1):62-84
  • Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247(4949 Pt 1):1465-8
  • Fynan EF, Webster RG, Fuller DH, et al. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 1993;90(24):11478-82
  • Tang DC, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992;356(6365):152-4
  • Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;259(5102):1745-9
  • Wang B, Ugen KE, Srikantan V, et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1993;90(9):4156-60
  • Kallen KJ, Thess A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines 2014;2(1):10-31
  • Villarreal DO, Talbott KT, Choo DK, et al. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013;12(5):537-54
  • Coban C, Kobiyama K, Jounai N, et al. DNA vaccines: a simple DNA sensing matter? Hum Vaccin Immunother 2013;9(10):2216-21
  • Dupuy LC, Schmaljohn CS. DNA vaccines for biodefense. Expert Rev Vaccines 2009;8(12):1739-54
  • Ulmer JB, Wahren B, Liu MA. DNA vaccines for HIV/AIDS. Current opinion in HIV and AIDS 2006;1(4):309-13
  • Liu MA, Ulmer JB. Human clinical trials of plasmid DNA vaccines. Adv Genet 2005;55:25-40
  • Liu MA, Ulmer JB. Gene-based vaccines. Mol Ther 2000;1(6):497-500
  • Ulmer JB, Sadoff JC, Liu MA. DNA vaccines. Curr Opin Immunol 1996;8(4):531-6
  • Ulmer JB, Donnelly JJ, Liu MA. Toward the development of DNA vaccines. Curr Opin Biotechnol 1996;7(6):653-8
  • Davis BS, Chang GJ, Cropp B, et al. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 2001;75(9):4040-7
  • Garver KA, LaPatra SE, Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis Aquat Organ 2005;64(1):13-22
  • Grosenbaugh DA, Leard AT, Bergman PJ, et al. Safety and efficacy of a xenogeneic DNA vaccine encoding for human tyrosinase as adjunctive treatment for oral malignant melanoma in dogs following surgical excision of the primary tumor. Am J Vet Res 2011;72(12):1631-8
  • Kurath G, Garver KA, Corbeil S, et al. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout. Vaccine 2006;24(3):345-54
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011;3(3):421-9
  • Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine 2012;30(30):4414-18
  • Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993;23(7):1719-22
  • Carralot JP, Probst J, Hoerr I, et al. Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 2004;61(18):2418-24
  • Conry RM, LoBuglio AF, Wright M, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 1995;55(7):1397-400
  • Gilboa E, Vieweg J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 2004;199:251-63
  • Granstein RD, Ding W, Ozawa H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol 2000;114(4):632-6
  • Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000;30(1):1-7
  • Johanning FW, Conry RM, LoBuglio AF, et al. A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res 1995;23(9):1495-501
  • Kreiter S, Diken M, Selmi A, et al. Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 2011;23(3):399-406
  • Kreiter S, Selmi A, Diken M, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010;70(22):9031-40
  • Qiu P, Ziegelhoffer P, Sun J, Yang NS. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther 1996;3(3):262-8
  • Roesler E, Weiss R, Weinberger EE, et al. Immunize and disappear-safety-optimized mRNA vaccination with a panel of 29 allergens. J Allergy Clin Immunol 2009;124(5):1070-7. e1071-1011
  • Weiss R, Scheiblhofer S, Roesler E, et al. mRNA vaccination as a safe approach for specific protection from type I allergy. Expert Rev Vaccines 2012;11(1):55-67
  • Zhou WZ, Hoon DS, Huang SK, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 1999;10(16):2719-24
  • Deering RP, Kommareddy S, Ulmer JB, et al. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv 2014;11(6):885-99
  • Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol 2013;25(2):152-9
  • Pascolo S. Messenger RNA-based vaccines. Expert Opin Biol Ther 2004;4(8):1285-94
  • Pascolo S. Vaccination with messenger RNA. Methods Mol Med 2006;127:23-40
  • Kallen KJ, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive((R)) vaccines. Hum Vaccines Immunother 2013;9(10):2263-76
  • Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol 2012;9(11):1319-30
  • Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol 2012;30(12):1210-16
  • Fotin-Mleczek M, Zanzinger K, Heidenreich R, et al. Highly potent mRNA based cancer vaccines represent an attractive platform for combination therapies supporting an improved therapeutic effect. J Gene Med 2012;14(6):428-39
  • Fotin-Mleczek M, Duchardt KM, Lorenz C, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 2011;34(1):1-15
  • Liljeström P, Lusa S, Huylebroeck D, Garoff H. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J Virol 1991;65(8):4107-13
  • Rice CM, Levis R, Strauss JH, Huang HV. Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol 1987;61(12):3809-19
  • Davis NL, Willis LV, Smith JF, Johnston RE. In vitro synthesis of infectious Venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 1989;171(1):189-204
  • Skoging U, Vihinen M, Nilsson L, Liljeström P. Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid. Structure 1996;4(5):519-29
