1,004
Views
33
CrossRef citations to date
0
Altmetric
SPECIAL FOCUS: RNA Vaccines - Review

RNA-based viral vectors

&

References

  • Emeagi PU, Goyvaerts C, Maenhout S, et al. Lentiviral vectors: a versatile tool to fight cancer. Curr Mol Med 2013;13(4):602-25
  • Schlesinger S, Schlesinger MJ. Togaviridae: the viruses and their replication. In: Fields Virology. Knipe DM, Howley PM, Editors Lippincott Williams & Wilkins, Philadelphia, 2001; p. 895-916
  • Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 1994;58(3):491-562
  • Rayner JO, Dryga SA, Kamrud KI. Alphavirus vectors and vaccination. Rev Med Virol 2002;12(5):279-96
  • Vander Veen RL, Harris DL, Kamrud KI. Alphavirus replicon vaccines. Anim Health Res Rev 2012;13(1):1-9
  • Atasheva S, Wang E, Adams AP, et al. Chimeric alphavirus vaccine candidates protect mice from intranasal challenge with western equine encephalitis virus. Vaccine 2009;27(32):4309-19
  • Paessler S, Fayzulin RZ, Anishchenko M, et al. Recombinant sindbis/Venezuelan equine encephalitis virus is highly attenuated and immunogenic. J Virol 2003;77(17):9278-86
  • Roy CJ, Adams AP, Wang E, et al. A chimeric Sindbis-based vaccine protects cynomolgus macaques against a lethal aerosol challenge of eastern equine encephalitis virus. Vaccine 2013;31(11):1464-70
  • Wang E, Petrakova O, Adams AP, et al. Chimeric Sindbis/eastern equine encephalitis vaccine candidates are highly attenuated and immunogenic in mice. Vaccine 2007;25(43):7573-81
  • Wang E, Volkova E, Adams AP, et al. Chimeric alphavirus vaccine candidates for chikungunya. Vaccine 2008;26(39):5030-9
  • Glasker S, Lulla A, Lulla V, et al. Virus replicon particle based Chikungunya virus neutralization assay using Gaussia luciferase as readout. Virol J 2013;10:235
  • Karlsen M, Villoing S, Rimstad E, Nylund A. Characterization of untranslated regions of the salmonid alphavirus 3 (SAV3) genome and construction of a SAV3 based replicon. Virol J 2009;6:173
  • Moriette C, Leberre M, Lamoureux A, et al. Recovery of a recombinant salmonid alphavirus fully attenuated and protective for rainbow trout. J Virol 2006;80(8):4088-98
  • Wolf A, Hodneland K, Frost P, et al. Salmonid alphavirus-based replicon vaccine against infectious salmon anemia (ISA): impact of immunization route and interactions of the replicon vector. Fish Shellfish Immunol 2014;36(2):383-92
  • Wu-yang Z, Guo-dong L. Research on basis of reverse genetics system of a Sindbis-like virus XJ-160. Virol J 2011;8:519
  • Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: technology development and clinical trials. Technol Cancer Res Treat 2003;2(5):471-86
  • Lundstrom K. Biology and application of alphaviruses in gene therapy. Gene Ther 2005;12(Suppl 1):S92-97
  • Ren H, Boulikas T, Lundstrom K, et al. Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene–a phase I/II clinical protocol. J Neurooncol 2003;64(1-2):147-54
  • Zhang J, Asselin-Paturel C, Bex F, et al. Cloning of human IL-12 p40 and p35 DNA into the Semliki Forest virus vector: expression of IL-12 in human tumor cells. Gene Ther 1997;4(4):367-74
  • Bernstein DI, Reap EA, Katen K, et al. Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 2009;28(2):484-93
  • Morse MA, Hobeika AC, Osada T, et al. An alphavirus vector overcomes the presence of neutralizing antibodies and elevated numbers of Tregs to induce immune responses in humans with advanced cancer. J Clin Invest 2010;120(9):3234-41
  • Slovin SF, Kehoe M, Durso R, et al. A phase I dose escalation trial of vaccine replicon particles (VRP) expressing prostate-specific membrane antigen (PSMA) in subjects with prostate cancer. Vaccine 2013;31(6):943-9
  • Wecker M, Gilbert P, Russell N, et al. Phase I safety and immunogenicity evaluations of an alphavirus replicon HIV-1 subtype C gag vaccine in healthy HIV-1-uninfected adults. Clin Vaccine Immunol 2012;19(10):1651-60
  • Herbert AS, Kuehne AI, Barth JF, et al. Venezuelan equine encephalitis virus replicon particle vaccine protects nonhuman primates from intramuscular and aerosol challenge with ebolavirus. J Virol 2013;87(9):4952-64
  • Hevey M, Negley D, Pushko P, et al. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology 1998;251(1):28-37
  • Hooper JW, Ferro AM, Golden JW, et al. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine 2009;28(2):494-511
  • Lee JS, Groebner JL, Hadjipanayis AG, et al. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice. Vaccine 2006;24(47-48):6886-92
  • Lee JS, Hadjipanayis AG, Welkos SL. Venezuelan equine encephalitis virus-vectored vaccines protect mice against anthrax spore challenge. Infect Immun 2003;71(3):1491-6
  • Pushko P, Geisbert J, Parker M, et al. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J Virol 2001;75(23):11677-85
  • Reed DS, Glass PJ, Bakken RR, et al. Combined alphavirus replicon particle vaccine induces durable and cross-protective immune responses against equine encephalitis viruses. J Virol 2014;88(20):12077-86
  • Davis NL, West A, Reap E, et al. Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 2002;53(4-5):209-11
  • Williamson C, Morris L, Maughan MF, et al. Characterization and selection of HIV-1 subtype C isolates for use in vaccine development. AIDS Res Hum Retroviruses 2003;19(2):133-44
  • Bryant M, Ratner L. Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci USA 1990;87(2):523-7
  • Gottlinger HG, Sodroski JG, Haseltine WA. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1989;86(15):5781-5
  • Phase 1/2 clinical trial of an alphavirus replicon vaccine for Influenza. Available from: http://clinicaltrials.gov/show/NCT00440362
  • A Safety and immunogenicity trial in adults 65 years of age or over to prevent influenza (AVX502-003). Available from: http://clinicaltrials.gov/show/NCT00706732
  • Hubby B, Talarico T, Maughan M, et al. Development and preclinical evaluation of an alphavirus replicon vaccine for influenza. Vaccine 2007;25(48):8180-9
  • Reap EA, Dryga SA, Morris J, et al. Cellular and humoral immune responses to alphavirus replicon vaccines expressing cytomegalovirus pp65, IE1, and gB proteins. Clin Vaccine Immunol 2007;14(6):748-55
  • Reap EA, Morris J, Dryga SA, et al. Development and preclinical evaluation of an alphavirus replicon particle vaccine for cytomegalovirus. Vaccine 2007;25(42):7441-9
  • Immunotherapy With CEA(6D) VRP Vaccine (AVX701) in patients with stage iii colorectal Cancer. Available from: http://clinicaltrials.gov/show/NCT01890213
  • Wang X, Wang JP, Maughan MF, Lachman LB. Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis. Breast cancer research : BCR 2005;7(1):R145-55
  • A Phase I study to evaluate the antitumor activity and safety Of AVX901. Available from: http://clinicaltrials.gov/show/NCT01526473
  • Vander Veen RL, Loynachan AT, Mogler MA, et al. Safety, immunogenicity, and efficacy of an alphavirus replicon-based swine influenza virus hemagglutinin vaccine. Vaccine 2012;30(11):1944-50
  • Rice CM, Grakoui A, Galler R, Chambers TJ. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1989;1(3):285-96
  • Chambers TJ, Nestorowicz A, Mason PW, Rice CM. Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol 1999;73(4):3095-101
  • Guirakhoo F, Zhang ZX, Chambers TJ, et al. Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology 1999;257(2):363-72
  • Monath TP, Soike K, Levenbook I, et al. Recombinant, chimaeric live, attenuated vaccine (ChimeriVax) incorporating the envelope genes of Japanese encephalitis (SA14-14-2) virus and the capsid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and protective in non-human primates. Vaccine 1999;17(15-16):1869-82
  • Appaiahgari MB, Vrati S. IMOJEV((R)): a Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Rev Vaccines 2010;9(12):1371-84
  • Guirakhoo F, Pugachev K, Zhang Z, et al. Safety and efficacy of chimeric yellow Fever-dengue virus tetravalent vaccine formulations in nonhuman primates. J Virol 2004;78(9):4761-75
  • Guy B, Barrere B, Malinowski C, et al. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 2011;29(42):7229-41
  • Efficacy and safety of dengue vaccine in healthy children. Available from: http://clinicaltrials.gov/show/NCT00842530
