4,388
Views
150
CrossRef citations to date
0
Altmetric
SPECIAL FOCUS: RNA Vaccines - Review

Lipid-based mRNA vaccine delivery systems

&

References

  • Pollard C, De Koker S, Saelens X, et al. Challenges and advances towards the rational design of mRNA vaccines. Trends Mol Med 2013;19(12):705-13
  • Sahin U, Kariko K, Tureci O. mRNA-based therapeutics - developing a new class of drugs. Nat Rev Drug Discov 2014;13(10):759-80
  • Kuhn AN, Diken M, Kreiter S, et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther 2010;17(8):961-71
  • Mockey M, Goncalves C, Dupuy FP, et al. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun 2006;340(4):1062-8
  • Pascolo S. Vaccination with messenger RNA (mRNA). Handb Exp Pharmacol 2008;183:221-35
  • Brito LA, Chan M, Shaw CA, et al. A cationic Nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther 2014. [Epub ahead of print]
  • Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA 2012;109(36):14604-9
  • Xu J, Luft JC, Yi X, et al. RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 2013;10(9):3366-74
  • Weide B, Garbe C, Rammensee HG, Pascolo S. Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 2008;115(1):33-42
  • Sullenger BA, Gilboa E. Emerging clinical applications of RNA. Nature 2002;418(6894):252-8
  • Vaccination with tumor mRNA in metastatic melanoma - fixed combination versus individual selection of targeted antigens. Available from: http://clinicaltrials.gov/show/NCT00204516
  • Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients. J Immunother 2009;32(5):498-507
  • Rittig SM, Haentschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2011;19(5):990-9
  • RNActive®-derived therapeutic vaccine. Available from: http://clinicaltrials.gov/show/NCT00906243
  • Trial of an RNActive®-Derived cancer vaccine in stage IIIB/IV non small cell lung cancer (NSCLC). Available from: http://clinicaltrials.gov/show/NCT00923312
  • Rausch S, Schwentner C, Stenzl A, Bedke J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum Vaccin Immunother 2014;10(11; Epub ahead of print
  • Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993;23(7):1719-22
  • Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009;109(2):259-302
  • Zhi D, Zhang S, Cui S, et al. The headgroup evolution of cationic lipids for gene delivery. Bioconjug Chem 2013;24(4):487-519
  • Hess PR, Boczkowski D, Nair SK, et al. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 2006;55(6):672-83
  • Pollard C, Rejman J, De Haes W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther 2013;21(1):251-9
  • Lee RJ, Huang L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 1996;271(14):8481-7
  • Li S, Rizzo MA, Bhattacharya S, Huang L. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther 1998;5(7):930-7
  • Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000;30(1):1-7
  • Mockey M, Bourseau E, Chandrashekhar V, et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 2007;14(9):802-14
  • Perche F, Benvegnu T, Berchel M, et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 2011;7(4):445-53
  • Pichon C, Midoux P. Mannosylated and histidylated LPR technology for vaccination with tumor antigen mRNA. Methods Mol Biol 2013;969:247-74
  • Safinya CR. Structures of lipid-DNA complexes: supramolecular assembly and gene delivery. Curr Opin Struct Biol 2001;11(4):440-8
  • Gao X, Huang L. Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry 1996;35(3):102736
  • Perche F, Lambert O, Berchel M, et al. Gene transfer by histidylated lipopolyplexes: a dehydration method allowing preservation of their physicochemical parameters and transfection efficiency. Int J Pharm 2012;423(1):144-50
  • Phua KK, Staats HF, Leong KW, Nair SK. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep 2014;4:5128
  • Su X, Fricke J, Kavanagh DG, Irvine DJ. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm 2011;8(3):774-87
  • Benvegnu T, Rethore G, Brard M, et al. Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems. Chem Commun (Camb) 2005(44):5536-8
  • Brard M, Laine C, Rethore G, et al. Synthesis of archaeal bipolar lipid analogues: a way to versatile drug/gene delivery systems. J Org Chem 2007;72(22):8267-79
  • Le Gall T, Barbeau J, Barrier S, et al. Effects of a novel archaeal tetraether-based colipid on the in vivo gene transfer activity of two cationic amphiphiles. Mol Pharm 2014;11(9):2973-88
  • Kreiter S, Selmi A, Diken M, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010;70(22):9031-40