  • Skoging-Nyberg U, Liljeström P. A conserved leucine in the cytoplasmic domain of the Semliki Forest virus spike protein is important for budding. Arch Virol 2000;145(6):1225-30
  • Zhao H, Lindqvist B, Garoff H, et al. A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. EMBO J 1994;13(18):4204-11
  • Bredenbeek PJ, Frolov I, Rice CM, Schlesinger S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 1993;67(11):6439-46
  • Frolova E, Frolov I, Schlesinger S. Packaging signals in alphaviruses. J Virol 1997;71(1):248-58
  • Kääriäinen L, Takkinen K, Keränen S, Söderlund H. Replication of the genome of alphaviruses. J Cell Sci Supplement 1987;7:231-50
  • Levis R, Huang H, Schlesinger S. Engineered defective interfering RNAs of Sindbis virus express bacterial chloramphenicol acetyltransferase in avian cells. Proc Natl Acad Sci USA 1987;84(14):4811-15
  • Levis R, Weiss BG, Tsiang M, et al. Deletion mapping of Sindbis virus DI RNAs derived from cDNAs defines the sequences essential for replication and packaging. Cell 1986;44(1):137-45
  • Thomson M, Dimmock NJ. Common sequence elements in structurally unrelated genomes of defective interfering Semliki Forest virus. Virology 1994;199(2):354-65
  • Tsiang M, Monroe SS, Schlesinger S. Studies of defective interfering RNAs of Sindbis virus with and without tRNAAsp sequences at their 5’ termini. J Virol 1985;54(1):38-44
  • Weiss B, Nitschko H, Ghattas I, et al. Evidence for specificity in the encapsidation of Sindbis virus RNAs. J Virol 1989;63(12):5310-18
  • Xiong C, Levis R, Shen P, et al. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 1989;243(4895):1188-91
  • Liljeström P, Garoff H. A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Nat Biotechnol 1991;9(12):1356-61
  • Pushko P, Parker M, Ludwig GV, et al. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 1997;239(2):389-401
  • Berglund P, Sjöberg M, Garoff H, et al. Semliki Forest virus expression system: production of conditionally infectious recombinant particles. Nat Biotechnol 1993;11(8):916-20
  • Frolov I, Frolova E, Schlesinger S. Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA. J Virol 1997;71(4):2819-29
  • Smerdou C, Liljeström P. Non-viral amplification systems for gene transfer: vectors based on alphaviruses. Curr Opin Mol Ther 1999;1(2):244-51
  • Smerdou C, Liljeström P. Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 1999;73(2):1092-8
  • Polo JM, Belli BA, Driver DA, et al. Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus-derived vectors. Proc Natl Acad Sci USA 1999;96(8):4598-603
  • Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 2012;109(36):14604-9
  • Zhou X, Berglund P, Rhodes G, et al. Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine 1994;12(16):1510-14
  • Cu Y, Broderick KE, Banrjee K, et al. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation is situ. Vaccines 2013;1:367-83
  • Johansson DX, Ljungberg K, Kakoulidou M, Liljeström P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One 2012;7(1):e29732
  • Knudsen ML, Ljungberg K, Liljeström P, Johansson DX. Intradermal electroporation of RNA. Methods Mol Biol 2014;1121:147-54
  • Berglund P, Smerdou C, Fleeton MN, et al. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol 1998;16(6):562-5
  • Dubensky TWJr, Driver DA, Polo JM, et al. Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J Virol 1996;70(1):508-19
  • Ljungberg K, Whitmore AC, Fluet ME, et al. Increased immunogenicity of a DNA-launched Venezuelan equine encephalitis virus-based replicon DNA vaccine. J Virol 2007;81(24):13412-23
  • Hariharan MJ, Driver DA, Townsend K, et al. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol 1998;72(2):950-8
  • Hallengärd D, Lum F-M, Kuümmerer BM, et al. Prime-boost immunization strategies against Chikungunya virus. J Virol 2014;88:10.1128/JVI.01926-14
  • Knudsen ML, Mbewe-Mvula A, Rosario M, et al. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine. J Virol 2012;86(8):4082-90
  • Hekele A, Bertholet S, Archer J, et al. Rapidly produced SAM vaccine against H7N9 influenza is immunogenic in mice. Emerg Microbes Infect 2013;2:e52
  • Heeney JL, Koopman G, Rosenwirth B, et al. A vaccine strategy utilizing a combination of three different chimeric vectors which share specific vaccine antigens. J Med Primatol 2000;29(3-4):268-73
  • Koopman G, Mortier D, Hofman S, et al. Vaccine protection from CD4+ T-cell loss caused by simian immunodeficiency virus (SIV) mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens. J Gen Virol 2004;85(Pt 10):2915-24
  • Michelini Z, Negri DR, Baroncelli S, et al. T-cell-mediated protective efficacy of a systemic vaccine approach in cynomolgus monkeys after SIV mucosal challenge. J Med Primatol 2004;33(5-6):251-61
  • Rosenwirth B, Bogers WM, Nieuwenhuis IG, et al. An anti-HIV strategy combining chemotherapy and therapeutic vaccination. J Med Primatol 1999;28(4-5):195-205
  • Stittelaar KJ, Gruters RA, Schutten M, et al. Comparison of the efficacy of early versus late viral proteins in vaccination against SIV. Vaccine 2002;20(23-24):2921-7
  • Barnett SW, Burke B, Sun Y, et al. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant. J Virol 2010;84(12):5975-85