  • Sabchareon A, Wallace D, Sirivichayakul C, et al. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet 2012;380(9853):1559-67
  • Study of a novel tetravalent dengue vaccine in healthy children aged 2 zto 14 years in asia. Available from: http://clinicaltrials.gov/show/NCT01373281
  • Capeding MR, Tran NH, Hadinegoro SR, et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 2014;384(9951):1358-65
  • Dayan GH, Pugachev K, Bevilacqua J, et al. Preclinical and clinical development of a YFV 17 D-based chimeric vaccine against West Nile virus. Viruses 2013;5(12):3048-70
  • Martins MA, Bonaldo MC, Rudersdorf RA, et al. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques. PLoS One 2013;8(1):e54434
  • Barba-Spaeth G, Longman RS, Albert ML, Rice CM. Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med 2005;202(9):1179-84
  • Tao D, Barba-Spaeth G, Rai U, et al. Yellow fever 17D as a vaccine vector for microbial CTL epitopes: protection in a rodent malaria model. J Exp Med 2005;201(2):201-9
  • Bray M, Lai CJ. Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. Proc Natl Acad Sci USA 1991. 88(22):10342-6
  • Chen W, Kawano H, Men R, et al. Construction of intertypic chimeric dengue viruses exhibiting type 3 antigenicity and neurovirulence for mice. J Virol 1995;69(8):5186-90
  • Blaney JE Jr., Durbin AP, Murphy BR, Whitehead SS. Development of a live attenuated dengue virus vaccine using reverse genetics. Viral Immunol 2006;19(1):10-32
  • Durbin AP, Kirkpatrick BD, Pierce KK, et al. Development and clinical evaluation of multiple investigational monovalent DENV vaccines to identify components for inclusion in a live attenuated tetravalent DENV vaccine. Vaccine 2011;29(42):7242-50
  • Blaney JEJr, Speicher J, Hanson CT, et al. Evaluation of St. Louis encephalitis virus/dengue virus type 4 antigenic chimeric viruses in mice and rhesus monkeys. Vaccine 2008;26(33):4150-9
  • Pletnev AG, Bray M, Huggins J, Lai CJ. Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci USA 1992;89(21):10532-6
  • Pletnev AG, Karganova GG, Dzhivanyan TI, et al. Chimeric Langat/Dengue viruses protect mice from heterologous challenge with the highly virulent strains of tick-borne encephalitis virus. Virology 2000;274(1):26-31
  • Safety of and immune response to a tick-borne encephalitis vaccine (LGT(TP21)/DEN4) in Healthy Adults. Available from: http://clinicaltrials.gov/show/NCT00118924
  • Wright PF, Ankrah S, Henderson SE, et al. Evaluation of the Langat/dengue 4 chimeric virus as a live attenuated tick-borne encephalitis vaccine for safety and immunogenicity in healthy adult volunteers. Vaccine 2008;26(7):882-90
  • Pletnev AG, Swayne DE, Speicher J, et al. Chimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine 2006;24(40-41):6392-404
  • Safety of and immune response to a west nile virus vaccine (WN/DEN4delta30) in Healthy Adults. Available from: http://clinicaltrials.gov/show/NCT00537147
  • Durbin AP, Wright PF, Cox A, et al. The live attenuated chimeric vaccine rWN/DEN4Delta30 is well-tolerated and immunogenic in healthy flavivirus-naive adult volunteers. Vaccine 2013;31(48):5772-7
  • Evaluation of the safety and immune response of five admixtures of a Tetravalent Dengue Virus Vaccine. Available from: http://clinicaltrials.gov/show/NCT01072786
  • Durbin AP, Kirkpatrick BD, Pierce KK, et al. A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: a randomized, double-blind clinical trial. J Infect Dis 2013;207(6):957-65
  • Huang CY, Butrapet S, Tsuchiya KR, et al. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol 2003;77(21):11436-47
  • Osorio JE, Huang CY, Kinney RM, Stinchcomb DT. Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever. Vaccine 2011;29(42):7251-60
  • Safety and immunogenicity study to assess denvax, a live attenuated Tetravalent Vaccine for Prevention of Dengue Fever. Available from: http://clinicaltrials.gov/show/NCT01224639
  • Osorio JE, Velez ID, Thomson C, et al. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study. The Lancet Infect Dis 2014;14(9):830-8
  • Mason PW, Shustov AV, Frolov I. Production and characterization of vaccines based on flaviviruses defective in replication. Virology 2006;351(2):432-43
  • Suzuki R, Winkelmann ER, Mason PW. Construction and characterization of a single-cycle chimeric flavivirus vaccine candidate that protects mice against lethal challenge with dengue virus type 2. J Virol 2009;83(4):1870-80
  • Widman DG, Frolov I, Mason PW. Third-generation flavivirus vaccines based on single-cycle, encapsidation-defective viruses. Adv Virus Res 2008;72:77-126
  • Ishikawa T, Widman DG, Bourne N, et al. Construction and evaluation of a chimeric pseudoinfectious virus vaccine to prevent Japanese encephalitis. Vaccine 2008;26(22):2772-81
  • Nelson MH, Winkelmann E, Ma Y, et al. Immunogenicity of RepliVAX WN, a novel single-cycle West Nile virus vaccine. Vaccine 2010;29(2):174-82
  • Widman DG, Ishikawa T, Fayzulin R, et al. Construction and characterization of a second-generation pseudoinfectious West Nile virus vaccine propagated using a new cultivation system. Vaccine 2008;26(22):2762-71
  • Rumyantsev AA, Goncalvez AP, Giel-Moloney M, et al. Single-dose vaccine against tick-borne encephalitis. Proc Natl Acad Sci USA 2013;110(32):13103-8
  • Khromykh AA, Varnavski AN, Westaway EG. Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol 1998;72(7):5967-77
  • Reynard O, Mokhonov V, Mokhonova E, et al. Kunjin virus replicon-based vaccines expressing Ebola virus glycoprotein GP protect the guinea pig against lethal Ebola virus infection. J Infect Dis 2011;204(Suppl 3):S1060-5
  • Shustov AV, Mason PW, Frolov I. Production of pseudoinfectious yellow fever virus with a two-component genome. J Virol 2007;81(21):11737-48
  • Li XF, Deng YQ, Yang HQ, et al. A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14-14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. J Virol 2013;87(24):13694-705
  • Frese M, Lee E, Larena M, et al. Internal ribosome entry site-based attenuation of a flavivirus candidate vaccine and evaluation of the effect of beta interferon coexpression on vaccine properties. J Virol 2014;88(4):2056-70
  • Newcomer BW, Givens MD. Approved and experimental countermeasures against pestiviral diseases: bovine viral diarrhea, classical swine fever and border disease. Antiviral Res 2013;100(1):133-50
  • Meyers G, Tautz N, Becher P, et al. Recovery of cytopathogenic and noncytopathogenic bovine viral diarrhea viruses from cDNA constructs. J Virol 1996;70(12):8606-13
  • Reimann I, Depner K, Trapp S, Beer M. An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 2004;322(1):143-57
  • Koenig P, Lange E, Reimann I, Beer M. CP7_E2alf: a safe and efficient marker vaccine strain for oral immunisation of wild boar against Classical swine fever virus (CSFV). Vaccine 2007;25(17):3391-9
  • Blome S, Aebischer A, Lange E, et al. Comparative evaluation of live marker vaccine candidates "CP7_E2alf" and "flc11" along with C-strain "Riems" after oral vaccination. Veterinary microbiology 2012;158(1-2):L:42-59
  • Eble PL, Geurts Y, Quak S, et al. Efficacy of chimeric Pestivirus vaccine candidates against classical swine fever: protection and DIVA characteristics. Veterinary microbiology 2013;162(2-4):437-46
  • Renson P, Le Dimna M, Keranflech A, et al. CP7_E2alf oral vaccination confers partial protection against early classical swine fever virus challenge and interferes with pathogeny-related cytokine responses. Vet Res 2013;44:9
  • Feliziani F, Blome S, Petrini S, et al. First assessment of classical swine fever marker vaccine candidate CP7_E2alf for oral immunization of wild boar under field conditions. Vaccine 2014;32(18):2050-5
  • Reimann I, Depner K, Utke K, et al. Characterization of a new chimeric marker vaccine candidate with a mutated antigenic E2-epitope. Vet Microbiol 2010;142(1-2):45-50
  • Rasmussen TB, Uttenthal A, Reimann I, et al. Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus. J Gen Virol 2007;88(Pt 2):481-6
  • von Rosen T, Rangelova D, Nielsen J, et al. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif. Vet Microbiol 2014;170(3-4):224-31
  • Fan ZC, Dennis JC, Bird RC. Bovine viral diarrhea virus is a suitable viral vector for stable expression of heterologous gene when inserted in between N(pro) and C genes. Virus Res 2008;138(1-2):97-104
  • Luo Y, Yuan Y, Ankenbauer RG, et al. Construction of chimeric bovine viral diarrhea viruses containing glycoprotein E rns of heterologous pestiviruses and evaluation of the chimeras as potential marker vaccines against BVDV. Vaccine 2012;30(26):3843-8
  • Widjojoatmodjo MN, van Gennip HG, Bouma A, et al. Classical swine fever virus E(rns) deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J Virol 2000;74(7):2973-80
  • van Gennip HG, Bouma A, van Rijn PA, et al. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine 2002;20(11-12):1544-56
  • Yang Z, Wu R, Li RW, et al. Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections. Virus Res 2012;165(1):61-70
  • van Gennip HG, van Rijn PA, Widjojoatmodjo MN, et al. Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 2000;19(4-5):447-59
  • Krug R, Alonso-Kaplen FV, Julkunen I, Katze MG. Expression and replication of the influenza virus genome. In: The influenza viruses. Krug R, Editor Plenum Press; New York, NY: 1989. p. 89-152
  • Luytjes W, Krystal M, Enami M, et al. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 1989;59(6):1107-13
  • Enami M, Luytjes W, Krystal M, Palese P. Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci USA 1990;87(10):3802-5
  • Enami M, Enami K. Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system. J Virol 2000;74(12):5556-61
  • Enami M, Palese P. High-efficiency formation of influenza virus transfectants. J Virol 1991;65(5):2711-13
  • Fodor E, Devenish L, Engelhardt OG, et al. Rescue of influenza A virus from recombinant DNA. J virol 1999;73(11):9679-82
  • Gomez-Puertas P, Mena I, Castillo M, et al. Efficient formation of influenza virus-like particles: dependence on the expression levels of viral proteins. J Gen Virol 1999;80(Pt 7):1635-45
  • Hoffmann E, Neumann G, Kawaoka Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 2000;97(11):6108-13
  • Mena I, Vivo A, Perez E, Portela A. Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids. J Virol 1996;70(8):5016-24
  • Neumann G, Watanabe T, Ito H, et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 1999;96(16):9345-50
  • Neumann G, Watanabe T, Kawaoka Y. Plasmid-driven formation of influenza virus-like particles. J Virol 2000;74(1):547-51
  • Neumann G, Zobel A, Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 1994;202(1):477-9
  • Miyahira Y, Garcia-Sastre A, Rodriguez D, et al. Recombinant viruses expressing a human malaria antigen can elicit potentially protective immune CD8+ responses in mice. Proc Natl Acad Sci USA 1998;95(7):3954-9
  • Rodrigues M, Li S, Murata K, et al. Influenza and vaccinia viruses expressing malaria CD8+ T and B cell epitopes. Comparison of their immunogenicity and capacity to induce protective immunity. J Immunol 1994;153(10):4636-48
  • Ferko B, Katinger D, Grassauer A, et al. Chimeric influenza virus replicating predominantly in the murine upper respiratory tract induces local immune responses against human immunodeficiency virus type 1 in the genital tract. J Infect Dis 1998;178(5):1359-68
  • Garulli B, Di Mario G, Stillitano MG, et al. Exploring mucosal immunization with a recombinant influenza virus carrying an HIV-polyepitope in mice with pre-existing immunity to influenza. Vaccine 2014;32(21):2501-6
  • Muster T, Ferko B, Klima A, et al. Mucosal model of immunization against human immunodeficiency virus type 1 with a chimeric influenza virus. J Virol 1995;69(11):6678-86
  • Nakaya Y, Zheng H, Garcia-Sastre A. Enhanced cellular immune responses to SIV Gag by immunization with influenza and vaccinia virus recombinants. Vaccine 2003;21(17-18):2097-106
  • Maeda Y, Hatta M, Takada A, et al. Live bivalent vaccine for parainfluenza and influenza virus infections. J Virol 2005;79(11):6674-9
  • Zhang P, Gu H, Bian C, et al. Characterization of recombinant influenza A virus as a vector expressing respiratory syncytial virus fusion protein epitopes. J Gen Virol 2014;95(Pt 9):1886-91
  • Strobel I, Krumbholz M, Menke A, et al. Efficient expression of the tumor-associated antigen MAGE-3 in human dendritic cells, using an avian influenza virus vector. Hum Gene Ther 2000;11(16):2207-18
  • Harper SA, Fukuda K, Cox NJ, Bridges CB. Advisory Committee on Immunization P. Using live, attenuated influenza vaccine for prevention and control of influenza: supplemental recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2003;52(RR-13):1-8
  • Mallory RM, Yi T, Ambrose CS. Shedding of Ann Arbor strain live attenuated influenza vaccine virus in children 6-59 months of age. Vaccine 2011;29(26):4322-7
  • Dormitzer PR, Suphaphiphat P, Gibson DG, et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Transl Med 2013;5(185):185ra168
  • Gibson DG. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 2011;498:349-61
  • Bart SA, Hohenboken M, Della Cioppa G, et al. A cell culture-derived MF59-adjuvanted pandemic A/H7N9 vaccine is immunogenic in adults. Sci Transl Med 2014;6(234): 234ra255
  • Wagner RRaR JK. Rhabdoviridae: The viruses and their replication. In: Fundamental Virology. Fields BN, Knipe PM. and Howly PM, Editors Lippincott-Raven Publishers; Philidelphia, PA: 1996. P. 561-75
  • Lamb RAaK D. Paramyxoviridae: The viruses and their replication. In: Fundamental Virology. Fields BN, Knipe PM and Howly PM, Editors Lippincott-Raven Publishers; Philadelphia, PA: 1996. p. 577-604
  • Pattnaik AK, Ball LA, LeGrone AW, Wertz GW. Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 1992;69(6):1011-20
  • Pattnaik AK, Wertz GW. Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J Virol 1990;64(6):2948-57
  • Pattnaik AK, Wertz GW. Cells that express all five proteins of vesicular stomatitis virus from cloned cDNAs support replication, assembly, and budding of defective interfering particles. Proc Natl Acad Sci USA 1991;88(4):1379-83
  • Collins PL, Hill MG, Camargo E, et al. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5’ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 1995;92(25):11563-7
  • Garcin D, Pelet T, Calain P, et al. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 1995;14(24):6087-94
  • Lawson ND, Stillman EA, Whitt MA, Rose JK. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA 1995;92(10):4477-81
  • Radecke F, Spielhofer P, Schneider H, et al. Rescue of measles viruses from cloned DNA. The EMBO journal 1995;14(23):5773-84
  • Schnell MJ, Mebatsion T, Conzelmann KK. Infectious rabies viruses from cloned cDNA. EMBO J 1994;13(18):4195-203
  • Whelan SP, Ball LA, Barr JN, Wertz GT. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci USA 1995;92(18):8388-92
  • Tsung K, Yim JH, Marti W, et al. Gene expression and cytopathic effect of vaccinia virus inactivated by psoralen and long-wave UV light. J Virol 1996;70(1):165-71
  • Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 1999;73(1):251-9
  • Kato A, Sakai Y, Shioda T, et al. Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1996;1(6):569-79
  • Conzelmann KK, Schnell M. Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J Virol 1994;68(2):713-19
  • Koser ML, McGettigan JP, Tan GS, et al. Rabies virus nucleoprotein as a carrier for foreign antigens. Proc Natl Acad Sci USA 2004;101(25):9405-10
  • Mustafa W, Al-Saleem FH, Nasser Z, et al. Immunization of mice with the non-toxic HC50 domain of botulinum neurotoxin presented by rabies virus particles induces a strong immune response affording protection against high-dose botulinum neurotoxin challenge. Vaccine 2011;29(28):4638-45
  • Siler CA, McGettigan JP, Dietzschold B, et al. Live and killed rhabdovirus-based vectors as potential hepatitis C vaccines. Virology 2002;292(1):24-34
  • Faber M, Lamirande EW, Roberts A, et al. A single immunization with a rhabdovirus-based vector expressing severe acute respiratory syndrome coronavirus (SARS-CoV) S protein results in the production of high levels of SARS-CoV-neutralizing antibodies. J Gen Virol 2005;86(Pt 5):1435-40
  • Rupprecht CE, Hanlon CA, Blanton J, et al. Oral vaccination of dogs with recombinant rabies virus vaccines. Virus Res 2005;111(1):101-5