  • Xu R, Srivastava IK, Greer CE, et al. Characterization of immune responses elicited in macaques immunized sequentially with chimeric VEE/SIN alphavirus replicon particles expressing SIVGag and/or HIVEnv and with recombinant HIVgp140Env protein. AIDS Res Hum Retroviruses 2006;22(10):1022-30
  • Gomez CE, Najera JL, Jimenez V, et al. Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine 2007;25(11):1969-92
  • Hanke T, Barnfield C, Wee EG, et al. Construction and immunogenicity in a prime-boost regimen of a Semliki Forest virus-vectored experimental HIV clade A vaccine. J Gen Virol 2003;84(Pt 2):361-8
  • Rosario M, Bridgeman A, Quakkelaar ED, et al. Long peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaques. Eur J Immunol 2010;40(7):1973-84
  • Rollier C, Verschoor EJ, Paranhos-Baccala G, et al. Modulation of vaccine-induced immune responses to hepatitis C virus in rhesus macaques by altering priming before adenovirus boosting. J Infect Dis 2005;192(5):920-9
  • Lin Y, Kwon T, Polo J, et al. Induction of broad CD4+ and CD8+ T-cell responses and cross-neutralizing antibodies against hepatitis C virus by vaccination with Th1-adjuvanted polypeptides followed by defective alphaviral particles expressing envelope glycoproteins gpE1 and gpE2 and nonstructural proteins 3, 4, and 5. J Virol 2008;82(15):7492-503
  • Näslund TI, Uyttenhove C, Nordström EK, et al. Comparative prime-boost vaccinations using Semliki Forest virus, adenovirus, and ALVAC vectors demonstrate differences in the generation of a protective central memory CTL response against the P815 tumor. J Immunol 2007;178(11):6761-9
  • Osada T, Morse MA, Hobeika A, Lyerly HK. Novel recombinant alphaviral and adenoviral vectors for cancer immunotherapy. Semin Oncol 2012;39(3):305-10
  • Walczak M, de Mare A, Riezebos-Brilman A, et al. Heterologous prime-boost immunizations with a virosomal and an alphavirus replicon vaccine. Mol Pharm 2011;8(1):65-77
  • Sun Y, Li N, Li HY, et al. Enhanced immunity against classical swine fever in pigs induced by prime-boost immunization using an alphavirus replicon-vectored DNA vaccine and a recombinant adenovirus. Vet Immunol Immunopathol 2010;137(1-2):20-7
  • Zhao HP, Sun JF, Li N, et al. Prime-boost immunization using alphavirus replicon and adenovirus vectored vaccines induces enhanced immune responses against classical swine fever virus in mice. Vet Immunol Immunopathol 2009;131(3-4):158-66
  • Bhardwaj N, Heise MT, Ross TM. Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing gn protects mice against Rift Valley fever virus. PLoS Negl Trop Dis 2010;4(6):e725
  • Jiang G, Shi M, Conteh S, et al. Sterile protection against Plasmodium knowlesi in rhesus monkeys from a malaria vaccine: comparison of heterologous prime boost strategies. PLoS One 2009;4(8):e6559
  • Penttilä T, Tammiruusu A, Liljeström P, et al. DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine 2004;22(25-26):3386-94
  • Palmowski MJ, Choi EM, Hermans IF, et al. Competition between CTL narrows the immune response induced by prime-boost vaccination protocols. J Immunol 2002;168(9):4391-8
  • Barefoot B, Thornburg NJ, Barouch DH, et al. Comparison of multiple vaccine vectors in a single heterologous prime-boost trial. Vaccine 2008;26(48):6108-18
  • Sanchez-Puig JM, Lorenzo MM, Blasco R. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles. PLoS One 2013;8(10):e75574
  • Sun Y, Li HY, Tian DY, et al. A novel alphavirus replicon-vectored vaccine delivered by adenovirus induces sterile immunity against classical swine fever. Vaccine 2011;29(46):8364-72
  • Sun Y, Tian DY, Li S, et al. Comprehensive evaluation of the adenovirus/alphavirus-replicon chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever. Vaccine 2013;31(3):538-44
  • Edelman R, Tacket CO, Wasserman SS, et al. Phase II safety and immunogenicity study of live chikungunya virus vaccine TSI-GSD-218. Am J Trop Med Hyg 2000;62(6):681-5
  • McClain DJ, Pittman PR, Ramsburg HH, et al. Immunologic interference from sequential administration of live attenuated alphavirus vaccines. J Infect Dis 1998;177(3):634-41
  • Pittman PR, Makuch RS, Mangiafico JA, et al. Long-term duration of detectable neutralizing antibodies after administration of live-attenuated VEE vaccine and following booster vaccination with inactivated VEE vaccine. Vaccine 1996;14(4):337-43
  • Kinney RM, Chang GJ, Tsuchiya KR, et al. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5’-noncoding region and the E2 envelope glycoprotein. J Virol 1993;67(3):1269-77
  • Burke DS, Ramsburg HH, Edelman R. Persistence in humans of antibody to subtypes of Venezuelan equine encephalomyelitis (VEE) virus after immunization with attenuated (TC-83) VEE virus vaccine. J Infect Dis 1977;136(3):354-9
  • Harrison VR, Eckels KH, Bartelloni PJ, Hampton C. Production and evaluation of a formalin-killed Chikungunya vaccine. J Immunol 1971;107(3):643-7
  • DeMeio JL, DeSanctis AN, Thomas WJ. Persistence in humans of antibody after immunization with four alphavirus vaccines. Asian J Infect Dis 1979;3(3):119-24
  • Levitt NH, Ramsburg HH, Hasty SE, et al. Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 1986;4(3):157-62
  • Hoke CHJr, Pace-Templeton J, Pittman P, et al. US Military contributions to the global response to pandemic chikungunya. Vaccine 2012;30(47):6713-20