  • Gomme EA, Wanjalla CN, Wirblich C, Schnell MJ. Rabies virus as a research tool and viral vaccine vector. Adv Virus Res 2011;79:139-64
  • Schnell MJ, Foley HD, Siler CA, et al. Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc Natl Acad Sci USA 2000;97(7):3544-9
  • McGettigan JP, Sarma S, Orenstein JM, et al. Expression and immunogenicity of human immunodeficiency virus type 1 Gag expressed by a replication-competent rhabdovirus-based vaccine vector. J Virol 2001;75(18):8724-32
  • McGettigan JP, Foley HD, Belyakov IM, et al. Rabies virus-based vectors expressing human immunodeficiency virus type 1 (HIV-1) envelope protein induce a strong, cross-reactive cytotoxic T-lymphocyte response against envelope proteins from different HIV-1 isolates. J Virol 2001;75(9):4430-4
  • Faul EJ, Wanjalla CN, McGettigan JP, Schnell MJ. Interferon-beta expressed by a rabies virus-based HIV-1 vaccine vector serves as a molecular adjuvant and decreases pathogenicity. Virology 2008;382(2):226-38
  • McGettigan JP, Koser ML, McKenna PM, et al. Enhanced humoral HIV-1-specific immune responses generated from recombinant rhabdoviral-based vaccine vectors co-expressing HIV-1 proteins and IL-2. Virology 2006;344(2):363-77
  • Faul EJ, Aye PP, Papaneri AB, et al. Rabies virus-based vaccines elicit neutralizing antibodies, poly-functional CD8+ T cell, and protect rhesus macaques from AIDS-like disease after SIV(mac251) challenge. Vaccine 2009;28(2):299-308
  • Gomme EA, Faul EJ, Flomenberg P, et al. Characterization of a single-cycle rabies virus-based vaccine vector. J Virol 2010;84(6):2820-31
  • Osakada F, Mori T, Cetin AH, et al. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011;71(4):617-31
  • Roberts A, Buonocore L, Price R, et al. Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 1999;73(5):3723-32
  • Lichty BD, Power AT, Stojdl DF, Bell JC. Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 2004;10(5):210-16
  • Bukreyev A, Skiadopoulos MH, Murphy BR, Collins PL. Nonsegmented negative-strand viruses as vaccine vectors. J Virol 2006;80(21):10293-306
  • Johnson JE, Schnell MJ, Buonocore L, Rose JK. Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. J Virol 1997;71(7):5060-8
  • Kretzschmar E, Buonocore L, Schnell MJ, Rose JK. High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. J Virol 1997;71(8):5982-9
  • Schnell MJ, Buonocore L, Kretzschmar E, et al. Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci USA 1996;93(21):11359-65
  • Schnell MJ, Johnson JE, Buonocore L, Rose JK. Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 1997;90(5):849-57
  • Roberts A, Kretzschmar E, Perkins AS, et al. Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol 1998;72(6):4704-11
  • Schwartz JA, Buonocore L, Roberts A, et al. Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection. Virology 2007;366(1):166-73
  • Publicover J, Ramsburg E, Rose JK. A single-cycle vaccine vector based on vesicular stomatitis virus can induce immune responses comparable to those generated by a replication-competent vector. J Virol 2005;79(21):13231-8
  • Cobleigh MA, Buonocore L, Uprichard SL, et al. A vesicular stomatitis virus-based hepatitis B virus vaccine vector provides protection against challenge in a single dose. J Virol 2010;84(15):7513-22
  • Schlereth B, Rose JK, Buonocore L, et al. Successful vaccine-induced seroconversion by single-dose immunization in the presence of measles virus-specific maternal antibodies. J Virol 2000;74(10):4652-7
  • Kapadia SU, Rose JK, Lamirande E, et al. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 2005;340(2):174-82
  • Kahn JS, Schnell MJ, Buonocore L, Rose JK. Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 1999;254(1):81-91
  • Brown KS, Safronetz D, Marzi A, et al. Vesicular stomatitis virus-based vaccine protects hamsters against lethal challenge with Andes virus. J Virol 2011;85(23):12781-91
  • Majid AM, Ezelle H, Shah S, Barber GN. Evaluating replication-defective vesicular stomatitis virus as a vaccine vehicle. J Virol 2006;80(14):6993-7008
  • Chattopadhyay A, Park S, Delmas G, et al. Single-dose, virus-vectored vaccine protection against Yersinia pestis challenge: CD4+ cells are required at the time of challenge for optimal protection. Vaccine 2008;26(50):6329-37
  • Chattopadhyay A, Rose JK. Complementing defective viruses that express separate paramyxovirus glycoproteins provide a new vaccine vector approach. J Virol 2011;85(5):2004-11
  • Lo MK, Bird BH, Chattopadhyay A, et al. Single-dose replication-defective VSV-based Nipah virus vaccines provide protection from lethal challenge in Syrian hamsters. Antiviral Res 2014;101:26-9
  • Geisbert TW, Feldmann H. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J Infect Dis 2011;204(Suppl 3):S1075-81
  • Chattopadhyay A, Wang E, Seymour R, et al. A chimeric vesiculo/alphavirus is an effective alphavirus vaccine. J Virol 2013;87(1):395-402
  • Rose NF, Marx PA, Luckay A, et al. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 2001;106(5):539-49
  • Haglund K, Leiner I, Kerksiek K, et al. High-level primary CD8(+) T-cell response to human immunodeficiency virus type 1 gag and env generated by vaccination with recombinant vesicular stomatitis viruses. J Virol 2002;76(6):2730-8
  • Wu K, Kim GN, Kang CY. Expression and processing of human immunodeficiency virus type 1 gp160 using the vesicular stomatitis virus New Jersey serotype vector system. J Gen Virol 2009;90(Pt 5):1135-40
  • Marthas ML, Van Rompay KK, Abbott Z, et al. Partial efficacy of a VSV-SIV/MVA-SIV vaccine regimen against oral SIV challenge in infant macaques. Vaccine 2011;29(17):3124-37
  • Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 2012;28(1):16-35
  • Lawrence TM, Wanjalla CN, Gomme EA, et al. Comparison of Heterologous Prime-Boost Strategies against Human Immunodeficiency Virus Type 1 Gag Using Negative Stranded RNA Viruses. PLoS ONE 2013;8(6):e67123
  • Fuchs J, Frank I, Kochar M, et al. First-in-human phase I clinical trial of a recombinant vesicular stomatitis virus (rVSV)-based preventive HIV-1 vaccine. Retrovirology 2012;9(Suppl 2):P134
  • Therapeutic Vaccine for HIV. Available from: http://clinicaltrials.gov/show/NCT01859325
  • Gunther S, Feldmann H, Geisbert TW, et al. Management of accidental exposure to Ebola virus in the biosafety level 4 laboratory, Hamburg, Germany. J Infect Dis 2011;204(Suppl 3):S785-90
  • Safety and immunogenicity of prime-boost vsv ebola vaccine in healthy adults. Available from: http://apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT02257840
  • Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol 2012;93(Pt 12):2529-45
  • Viral therapy in treating patient with liver cancer. Available from: http://clinicaltrials.gov/show/NCT01628640
  • Nzonza A, Lecollinet S, Chat S, et al. A recombinant novirhabdovirus presenting at the surface the E Glycoprotein from West Nile Virus (WNV) is immunogenic and provides partial protection against lethal WNV challenge in BALB/c mice. PLoS One 2014;9(3): e91766
  • Downham MA, McQuillin J, Gardner PS. Diagnosis and clinical significance of parainfluenza virus infections in children. Arch Dis Child 1974;49(1):8-15
  • Garbino J, Inoubli S, Mossdorf E, et al. Respiratory viruses in HIV-infected patients with suspected respiratory opportunistic infection. Aids 2008;22(6):701-5
  • Glezen WP, Frank AL, Taber LH, Kasel JA. Parainfluenza virus type 3: seasonality and risk of infection and reinfection in young children. J Infect Dis 1984;150(6):851-7
  • Henrickson KJ. Lower respiratory viral infections in immunocompetent children. Adv Pediatr Infect Dis 1994;9:59-96
  • Leader S, Kohlhase K. Respiratory syncytial virus-coded pediatric hospitalizations, 1997 to 1999. Pediatr Infect Dis J 2002;21(7):629-32
  • Le Bayon JC, Lina B, Rosa-Calatrava M, Boivin G. Recent developments with live-attenuated recombinant paramyxovirus vaccines. Rev Med Virol 2013;23(1):15-34
  • Durbin AP, Hall SL, Siew JW, et al. Recovery of infectious human parainfluenza virus type 3 from cDNA. Virology 1997;235(2):323-32
  • Hoffman MA, Banerjee AK. An infectious clone of human parainfluenza virus type 3. J Virol 1997;71(6):4272-7