  • Gorchakov R, Wang E, Leal G, et al. Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol 2012;86(11):6084-96
  • Roy CJ, Adams AP, Wang E, et al. Chikungunya Vaccine Candidate Is Highly Attenuated and Protects Nonhuman Primates Against Telemetrically Monitored Disease Following a Single Dose. J Infect Dis 2014;209:1891-9
  • Reisler RB, Gibbs PH, Danner DK, Boudreau EF. Immune interference in the setting of same-day administration of two similar inactivated alphavirus vaccines: eastern equine and western equine encephalitis. Vaccine 2012;30(50):7271-7
  • Berglund P, Fleeton MN, Smerdou C, Liljeström P. Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine 1999;17(5):497-507
  • Uematsu Y, Vajdy M, Lian Y, et al. Lack of interference with immunogenicity of a chimeric alphavirus replicon particle-based influenza vaccine by preexisting antivector immunity. Clin Vaccine Immunol 2012;19(7):991-8
  • Wecker M, Gilbert P, Russell N, et al. Phase I safety and immunogenicity evaluations of an alphavirus replicon HIV-1 subtype C gag vaccine in healthy HIV-1-uninfected adults. Clin Vaccine Immunol 2012;19(10):1651-60
  • Alphavax. Available from: www.alphavax.com/Clicnical-Experience.html#influenza-clinical
  • Bernstein DI, Reap EA, Katen K, et al. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 2009;28(2):484-93
  • Hallengärd D, Kakoulidou M, Lulla A, et al. Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J Virol 2014;88(5):2858-66
  • Slovin SF, Kehoe M, Durso R, et al. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 2013;31(6):943-9
  • Morse MA, Hobeika AC, Osada T, et al. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J Clin Invest 2010;120(9):3234-41
  • Chen M, Hu KF, Rozell B, et al. Vaccination with recombinant alphavirus or immune-stimulating complex antigen against respiratory syncytial virus. J Immunol 2002;169(6):3208-16
  • Caley IJ, Betts MR, Irlbeck DM, et al. Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 1997;71(4):3031-8
  • Harrington PR, Yount B, Johnston RE, et al. Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J Virol 2002;76(2):730-42
  • Hart MK, Caswell-Stephan K, Bakken R, et al. Improved mucosal protection against Venezuelan equine encephalitis virus is induced by the molecularly defined, live-attenuated V3526 vaccine candidate. Vaccine 2000;18(26):3067-75
  • Khalil SM, Tonkin DR, Snead AT, et al. An Alphavirus-based Adjuvant Enhances Serum and Mucosal Antibodies, T cells and Protective Immunity to Influenza Virus in Neonatal Mice. J Virol 2014;88(16):9182-96
  • Mok H, Lee S, Utley TJ, et al. Venezuelan equine encephalitis virus replicon particles encoding respiratory syncytial virus surface glycoproteins induce protective mucosal responses in mice and cotton rats. J Virol 2007;81(24):13710-22
  • Thompson JM, Nicholson MG, Whitmore AC, et al. Nonmucosal alphavirus vaccination stimulates a mucosal inductive environment in the peripheral draining lymph node. J Immunol 2008;181(1):574-85
  • Tonkin DR, Jorquera P, Todd T, et al. Alphavirus replicon-based enhancement of mucosal and systemic immunity is linked to the innate response generated by primary immunization. Vaccine 2010;28(18):3238-46
  • Knudsen ML, Ljungberg K, Kakoulidou M, et al. Kinetic and phenotypic analysis of CD8+ T cell responses after priming with alphavirus replicons and homologous or heterologous booster immunizations. J Virol 2014;10.1128/JVI.02223-14. [Epub ahead of print]
  • Hidmark AS, McInerney GM, Nordström EK, et al. Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. J Virol 2005;79(16):10376-85
  • Hidmark AS, Nordström EK, Dosenovic P, et al. Humoral responses against coimmunized protein antigen but not against alphavirus-encoded antigens require alpha/beta interferon signaling. J Virol 2006;80(14):7100-10
  • Konopka JL, Penalva LO, Thompson JM, et al. A two-phase innate host response to alphavirus infection identified by mRNP-tagging in vivo. PLoS Pathog 2007;3(12):e199
  • Konopka JL, Thompson JM, Whitmore AC, et al. Acute infection with Venezuelan equine encephalitis virus replicon particles catalyzes a systemic antiviral state and protects from lethal virus challenge. J Virol 2009;83(23):12432-42
  • Pollard C, Rejman J, De Haes W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 2013;21(1):251-9
  • Mattijssen S, Pruijn GJ. Viperin, a key player in the antiviral response. Microbes Infect Institut Pasteur 2012;14(5):419-26
  • Teng TS, Foo SS, Simamarta D, et al. Viperin restricts chikungunya virus replication and pathology. J Clin Invest 2012;122(12):4447-60
  • Saitoh T, Satoh T, Yamamoto N, et al. Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity 2011;34(3):352-63
  • Knudsen ML, Johansson DX, Kostic L, et al. The adjuvant activity of alphavirus replicons is enhanced by incorporating the microbial molecule flagellin into the replicon. PLoS One 2013;8(6):e65964
  • Näslund TI, Kostic L, Nordström EK, et al. Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines. Virol J 2011;8:36
  • Leitner WW, Hwang LN, deVeer MJ, et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 2003;9(1):33-9