  • Kawano M, Kaito M, Kozuka Y, et al. Recovery of infectious human parainfluenza type 2 virus from cDNA clones and properties of the defective virus without V-specific cysteine-rich domain. Virology 2001;284(1):99-112
  • McAuliffe JM, Surman SR, Newman JT, et al. Codon substitution mutations at two positions in the L polymerase protein of human parainfluenza virus type 1 yield viruses with a spectrum of attenuation in vivo and increased phenotypic stability in vitro. J Virol 2004;78(4):2029-36
  • Tao T, Durbin AP, Whitehead SS, et al. Recovery of a fully viable chimeric human parainfluenza virus (PIV) type 3 in which the hemagglutinin-neuraminidase and fusion glycoproteins have been replaced by those of PIV type 1. J Virol 1998;72(4):2955-61
  • Bailly JE, McAuliffe JM, Durbin AP, et al. A recombinant human parainfluenza virus type 3 (PIV3) in which the nucleocapsid N protein has been replaced by that of bovine PIV3 is attenuated in primates. J Virol 2000;74(7):3188-95
  • Karron RA, Thumar B, Schappell E, et al. Evaluation of two chimeric bovine-human parainfluenza virus type 3 vaccines in infants and young children. Vaccine 2012;30(26):3975-81
  • van Wyke Coelingh KL, Winter CC, Tierney EL, et al. Attenuation of bovine parainfluenza virus type 3 in nonhuman primates and its ability to confer immunity to human parainfluenza virus type 3 challenge. J Infect Dis 1988;157(4):655-62
  • Karron RA, Makhene M, Gay K, et al. Evaluation of a live attenuated bovine parainfluenza type 3 vaccine in two- to six-month-old infants. Pediatr Infect Dis J 1996;15(8):650-4
  • Karron RA, Wright PF, Hall SL, et al. A live attenuated bovine parainfluenza virus type 3 vaccine is safe, infectious, immunogenic, and phenotypically stable in infants and children. J Infect Dis 1995;171(5):1107-14
  • Karron RA, Wright PF, Newman FK, et al. A live human parainfluenza type 3 virus vaccine is attenuated and immunogenic in healthy infants and children. J Infect Dis 1995;172(6):1445-50
  • Haller AA, Miller T, Mitiku M, Coelingh K. Expression of the surface glycoproteins of human parainfluenza virus type 3 by bovine parainfluenza virus type 3, a novel attenuated virus vaccine vector. J Virol 2000;74(24):11626-35
  • Schmidt AC, McAuliffe JM, Huang A, et al. Bovine parainfluenza virus type 3 (BPIV3) fusion and hemagglutinin-neuraminidase glycoproteins make an important contribution to the restricted replication of BPIV3 in primates. J Virol 2000;74(19):8922-9
  • Pennathur S, Haller AA, MacPhail M, et al. Evaluation of attenuation, immunogenicity and efficacy of a bovine parainfluenza virus type 3 (PIV-3) vaccine and a recombinant chimeric bovine/human PIV-3 vaccine vector in rhesus monkeys. J Gen Virol 2003;84(Pt 12):3253-61
  • Schmidt AC, McAuliffe JM, Murphy BR, Collins PL. Recombinant bovine/human parainfluenza virus type 3 (B/HPIV3) expressing the respiratory syncytial virus (RSV) G and F proteins can be used to achieve simultaneous mucosal immunization against RSV and HPIV3. J Virol 2001;75(10):4594-603
  • Schmidt AC, Wenzke DR, McAuliffe JM, et al. Mucosal immunization of rhesus monkeys against respiratory syncytial virus subgroups A and B and human parainfluenza virus type 3 by using a live cDNA-derived vaccine based on a host range-attenuated bovine parainfluenza virus type 3 vector backbone. J Virol 2002;76(3):1089-99
  • Tang RS, Schickli JH, MacPhail M, et al. Effects of human metapneumovirus and respiratory syncytial virus antigen insertion in two 3’ proximal genome positions of bovine/human parainfluenza virus type 3 on virus replication and immunogenicity. J Virol 2003;77(20):10819-28
  • Gorman WL, Gill DS, Scroggs RA, Portner A. The hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus type 1 and Sendai virus have high structure-function similarity with limited antigenic cross-reactivity. Virology 1990;175(1):211-21
  • Lyn D, Gill DS, Scroggs RA, Portner A. The nucleoproteins of human parainfluenza virus type 1 and Sendai virus share amino acid sequences and antigenic and structural determinants. J Gen Virol 1991;72(Pt 4):983-7
  • Dave VP, Allan JE, Slobod KS, et al. Viral cross-reactivity and antigenic determinants recognized by human parainfluenza virus type 1-specific cytotoxic T-cells. Virology 1994;199(2):376-83
  • Hurwitz JL, Soike KF, Sangster MY, et al. Intranasal Sendai virus vaccine protects African green monkeys from infection with human parainfluenza virus-type one. Vaccine 1997;15(5):533-40
  • Smith FS, Portner A, Leggiadro RJ, et al. Age-related development of human memory T-helper and B-cell responses toward parainfluenza virus type-1. Virology 1994;205(2):453-61
  • A Study to assess the safety of live intranasal sendai virus vaccine in children and toddlers. Available from: http://clinicaltrials.gov/show/NCT00186927
  • Li HO, Zhu YF, Asakawa M, et al. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 2000;74(14):6564-9
  • Ferrari S, Griesenbach U, Shiraki-Iida T, et al. A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Ther 2004;11(22):1659-64
  • Yonemitsu Y, Kitson C, Ferrari S, et al. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol 2000;18(9):970-3
  • Hasan MK, Kato A, Shioda T, et al. Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3’ proximal first locus. J Gen Virol 1997;78(Pt 11):2813-20
  • Jones B, Zhan X, Mishin V, et al. Human PIV-2 recombinant Sendai virus (rSeV) elicits durable immunity and combines with two additional rSeVs to protect against hPIV-1, hPIV-2, hPIV-3, and RSV. Vaccine 2009;27(12):1848-57
  • Jones BG, Sealy RE, Rudraraju R, et al. Sendai virus-based RSV vaccine protects African green monkeys from RSV infection. Vaccine 2012;30(5):959-68
  • Jones BG, Sealy RE, Surman SL, et al. Sendai virus-based RSV vaccine protects against RSV challenge in an in vivo maternal antibody model. Vaccine 2014;32(26):3264-73
  • Takimoto T, Hurwitz JL, Coleclough C, et al. Recombinant Sendai virus expressing the G glycoprotein of respiratory syncytial virus (RSV) elicits immune protection against RSV. J Virol 2004;78(11):6043-7
  • Takimoto T, Hurwitz JL, Zhan X, et al. Recombinant Sendai virus as a novel vaccine candidate for respiratory syncytial virus. Viral Immunol 2005;18(2):255-66
  • Zhan X, Hurwitz JL, Krishnamurthy S, et al. Respiratory syncytial virus (RSV) fusion protein expressed by recombinant Sendai virus elicits B-cell and T-cell responses in cotton rats and confers protection against RSV subtypes A and B. Vaccine 2007;25(52):8782-93
  • Chin J, Magoffin RL, Shearer LA, et al. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population. Am J Epidemiol 1969;89(4):449-63
  • Fulginiti VA, Eller JJ, Sieber OF, et al. Respiratory virus immunization. I. A field trial of two inactivated respiratory virus vaccines; an aqueous trivalent parainfluenza virus vaccine and an alum-precipitated respiratory syncytial virus vaccine. Am J Epidemiol 1969;89(4):435-48
  • Mason JN, Elbahesh H, Russell CJ. Influence of antigen insertion site and vector dose on immunogenicity and protective capacity in Sendai virus-based human parainfluenza virus type 3 vaccines. J Virol 2013;87(10):5959-69
  • Zhan X, Slobod KS, Krishnamurthy S, et al. Sendai virus recombinant vaccine expressing hPIV-3 HN or F elicits protective immunity and combines with a second recombinant to prevent hPIV-1, hPIV-3 and RSV infections. Vaccine 2008;26(27-28):3480-8
  • Le TV, Mironova E, Garcin D, Compans RW. Induction of influenza-specific mucosal immunity by an attenuated recombinant Sendai virus. PLoS One 2011;6(4):e18780
  • Kano M, Matano T, Kato A, et al. Primary replication of a recombinant Sendai virus vector in macaques. J Gen Virol 2002;83(Pt 6):1377-86
  • Kano M, Matano T, Nakamura H, et al. Elicitation of protective immunity against simian immunodeficiency virus infection by a recombinant Sendai virus expressing the Gag protein. Aids 2000;14(9):1281-2
  • Kawada M, Tsukamoto T, Yamamoto H, et al. Gag-specific cytotoxic T-lymphocyte-based control of primary simian immunodeficiency virus replication in a vaccine trial. J Virol 2008;82(20):10199-206