  • Caskey M, Lefebvre F, Filali-Mouhim A, et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J Exp Med 2011;208(12):2357-66
  • Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 2012;86(6):2900-10
  • Kasturi SP, Skountzou I, Albrecht RA, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011;470(7335):543-7
  • Scheel B, Braedel S, Probst J, et al. Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 2004;34(2):537-47
  • Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004;279(13):12542-50
  • Wang Y, Swiecki M, McCartney SA, Colonna M. dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunol Rev 2011;243(1):74-90
  • Pichlmair A, Reis e Sousa C. Innate recognition of viruses. Immunity 2007;27(3):370-83
  • Schulz O, Diebold SS, Chen M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 2005;433(7028):887-92
  • Diebold S. Innate recognition of viruses. Immunol Lett 2010;128(1):17-20
  • Diebold SS, Schulz O, Alexopoulou L, et al. Role of TLR3 in the immunogenicity of replicon plasmid-based vaccines. Gene Ther 2009;16(3):359-66
  • Rigby RE, Webb LM, Mackenzie KJ, et al. RNA:DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J 2014;33(6):542-58
  • Leitner WW, Hammerl P, Thalhamer J. Nucleic acid for the treatment of cancer: genetic vaccines and DNA adjuvants. Curr Pharm Des 2001;7(16):1641-67
  • Pichlmair A, Schulz O, Tan CP, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science 2006;314(5801):997-1001
  • Rehwinkel J. Exposing viruses: RNA patterns sensed by RIG-I-like receptors. J Clin Immunol 2010;30(4):491-5
  • Hoffmann J, Akira S. Innate immunity. Curr Opin Immunol 2013;25(1):1-3
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805-20
  • Carroll TD, Matzinger SR, Barro M, et al. Alphavirus replicon-based adjuvants enhance the immunogenicity and effectiveness of Fluzone (R) in rhesus macaques. Vaccine 2011;29(5):931-40
  • LoBue AD, Thompson JM, Lindesmith L, et al. Alphavirus-adjuvanted norovirus-like particle vaccines: heterologous, humoral, and mucosal immune responses protect against murine norovirus challenge. J Virol 2009;83(7):3212-27
  • Steil BP, Jorquera P, Westdijk J, et al. A mucosal adjuvant for the inactivated poliovirus vaccine. Vaccine 2014;32(5):558-63
  • Thompson JM, Whitmore AC, Staats HF, Johnston RE. Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen. Vaccine 2008;26(33):4267-75
  • Tonkin DR, Whitmore A, Johnston RE, Barro M. Infected dendritic cells are sufficient to mediate the adjuvant activity generated by Venezuelan equine encephalitis virus replicon particles. Vaccine 2012;30(30):4532-42
  • Donati C, Rappuoli R. Reverse vaccinology in the 21st century: improvements over the original design. Ann N Y Acad Sci 2013;1285:115-32
  • Correia BE, Bates JT, Loomis RJ, et al. Proof of principle for epitope-focused vaccine design. Nature 2014;507(7491):201-6
  • Dormitzer PR, Grandi G, Rappuoli R. Structural vaccinology starts to deliver. Nat Rev Microbiol 2012;10(12):807-13
  • Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 2012;337(6091):183-6
  • Li S, Nakaya HI, Kazmin DA, et al. Systems biological approaches to measure and understand vaccine immunity in humans. Semin Immunol 2013;25(3):209-18
  • Li S, Rouphael N, Duraisingham S, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol 2014;15(2):195-204
  • Koff WC, Burton DR, Johnson PR, et al. Accelerating next-generation vaccine development for global disease prevention. Science 2013;340(6136):1232910
  • Koff WC, Gust ID, Plotkin SA. Toward a human vaccines project. Nat Immunol 2014;15(7):589-92
  • Reddy JR, Kwang J, Varthakavi V, et al. Semiliki forest virus vector carrying the bovine viral diarrhea virus NS3 (p80) cDNA induced immune responses in mice and expressed BVDV protein in mammalian cells. Comp Immunol Microbiol Infect Dis 1999;22(4):231-46
  • Li N, Yu YZ, Yu WY, Sun ZW. Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol 2011;33(1):211-19
  • Ying H, Zaks TZ, Wang RF, et al. Cancer therapy using a self-replicating RNA vaccine. Nat Med 1999;5(7):823-7
  • Vidalin O, Fournillier A, Renard N, et al. Use of conventional or replicating nucleic acid-based vaccines and recombinant Semliki forest virus-derived particles for the induction of immune responses against hepatitis C virus core and E2 antigens. Virology 2000;276(2):259-70
  • Brand D, Lemiale F, Turbica I, et al. Comparative analysis of humoral immune responses to HIV type 1 envelope glycoproteins in mice immunized with a DNA vaccine, recombinant Semliki Forest virus RNA, or recombinant Semliki Forest virus particles. AIDS Res Hum Retroviruses 1998;14(15):1369-77
  • Giraud A, Ataman-Onal Y, Battail N, et al. Generation of monoclonal antibodies to native human immunodeficiency virus type 1 envelope glycoprotein by immunization of mice with naked RNA. J Virol Methods 1999;79(1):75-84
  • Phenix KV, Wark K, Luke CJ, et al. Recombinant Semliki Forest virus vector exhibits potential for avian virus vaccine development. Vaccine 2001;19(23-24):3116-23
  • Fleeton MN, Chen M, Berglund P, et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis 2001;183(9):1395-8
  • Hsu KF, Hung CF, Cheng WF, et al. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 2001;8(5):376-83