  • Matano T, Kano M, Nakamura H, et al. Rapid appearance of secondary immune responses and protection from acute CD4 depletion after a highly pathogenic immunodeficiency virus challenge in macaques vaccinated with a DNA prime/Sendai virus vector boost regimen. J Virol 2001;75(23):11891-6
  • Takeda A, Igarashi H, Kawada M, et al. Evaluation of the immunogenicity of replication-competent V-knocked-out and replication-defective F-deleted Sendai virus vector-based vaccines in macaques. Vaccine 2008;26(52):6839-43
  • Takeda A, Igarashi H, Nakamura H, et al. Protective efficacy of an AIDS vaccine, a single DNA priming followed by a single booster with a recombinant replication-defective Sendai virus vector, in a macaque AIDS model. J Virol 2003;77(17):9710-15
  • Yu S, Feng X, Shu T, et al. Potent specific immune responses induced by prime-boost-boost strategies based on DNA, adenovirus, and Sendai virus vectors expressing gag gene of Chinese HIV-1 subtype B. Vaccine 2008;26(48):6124-31
  • Zhang X, Sobue T, Isshiki M, et al. Elicitation of both anti HIV-1 Env humoral and cellular immunities by replicating vaccinia prime Sendai virus boost regimen and boosting by CD40Lm. PLoS One 2012;7(12):e51633
  • McEnery R. First candidate HIV vaccine to employ Sendai vector poised for trials. IAVI Rep 2013;17(1):18
  • Safety and immunogenicity study of sev-g(np) hiv vaccine administered intranasally and ad35-grin hiv vaccine given intramuscularly in prime-boost regimens in hiv-uninfected volunteers. Available from: http://clinicaltrials.gov/show/NCT01705990
  • Yonemitsu Y, Matsumoto T, Itoh H, et al. DVC1-0101 to treat peripheral arterial disease: a Phase I/IIa open-label dose-escalation clinical trial. Mol Ther 2013;21(3):707-14
  • Hara H, Hara H, Hironaka T, et al. Prevalence of specific neutralizing antibodies against Sendai virus in populations from different geographic areas: implications for AIDS vaccine development using Sendai virus vectors. Hum Vaccin 2011;7(6):639-45
  • Hilleman MR. Current overview of the pathogenesis and prophylaxis of measles with focus on practical implications. Vaccine 2001;20(5-6):651-65
  • Schwarz AJ. Preliminary tests of a highly attenuated measles vaccine. Am J Dis Child 1962;103:386-9
  • Combredet C, Labrousse V, Mollet L, et al. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 2003;77(21):11546-54
  • Mok H, Cheng X, Xu Q, et al. Evaluation of Measles Vaccine Virus as a Vector to Deliver Respiratory Syncytial Virus Fusion Protein or Epstein-Barr Virus Glycoprotein gp350. The open virology journal 2012;6:12-22
  • Dorig RE, Marcil A, Chopra A, Richardson CD. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993;75(2):295-305
  • Naniche D, Varior-Krishnan G, Cervoni F, et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 1993;67(10):6025-32
  • Blok VT, Daha MR, Tijsma OM, et al. A possible role of CD46 for the protection in vivo of human renal tumor cells from complement-mediated damage. Lab Invest 2000;80(3):335-44
  • Durrant LG, Spendlove I. Immunization against tumor cell surface complement-regulatory proteins. Curr Opin Investig Drugs 2001;2(7):959-66
  • Fishelson Z, Donin N, Zell S, et al. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 2003;40(2-4):109-23
  • Hara T, Suzuki Y, Semba T, et al. High expression of membrane cofactor protein of complement (CD46) in human leukaemia cell lines: implication of an alternatively spliced form containing the STA domain in CD46 up-regulation. Scand J Immunol 1995;42(6):581-90
  • Ong HT, Timm MM, Greipp PR, et al. Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp Hematol 2006;34(6):713-20
  • Seya T, Hara T, Matsumoto M, Akedo H. Quantitative analysis of membrane cofactor protein (MCP) of complement. High expression of MCP on human leukemia cell lines, which is down-regulated during cell differentiation. J Immunol 1990;145(1):238-45
  • Simpson KL, Jones A, Norman S, Holmes CH. Expression of the complement regulatory proteins decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and CD59 in the normal human uterine cervix and in premalignant and malignant cervical disease. Am J Pathol 1997;151(5):1455-67
  • Varsano S, Rashkovsky L, Shapiro H, et al. Human lung cancer cell lines express cell membrane complement inhibitory proteins and are extremely resistant to complement-mediated lysis; a comparison with normal human respiratory epithelium in vitro, and an insight into mechanism(s) of resistance. Clin Exp Immunol 1998;113(2):173-82
  • Heinzerling L, Kunzi V, Oberholzer PA, et al. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood 2005;106(7):2287-94
  • Peng KW, TenEyck CJ, Galanis E, et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002;62(16):4656-62
  • Peng KW, Hadac EM, Anderson BD, et al. Pharmacokinetics of oncolytic measles virotherapy: eventual equilibrium between virus and tumor in an ovarian cancer xenograft model. Cancer Gene Ther 2006;13(8):732-8
  • Galanis E, Hartmann LC, Cliby WA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010;70(3):875-82
  • Hasegawa K, Pham L, O’Connor MK, et al. Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 2006;12(6):1868-75
  • Peng KW, Facteau S, Wegman T, et al. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002;8(5):527-31
  • Phuong LK, Allen C, Peng KW, et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003;63(10):2462-9
  • Viral therapy in treating patients with recurrent glioblastoma multiforme. Available from: http://clinicaltrials.gov/show/NCT00390299
  • Dingli D, Peng KW, Harvey ME, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004;103(5):1641-6
  • Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86(4):1447-63
  • Riesco-Eizaguirre G, Santisteban P. A perspective view of sodium iodide symporter research and its clinical implications. Eur J Endocrinol 2006;155(4):495-512
  • Carlson SK, Classic KL, Hadac EM, et al. In vivo quantitation of intratumoral radioisotope uptake using micro-single photon emission computed tomography/computed tomography. Mol Imaging Biol 2006;8(6):324-32
  • Dingli D, Kemp BJ, O’Connor MK, et al. Combined I-124 positron emission tomography/computed tomography imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumor. Mol Imaging Biol 2006;8(1):16-23
  • Blechacz B, Splinter PL, Greiner S, et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology 2006;44(6):1465-77
  • Dingli D, Diaz RM, Bergert ER, et al. Genetically targeted radiotherapy for multiple myeloma. Blood 2003;102(2):489-96
  • A Phase II trial of oncolytic virotherapy by systemic administration of edmonston strain of measles virus. Available from: http://clinicaltrials.gov/show/NCT02192775
  • MV-NIS infected mesenchymal stem cells in treating patients with recurrent ovarian cancer. Available from: http://clinicaltrials.gov/show/NCT02068794
  • Intrapleural measles virus therapy in patients with malignant pleural mesothelioma. Available from: http://clinicaltrials.gov/show/NCT01503177
  • Viral therapy in treating patients with recurrent or metastatic squamous cell carcinoma of the head and neck cancer. Available from: http://clinicaltrials.gov/show/NCT01846091
  • Vaccine therapy with or without cyclophosphamide in treating patients with recurrent or refractory multiple myeloma. Available from: http://clinicaltrials.gov/show/NCT00450814%20MC038C%20P30CA015083%20MC038C%2006-005263%20NCI-2009-01194%20NCT00450814
  • Recombinant measles virus vaccine therapy and oncolytic virus therapy in treating patients with progressive, recurrent, or refractory ovarian epithelial cancer or primary peritoneal cancer. Available from: http://clinicaltrials.gov/show/NCT00408590
  • Guerbois M, Moris A, Combredet C, et al. Live attenuated measles vaccine expressing HIV-1 Gag virus like particles covered with gp160DeltaV1V2 is strongly immunogenic. Virology 2009;388(1):191-203
  • Liniger M, Zuniga A, Morin TN, et al. Recombinant measles viruses expressing single or multiple antigens of human immunodeficiency virus (HIV-1) induce cellular and humoral immune responses. Vaccine 2009;27(25-26):3299-305
  • Lorin C, Combredet C, Labrousse V, et al. A paediatric vaccination vector based on live attenuated measles vaccine. Therapie 2005;60(3):227-33