  • Andersson C, Vasconcelos NM, Sievertzon M, et al. Comparative immunization study using RNA and DNA constructs encoding a part of the Plasmodium falciparum antigen Pf332. Scand J Immunol 2001;54(1-2):117-24
  • Andersson C, Liljeström P, Stahl S, Power UF. Protection against respiratory syncytial virus (RSV) elicited in mice by plasmid DNA immunisation encoding a secreted RSV G protein-derived antigen. FEMS Immunol Med Microbiol 2000;29(4):247-53
  • Yamanaka R, Xanthopoulos KG. Induction of antigen-specific immune responses against malignant brain tumors by intramuscular injection of sindbis DNA encoding gp100 and IL-18. DNA Cell Biol 2005;24(5):317-24
  • Lachman LB, Rao XM, Kremer RH, et al. DNA vaccination against neu reduces breast cancer incidence and metastasis in mice. Cancer Gene Ther 2001;8(4):259-68
  • Wang X, Wang JP, Rao XM, et al. Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice. Breast Cancer Res 2005;7(5):R580-8
  • Pasetti MF, Ramirez K, Resendiz-Albor A, et al. Sindbis virus-based measles DNA vaccines protect cotton rats against respiratory measles: relevance of antibodies, mucosal and systemic antibody-secreting cells, memory B cells, and Th1-type cytokines as correlates of immunity. J Virol 2009;83(6):2789-94
  • Pan CH, Nair N, Adams RJ, et al. Dose-dependent protection against or exacerbation of disease by a polylactide glycolide microparticle-adsorbed, alphavirus-based measles virus DNA vaccine in rhesus macaques. Clin Vaccine Immunol 2008;15(4):697-706
  • Leslie MC, Zhao YJ, Lachman LB, et al. Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene Ther 2007;14(4):316-23
  • Kirman JR, Turon T, Su H, et al. Enhanced immunogenicity to Mycobacterium tuberculosis by vaccination with an alphavirus plasmid replicon expressing antigen 85A. Infect Immun 2003;71(1):575-9
  • Saxena S, Dahiya SS, Sonwane AA, et al. A sindbis virus replicon-based DNA vaccine encoding the rabies virus glycoprotein elicits immune responses and complete protection in mice from lethal challenge. Vaccine 2008;26(51):6592-601
  • Garcia-Hernandez Mde L, Gray A, Hubby B, et al. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 2008;68(3):861-9
  • Kamrud KI, Hooper JW, Elgh F, Schmaljohn CS. Comparison of the protective efficacy of naked DNA, DNA-based Sindbis replicon, and packaged Sindbis replicon vectors expressing Hantavirus structural genes in hamsters. Virology 1999;263(1):209-19
  • Cabrera A, Saez D, Cespedes S, et al. Vaccination with recombinant Semliki Forest virus particles expressing translation initiation factor 3 of Brucella abortus induces protective immunity in BALB/c mice. Immunobiology 2009;214(6):467-74
  • Lyons JA, Sheahan BJ, Galbraith SE, et al. Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice. Gene Ther 2007;14(6):503-13
  • Yamanaka R, Tsuchiya N, Yajima N, et al. Induction of an antitumor immunological response by an intratumoral injection of dendritic cells pulsed with genetically engineered Semliki Forest virus to produce interleukin-18 combined with the systemic administration of interleukin-12. J Neurosurg 2003;99(4):746-53
  • Yamanaka R, Zullo SA, Ramsey J, et al. Induction of therapeutic antitumor antiangiogenesis by intratumoral injection of genetically engineered endostatin-producing Semliki Forest virus. Cancer Gene Ther 2001;8(10):796-802
  • Yamanaka R, Zullo SA, Ramsey J, et al. Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12. J Neurosurg 2002;97(3):611-18
  • Zhang J, Asselin-Paturel C, Bex F, et al. Cloning of human IL-12 p40 and p35 DNA into the Semliki Forest virus vector: expression of IL-12 in human tumor cells. Gene Ther 1997;4(4):367-74
  • Brinster C, Chen M, Boucreux D, et al. Hepatitis C virus non-structural protein 3-specific cellular immune responses following single or combined immunization with DNA or recombinant Semliki Forest virus particles. J Gen Virol 2002;83(Pt 2):369-81
  • Ip PP, Boerma A, Regts J, et al. Alphavirus-based vaccines encoding nonstructural proteins of hepatitis C virus induce robust and protective T-cell responses. Mol Ther 2014;22(4):881-90
  • Berglund P, Quesada-Rolander M, Putkonen P, et al. Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses 1997;13(17):1487-95
  • Sundbäck M, Douagi I, Dayaraj C, et al. Efficient expansion of HIV-1-specific T cell responses by homologous immunization with recombinant Semliki Forest virus particles. Virology 2005;341(2):190-202
  • Daemen T, Pries F, Bungener L, et al. Genetic immunization against cervical carcinoma: induction of cytotoxic T lymphocyte activity with a recombinant alphavirus vector expressing human papillomavirus type 16 E6 and E7. Gene Ther 2000;7(21):1859-66
  • Daemen T, Regts J, Holtrop M, Wilschut J. Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene Ther 2002;9(2):85-94
  • Daemen T, Riezebos-Brilman A, Regts J, et al. Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model: effects of the route of immunization. Antivir Ther 2004;9(5):733-42
  • Riezebos-Brilman A, Regts J, Chen M, et al. Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12. Vaccine 2009;27(5):701-7
  • Zhou X, Berglund P, Zhao H, et al. Generation of cytotoxic and humoral immune responses by nonreplicative recombinant Semliki Forest virus. Proc Natl Acad Sci USA 1995;92(7):3009-13
  • Smyth JW, Fleeton MN, Sheahan BJ, Atkins GJ. Treatment of rapidly growing K-BALB and CT26 mouse tumours using Semliki Forest virus and its derived vector. Gene Ther 2005;12(2):147-59
  • Fleeton MN, Liljeström P, Sheahan BJ, Atkins GJ. Recombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine. J Gen Virol 2000;81(Pt 3):749-58
  • Fleeton MN, Sheahan BJ, Gould EA, et al. Recombinant Semliki Forest virus particles encoding the prME or NS1 proteins of louping ill virus protect mice from lethal challenge. J Gen Virol 1999;80(Pt 5):1189-98
  • Morris-Downes MM, Sheahan BJ, Fleeton MN, et al. A recombinant Semliki Forest virus particle vaccine encoding the prME and NS1 proteins of louping ill virus is effective in a sheep challenge model. Vaccine 2001;19(28-29):3877-84
  • Colombage G, Hall R, Pavy M, Lobigs M. DNA-based and alphavirus-vectored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology 1998;250(1):151-63
  • Colmenero P, Chen M, Castanos-Velez E, et al. Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. Int J Cancer 2002;98(4):554-60
  • Colmenero P, Liljeström P, Jondal M. Induction of P815 tumor immunity by recombinant Semliki Forest virus expressing the P1A gene. Gene Ther 1999;6(10):1728-33
  • Chen Q, Pettersson F, Vogt AM, et al. Immunization with PfEMP1-DBL1alpha generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine 2004;22(21-22):2701-12
  • Krasemann S, Jurgens T, Bodemer W. Generation of monoclonal antibodies against prion proteins with an unconventional nucleic acid-based immunization strategy. J Biotechnol 1999;73(2-3):119-29
  • Negri DR, Baroncelli S, Catone S, et al. Protective efficacy of a multicomponent vector vaccine in cynomolgus monkeys after intrarectal simian immunodeficiency virus challenge. J Gen Virol 2004;85(Pt 5):1191-201
  • Nilsson C, Mäkitalo B, Berglund P, et al. Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine 2001;19(25-26):3526-36
  • Mossman SP, Bex F, Berglund P, et al. Protection against lethal simian immunodeficiency virus SIVsmmPBj14 disease by a recombinant Semliki Forest virus gp160 vaccine and by a gp120 subunit vaccine. J Virol 1996;70(3):1953-60
  • Quetglas JI, Dubrot J, Bezunartea J, et al. Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12. Mol Ther 2012;20(9):1664-75
  • Quetglas JI, Fioravanti J, Ardaiz N, et al. A Semliki forest virus vector engineered to express IFNalpha induces efficient elimination of established tumors. Gene Ther 2012;19(3):271-8
  • Thomas JM, Moen ST, Gnade BT, et al. Recombinant Sindbis virus vectors designed to express protective antigen of Bacillus anthracis protect animals from anthrax and display synergy with ciprofloxacin. Clin Vaccine Immunol 2009;16(11):1696-9
  • Gupta S, Janani R, Bin Q, et al. Characterization of human immunodeficiency virus Gag-specific gamma interferon-expressing cells following protective mucosal immunization with alphavirus replicon particles. J Virol 2005;79(11):7135-45
  • Gupta S, Zhou F, Greer CE, et al. Antibody responses against HIV in rhesus macaques following combinations of mucosal and systemic immunizations with chimeric alphavirus-based replicon particles. AIDS Res Hum Retroviruses 2006;22(10):993-7
  • Perri S, Greer CE, Thudium K, et al. An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and sindbis viruses is a potent gene-based vaccine delivery vector. J Virol 2003;77(19):10394-403
  • Cheng WF, Lee CN, Su YN, et al. Sindbis virus replicon particles encoding calreticulin linked to a tumor antigen generate long-term tumor-specific immunity. Cancer Gene Ther 2006;13(9):873-85
  • Cassetti MC, McElhiney SP, Shahabi V, et al. Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 2004;22(3-4):520-7
  • Tsuji M, Bergmann CC, Takita-Sonoda Y, et al. Recombinant Sindbis viruses expressing a cytotoxic T-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice. J Virol 1998;72(8):6907-10
  • Pugachev KV, Mason PW, Shope RE, Frey TK. Double-subgenomic Sindbis virus recombinants expressing immunogenic proteins of Japanese encephalitis virus induce significant protection in mice against lethal JEV infection. Virology 1995;212(2):587-94
  • Pan CH, Greer CE, Hauer D, et al. A chimeric alphavirus replicon particle vaccine expressing the hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques from measles. J Virol 2010;84(8):3798-807
  • Pan CH, Valsamakis A, Colella T, et al. Modulation of disease, T cell responses, and measles virus clearance in monkeys vaccinated with H-encoding alphavirus replicon particles. Proc Natl Acad Sci USA 2005;102(33):11581-8
  • Greer CE, Zhou F, Goodsell A, et al. Long-term protection in hamsters against human parainfluenza virus type 3 following mucosal or combinations of mucosal and systemic immunizations with chimeric alphavirus-based replicon particles. Scand J Immunol 2007;66(6):645-53
  • Greer CE, Zhou F, Legg HS, et al. A chimeric alphavirus RNA replicon gene-based vaccine for human parainfluenza virus type 3 induces protective immunity against intranasal virus challenge. Vaccine 2007;25(3):481-9