  • Lorin C, Delebecque F, Labrousse V, et al. A recombinant live attenuated measles vaccine vector primes effective HLA-A0201-restricted cytotoxic T lymphocytes and broadly neutralizing antibodies against HIV-1 conserved epitopes. Vaccine 2005;23(36):4463-72
  • Lorin C, Mollet L, Delebecque F, et al. A single injection of recombinant measles virus vaccines expressing human immunodeficiency virus (HIV) type 1 clade B envelope glycoproteins induces neutralizing antibodies and cellular immune responses to HIV. J Virol 2004;78(1):146-57
  • Lorin C, Segal L, Mols J, et al. Toxicology, biodistribution and shedding profile of a recombinant measles vaccine vector expressing HIV-1 antigens, in cynomolgus macaques. Naunyn Schmiedebergs Arch Pharmacol 2012;385(12):1211-25
  • Stebbings R, Fevrier M, Li B, et al. Immunogenicity of a recombinant measles-HIV-1 clade B candidate vaccine. PLoS One 2012;7(11):e50397
  • Stebbings R, Li B, Lorin C, et al. Immunogenicity of a recombinant measles HIV-1 subtype C vaccine. Vaccine 2013;31(51):6079-86
  • Wang Z, Hangartner L, Cornu TI, et al. Recombinant measles viruses expressing heterologous antigens of mumps and simian immunodeficiency viruses. Vaccine 2001;19(17-19):2329-36
  • Zuniga A, Liniger M, Morin TN, et al. Sequence and immunogenicity of a clinically approved novel measles virus vaccine vector. Hum Vaccin Immunother 2013;9(3):607-13
  • Zuniga A, Wang Z, Liniger M, et al. Attenuated measles virus as a vaccine vector. Vaccine 2007;25(16):2974-83
  • Study to evaluate the dosage and safety of two intramuscular injections of an investigational clade B HIV vaccine. Available from: http://clinicaltrials.gov/show/NCT01320176
  • Clarke DK, Sidhu MS, Johnson JE, Udem SA. Rescue of mumps virus from cDNA. J Virol 2000;74(10):4831-8
  • He B, Paterson RG, Ward CD, Lamb RA. Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 1997;237(2):249-60
  • Xu R, Nasar F, Megati S, et al. Prime-boost vaccination with recombinant mumps virus and recombinant vesicular stomatitis virus vectors elicits an enhanced human immunodeficiency virus type 1 Gag-specific cellular immune response in rhesus macaques. J Virol 2009;83(19):9813-23
  • Parks GD, Alexander-Miller MA. High avidity cytotoxic T lymphocytes to a foreign antigen are efficiently activated following immunization with a recombinant paramyxovirus, simian virus 5. J Gen Virol 2002;83(Pt 5):116772
  • Arimilli S, Johnson JB, Clark KM, et al. Engineered expression of the TLR5 ligand flagellin enhances paramyxovirus activation of human dendritic cell function. J Virol 2008;82(22):10975-85
  • Chen Z, Xu P, Salyards GW, et al. Evaluating a parainfluenza virus 5-based vaccine in a host with pre-existing immunity against parainfluenza virus 5. PLoS One 2012;7(11):e50144
  • Chen Z, Zhou M, Gao X, et al. A novel rabies vaccine based on a recombinant parainfluenza virus 5 expressing rabies virus glycoprotein. J Virol 2013;87(6):2986-93
  • Clark KM, Johnson JB, Kock ND, et al. Parainfluenza virus 5-based vaccine vectors expressing vaccinia virus (VACV) antigens provide long-term protection in mice from lethal intranasal VACV challenge. Virology 2011;419(2):97-106
  • Li Z, Gabbard JD, Mooney A, et al. Efficacy of parainfluenza virus 5 mutants expressing hemagglutinin from H5N1 influenza A virus in mice. J Virol 2013;87(17):9604-9
  • Li Z, Gabbard JD, Mooney A, et al. Single-dose vaccination of a recombinant parainfluenza virus 5 expressing NP from H5N1 virus provides broad immunity against influenza A viruses. J Virol 2013;87(10):5985-93
  • Li Z, Mooney AJ, Gabbard JD, et al. Recombinant parainfluenza virus 5 expressing hemagglutinin of influenza A virus H5N1 protected mice against lethal highly pathogenic avian influenza virus H5N1 challenge. J Virol 2013;87(1):354-62
  • Mooney AJ, Li Z, Gabbard JD, et al. Recombinant parainfluenza virus 5 vaccine encoding the influenza virus hemagglutinin protects against H5N1 highly pathogenic avian influenza virus infection following intranasal or intramuscular vaccination of BALB/c mice. J Virol 2013;87(1):363-71
  • Phan SI, Chen Z, Xu P, et al. A respiratory syncytial virus (RSV) vaccine based on parainfluenza virus 5 (PIV5). Vaccine 2014;32(25):3050-7
  • Tompkins SM, Lin Y, Leser GP, et al. Recombinant parainfluenza virus 5 (PIV5) expressing the influenza A virus hemagglutinin provides immunity in mice to influenza A virus challenge. Virology 2007;362(1):139-50
  • van den Hoogen BG, de Jong JC, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001;7(6):719-24
  • Hamelin ME, Abed Y, Boivin G. Human metapneumovirus: a new player among respiratory viruses. Clin Infect Dis 2004;38(7):983-90
  • Biacchesi S, Skiadopoulos MH, Tran KC, et al. Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes. Virology 2004;321(2):247-59
  • Govindarajan D, Buchholz UJ, Samal SK. Recovery of avian metapneumovirus subgroup C from cDNA: cross-recognition of avian and human metapneumovirus support proteins. J Virol 2006;80(12):5790-7
  • Biacchesi S, Skiadopoulos MH, Yang L, et al. Recombinant human Metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate. J Virol 2004;78(23):12877-87
  • Buchholz UJ, Biacchesi S, Pham QN, et al. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, attenuation, and immunogenicity. J Virol 2005;79(11):6588-97
  • Biacchesi S, Pham QN, Skiadopoulos MH, et al. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J Virol 2005;79(19):12608-13
  • Pham QN, Biacchesi S, Skiadopoulos MH, et al. Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avian metapneumovirus exhibit improved growth in vitro and attenuation in vivo. J Virol 2005;79(24):15114-22
  • Evaluation of the safety and immunogenicity of a live attenuated human metapneumovirus Vaccine. Available from: http://clinicaltrials.gov/show/NCT01255410
  • Alexander DJ. Newcastle disease and other avian paramyxovirus infections. In: Diseases of poultry. Calnek BW, Barnes HJ, Beard CW, Reid WM and Yoder HW, Editors Iowa State University Press; Ames, IA: 1991. p. 496-519
  • Peeters BP, de Leeuw OS, Koch G, Gielkens AL. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 1999;73(6):5001-9
  • Romer-Oberdorfer A, Mundt E, Mebatsion T, et al. Generation of recombinant lentogenic Newcastle disease virus from cDNA. J Gen Virol 1999;80(Pt 11):2987-95
  • Fournier P, Schirrmacher V. Oncolytic Newcastle Disease Virus as Cutting Edge between Tumor and Host. Biology 2013;2(3):936-75
  • Park MS, Steel J, Garcia-Sastre A, et al. Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. Proc Natl Acad Sci USA 2006;103(21):8203-8
  • Veits J, Wiesner D, Fuchs W, et al. Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza. Proc Natl Acad Sci USA 2006;103(21):8197-202
  • DiNapoli JM, Kotelkin A, Yang L, et al. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc Natl Acad Sci USA 2007;104(23):9788-93
  • DiNapoli JM, Nayak B, Yang L, et al. Newcastle disease virus-vectored vaccines expressing the hemagglutinin or neuraminidase protein of H5N1 highly pathogenic avian influenza virus protect against virus challenge in monkeys. J Virol 2010;84(3):1489-503
  • Ge J, Deng G, Wen Z, et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol 2007;81(1):150-8
  • Goff PH, Krammer F, Hai R, et al. Induction of cross-reactive antibodies to novel H7N9 influenza virus by recombinant Newcastle disease virus expressing a North American lineage H7 subtype hemagglutinin. J Virol 2013;87(14):8235-40
  • Nakaya T, Cros J, Park MS, et al. Recombinant Newcastle disease virus as a vaccine vector. J Virol 2001;75(23):11868-73
  • DiNapoli JM, Yang L, Samal SK, et al. Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine 2010;29(1):17-25
  • DiNapoli JM, Yang L, Suguitan AJr, et al. Immunization of primates with a Newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus. J Virol 2007;81(21):11560-8
  • DiNapoli JM, Ward JM, Cheng L, et al. Delivery to the lower respiratory tract is required for effective immunization with Newcastle disease virus-vectored vaccines intended for humans. Vaccine 2009;27(10):1530-9
  • Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, et al. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J Virol 2006;80(3):1130-9
  • Carnero E, Li W, Borderia AV, et al. Optimization of human immunodeficiency virus gag expression by newcastle disease virus vectors for the induction of potent immune responses. J Virol 2009;83(2):584-97
  • Maamary J, Array F, Gao Q, et al. Newcastle disease virus expressing a dendritic cell-targeted HIV gag protein induces a potent gag-specific immune response in mice. J Virol 2011;85(5):2235-46
  • Jin H, Clarke D, Zhou HZ, et al. Recombinant human respiratory syncytial virus (RSV) from cDNA and construction of subgroup A and B chimeric RSV. Virology 1998;251(1):206-14
  • Collins PL. The molecular biology of human respiratory syncytial virus (RSV) of genus Pneumovirus. In: The Paramyxoviruses. David WK, Editor Plenum Publishing Corp; New york: 1991. p. 103-62
  • Blodorn K, Hagglund S, Fix J, et al. Vaccine safety and efficacy evaluation of a recombinant bovine respiratory syncytial virus (BRSV) with deletion of the SH gene and subunit vaccines based on recombinant human RSV proteins: N-nanorings, P and M2-1, in calves with maternal antibodies. PLoS ONE 2014;9(6):e100392
  • Karron RA, Wright PF, Belshe RB, et al. Identification of a recombinant live attenuated respiratory syncytial virus vaccine candidate that is highly attenuated in infants. J Infect Dis 2005;191(7):1093-104
  • Taylor G, Wyld S, Valarcher JF, et al. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves. J Gen Virol 2014;95(Pt 6):1244-54
  • Kwilas AR, Yednak MA, Zhang L, et al. Respiratory syncytial virus engineered to express the cystic fibrosis transmembrane conductance regulator corrects the bioelectric phenotype of human cystic fibrosis airway epithelium in vitro. J Virol 2010;84(15):7770-81
  • Malykhina O, Yednak MA, Collins PL, et al. A respiratory syncytial virus replicon that is noncytotoxic and capable of long-term foreign gene expression. J Virol 2011;85(10):4792-801
  • Brand D, Lemiale F, Turbica I, et al. Comparative analysis of humoral immune responses to HIV type 1 envelope glycoproteins in mice immunized with a DNA vaccine, recombinant Semliki Forest virus RNA, or recombinant Semliki Forest virus particles. AIDS Res Hum Retroviruses 1998;14(15):1369-77
  • Fleeton MN, Sheahan BJ, Gould EA, et al. Recombinant Semliki Forest virus particles encoding the prME or NS1 proteins of louping ill virus protect mice from lethal challenge. J Gen Virol 1999;80(Pt 5):1189-98
  • Berglund P, Fleeton MN, Smerdou C, Liljestrom P. Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine 1999;17(5):497-507
  • Daemen T, Pries F, Bungener L, et al. Genetic immunization against cervical carcinoma: induction of cytotoxic T lymphocyte activity with a recombinant alphavirus vector expressing human papillomavirus type 16 E6 and E7. Gene Ther 2000;7(21):1859-66
  • Vidalin O, Fournillier A, Renard N, et al. Use of conventional or replicating nucleic acid-based vaccines and recombinant Semliki forest virus-derived particles for the induction of immune responses against hepatitis C virus core and E2 antigens. Virology 2000;276(2):259-70
  • Nilsson C, Makitalo B, Berglund P, et al. Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine 2001;19(25-26):3526-36
  • Brinster C, Chen M, Boucreux D, et al. Hepatitis C virus non-structural protein 3-specific cellular immune responses following single or combined immunization with DNA or recombinant Semliki Forest virus particles. J Gen Virol 2002;83(Pt 2):369-81
  • Tsuji M, Bergmann CC, Takita-Sonoda Y, et al. Recombinant Sindbis viruses expressing a cytotoxic T-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice. J Virol 1998;72(8):6907-10
  • Kamrud KI, Hooper JW, Elgh F, Schmaljohn CS. Comparison of the protective efficacy of naked DNA, DNA-based Sindbis replicon, and packaged Sindbis replicon vectors expressing Hantavirus structural genes in hamsters. Virology 1999;263(1):209-19
  • Cheng WF, Hung CF, Hsu KF, et al. Enhancement of sindbis virus self-replicating RNA vaccine potency by targeting antigen to endosomal/lysosomal compartments. Hum Gene Ther 2001;12(3):235-52
  • Heise MT, Whitmore A, Thompson J, et al. An alphavirus replicon-derived candidate vaccine against Rift Valley fever virus. Epidemiol Infect 2009;137(9):1309-18
  • Zhu W, Fu J, Lu J, et al. Induction of humoral and cellular immune responses against hepatitis C virus by vaccination with replicon particles derived from Sindbis-like virus XJ-160. Arch Virol 2013;158(5):1013-19
  • Sashihara J, Hoshino Y, Bowman JJ, et al. Soluble rhesus lymphocryptovirus gp350 protects against infection and reduces viral loads in animals that become infected with virus after challenge. PLoS Pathog 2011;7(10):e1002308
  • Loy JD, Gander J, Mogler M, et al. Development and evaluation of a replicon particle vaccine expressing the E2 glycoprotein of bovine viral diarrhea virus (BVDV) in cattle. Virol J 2013;10:35
  • Vander Veen RL, Mogler MA, Russell BJ, et al. Haemagglutinin and nucleoprotein replicon particle vaccination of swine protects against the pandemic H1N1 2009 virus. The Veterinary record 2013;173(14):344
  • Harvey TJ, Anraku I, Linedale R, et al. Kunjin virus replicon vectors for human immunodeficiency virus vaccine development. J Virol 2003;77(14):7796-803
  • Li SH, Li XF, Zhao H, et al. Development and characterization of the replicon system of Japanese encephalitis live vaccine virus SA14-14-2. Virol J 2013;10:64
  • McKenna PM, Koser ML, Carlson KR, et al. Highly attenuated rabies virus-based vaccine vectors expressing simian-human immunodeficiency virus89.6P Env and simian immunodeficiency virusmac239 Gag are safe in rhesus macaques and protect from an AIDS-like disease. J Infect Dis 2007;195(7):980-8
  • Buchholz UJ, Granzow H, Schuldt K, et al. Chimeric bovine respiratory syncytial virus with glycoprotein gene substitutions from human respiratory syncytial virus (HRSV): effects on host range and evaluation as a live-attenuated HRSV vaccine. J Virol 2000;74(3):1187-99
  • Durbin AP, Skiadopoulos MH, McAuliffe JM, et al. Human parainfluenza virus type 3 (PIV3) expressing the hemagglutinin protein of measles virus provides a potential method for immunization against measles virus and PIV3 in early infancy. J Virol 2000;74(15):6821-31
  • Skiadopoulos MH, Surman SR, Riggs JM, et al. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology 2002;297(1):136-52
  • Bukreyev AA, Dinapoli JM, Yang L, et al. Mucosal parainfluenza virus-vectored vaccine against Ebola virus replicates in the respiratory tract of vector-immune monkeys and is immunogenic. Virology 2010;399(2):290-8
  • Bukreyev A, Marzi A, Feldmann F, et al. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge. Virology 2009;383(2):348-61
  • Skiadopoulos MH, Biacchesi S, Buchholz UJ, et al. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 2006;345(2):492-501
  • Tang RS, MacPhail M, Schickli JH, et al. Parainfluenza virus type 3 expressing the native or soluble fusion (F) Protein of Respiratory Syncytial Virus (RSV) confers protection from RSV infection in African green monkeys. J Virol 2004;78(20):11198-207
  • Tang RS, Mahmood K, Macphail M, et al. A host-range restricted parainfluenza virus type 3 (PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protective immunity in African green monkeys. Vaccine 2005;23(14):1657-67
  • Tang RS, Spaete RR, Thompson MW, et al. Development of a PIV-vectored RSV vaccine: preclinical evaluation of safety, toxicity, and enhanced disease and initial clinical testing in healthy adults. Vaccine 2008;26(50):6373-82
  • Bukreyev A, Huang Z, Yang L, et al. Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J Virol 2005;79(21):13275-84
  • Brandler S, Tangy F. Recombinant vector derived from live attenuated measles virus: potential for flavivirus vaccines. Comp Immunol Microbiol Infect Dis 2008;31(2-3):271-91
  • Myers R, Harvey M, Kaufmann TJ, et al. Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther 2008;19(7):690-8
  • Iankov ID, Haralambieva IH, Galanis E. Immunogenicity of attenuated measles virus engineered to express Helicobacter pylori neutrophil-activating protein. Vaccine 2011;29(8):1710-20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.