  • Heise MT, Whitmore A, Thompson J, et al. An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiol Infect 2009;137(9):1309-18
  • Gipson CL, Davis NL, Johnston RE, de Silva AM. Evaluation of Venezuelan Equine Encephalitis (VEE) replicon-based Outer surface protein A (OspA) vaccines in a tick challenge mouse model of Lyme disease. Vaccine 2003;21(25-26):3875-84
  • Loy JD, Gander J, Mogler M, et al. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV) in cattle. Virol J 2013;10:35
  • Thornburg NJ, Ray CA, Collier ML, et al. Vaccination with Venezuelan equine encephalitis replicons encoding cowpox virus structural proteins protects mice from intranasal cowpox virus challenge. Virology 2007;362(2):441-52
  • Khalil SM, Tonkin DR, Mattocks MD, et al. A tetravalent alphavirus-vector based dengue vaccine provides effective immunity in an early life mouse model. Vaccine 2014;32(32):4068-74
  • White LJ, Parsons MM, Whitmore AC, et al. An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J Virol 2007;81(19):10329-39
  • White LJ, Sariol CA, Mattocks MD, et al. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection. J Virol 2013;87(6):3409-24
  • Zellweger RM, Miller R, Eddy WE, et al. Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLoS Pathog 2013;9(10):e1003723
  • Herbert AS, Kuehne AI, Barth JF, et al. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus. J Virol 2013;87(9):4952-64
  • Pushko P, Bray M, Ludwig GV, et al. Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine 2000;19(1):142-53
  • Wilson JA, Bray M, Bakken R, Hart MK. Vaccine potential of Ebola virus VP24, VP30, VP35, and VP40 proteins. Virology 2001;286(2):384-90
  • Wilson JA, Hart MK. Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J Virol 2001;75(6):2660-4
  • Balasuriya UB, Heidner HW, Davis NL, et al. Alphavirus replicon particles expressing the two major envelope proteins of equine arteritis virus induce high level protection against challenge with virulent virus in vaccinated horses. Vaccine 2002;20(11-12):1609-17
  • Defang GN, Khetawat D, Broder CC, Quinnan GVJr. Induction of neutralizing antibodies to Hendra and Nipah glycoproteins using a Venezuelan equine encephalitis virus in vivo expression system. Vaccine 2010;29(2):212-20
  • Mok H, Tollefson SJ, Podsiad AB, et al. An alphavirus replicon-based human metapneumovirus vaccine is immunogenic and protective in mice and cotton rats. J Virol 2008;82(22):11410-18
  • Velders MP, McElhiney S, Cassetti MC, et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 2001;61(21):7861-7
  • Bosworth B, Erdman MM, Stine DL, et al. Replicon particle vaccine protects swine against influenza. Comp Immunol Microbiol Infect Dis 2010;33(6):e99-e103
  • Hubby B, Talarico T, Maughan M, et al. Development and preclinical evaluation of an alphavirus replicon vaccine for influenza. Vaccine 2007;25(48):8180-9
  • Schultz-Cherry S, Dybing JK, Davis NL, et al. Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens against lethal infection with Hong Kong-origin H5N1 viruses. Virology 2000;278(1):55-9
  • Laust AK, Sur BW, Wang K, et al. VRP immunotherapy targeting neu: treatment efficacy and evidence for immunoediting in a stringent rat mammary tumor model. Breast Cancer Res Treat 2007;106(3):371-82
  • Moran TP, Burgents JE, Long B, et al. Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice. Vaccine 2007;25(36):6604-12
  • Hevey M, Negley D, Pushko P, et al. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 1998;251(1):28-37
  • Hevey M, Negley D, VanderZanden L, et al. Marburg virus vaccines: comparing classical and new approaches. Vaccine 2001;20(3-4):586-93
  • Avogadri F, Merghoub T, Maughan MF, et al. Alphavirus replicon particles expressing TRP-2 provide potent therapeutic effect on melanoma through activation of humoral and cellular immunity. PLoS One 2010;5(9):10.1371/journal.pone.0012670
  • Durso RJ, Andjelic S, Gardner JP, et al. A novel alphavirus vaccine encoding prostate-specific membrane antigen elicits potent cellular and humoral immune responses. Clin Cancer Res 2007;13(13):3999-4008
  • Sheahan T, Whitmore A, Long K, et al. Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J Virol 2011;85(1):217-30
  • Davis NL, Caley IJ, Brown KW, et al. Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol 2000;74(1):371-8
  • Johnston RE, Johnson PR, Connell MJ, et al. Vaccination of macaques with SIV immunogens delivered by Venezuelan equine encephalitis virus replicon particle vectors followed by a mucosal challenge with SIVsmE660. Vaccine 2005;23(42):4969-79
  • Davis NL, West A, Reap E, et al. Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 2002;53(4-5):209-11
  • Lee JS, Dyas BK, Nystrom SS, et al. Immune protection against staphylococcal enterotoxin-induced toxic shock by vaccination with a Venezuelan equine encephalitis virus replicon. J Infect Dis 2002;185(8):1192-6
  • Vander Veen RL, Loynachan AT, Mogler MA, et al. Safety, immunogenicity, and efficacy of an alphavirus replicon-based swine influenza virus hemagglutinin vaccine. Vaccine 2012;30(11):1944-50
  • Hooper JW, Ferro AM, Golden JW, et al. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine 2009;28(2):494-511

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.