  • Van Lint S, Thielemans K, Breckpot K. mRNA: delivering an antitumor message? Immunotherapy 2011;3(5):605-7
  • Lorenz C, Fotin-Mleczek M, Roth G, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol 2011;8(4):627-36
  • Diken M, Kreiter S, Selmi A, et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 2011;18(7):702-8
  • Bire S, Gosset D, Jegot G, et al. Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. BMC Biotechnol 2013;13:75
  • Hayer A, Stoeber M, Ritz D, et al. Caveolin-1 is ubiquitinated and targeted to intraluminal vesicles in endolysosomes for degradation. J Cell Biol 2010;191(3):615-29
  • Perche F, Gosset D, Mevel M, et al. Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J Drug Target 2011;19(5):315-25
  • Billiet L, Gomez JP, Berchel M, et al. Gene transfer by chemical vectors, and endocytosis routes of polyplexes, lipoplexes and lipopolyplexes in a myoblast cell line. Biomaterials 2012;33(10):2980-90
  • Midoux P, Pichon C, Yaouanc JJ, Jaffres PA. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol 2009;157(2):166-78
  • Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28(2):172-6
  • Yoshizaki Y, Yuba E, Sakaguchi N, et al. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials 2014;35(28):8186-96
  • Lukacs GL, Haggie P, Seksek O, et al. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 2000;275(3):1625-9
  • Fotin-Mleczek M, Duchardt KM, Lorenz C, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother 2011;34(1):1-15
  • Avrameas A, McIlroy D, Hosmalin A, et al. Expression of a mannose/fucose membrane lectin on human dendritic cells. Eur J Immunol 1996;26(2):394-400
  • Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 1995;182(2):389-400
  • Martinez-Pomares L. The mannose receptor. J Leukoc Biol 2012;92:1177-86
  • Geijtenbeek TB, Torensma R, van Vliet SJ, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000;100(5):575-85
  • Anderluh M, Jug G, Svajger U, Obermajer N. DC-SIGN antagonists, a potential new class of anti-infectives. Curr Med Chem 2012;19(7):992-1007
  • Nonaka M, Ma BY, Murai R, et al. Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol 2008;180(5):3347-56
  • Torrelles JB, Azad AK, Schlesinger LS. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J Immunol 2006;177(3):1805-16
  • Jiang W, Swiggard WJ, Heufler C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 1995;375(6527):151-5
  • Mahnke K, Guo M, Lee S, et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 2000;151(3):673-84
  • Sehgal K, Dhodapkar KM, Dhodapkar MV. Targeting human dendritic cells in situ to improve vaccines. Immunol Lett 2014; Epub ahead of print
  • Albeituni SH, Yan J. The effects of beta-glucans on dendritic cells and implications for cancer therapy. Anticancer Agents Med Chem 2013;13(5):689-98
  • Kerscher B, Willment JA, Brown GD. The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol 2013;25(5):271-7
  • Saijo S, Ikeda S, Yamabe K, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 2010;32(5):681-91
  • Valladeau J, Ravel O, Dezutter-Dambuyant C, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000;12(1):71-81
  • de Jong MA, Vriend LE, Theelen B, et al. C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol Immunol 2010;47(6):1216-25
  • Stambach NS, Taylor ME. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology 2003;13(5):401-0
  • Tateno H, Ohnishi K, Yabe R, et al. Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem 2010;285(9):6390-400
  • Monsigny M, Roche AC, Midoux P. Uptake of neoglycoproteins via membrane lectin(s) of L1210 cells evidenced by quantitative flow cytofluorometry and drug targeting. Biol Cell 1984;51(2):187-96
  • Reina JJ, Rojo J. Glycodendritic structures: tools to interact with DC-SGN. Brazilian J. Pharm Sci 2013;49:109-24
  • Yeeprae W, Kawakami S, Yamashita F, Hashida M. Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. J Control Release 2006;114(2):193-201
  • Espuelas S, Thumann C, Heurtault B, et al. Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes. Bioconjug Chem 2008;19(12):2385-93
  • Whitfield DM, Yu SH, Dicaire CJ, Sprott GD. Development of new glycosylation methodologies for the synthesis of archaeal-derived glycolipid adjuvants. Carbohydr Res 2010;345(2):214-29
  • Sprott GD, Yeung A, Dicaire CJ, et al. Synthetic archaeosome vaccines containing triglycosylarchaeols can provide additive and long-lasting immune responses that are enhanced by archaetidylserine. Archaea 2012;2012:513231
  • Thepaut M, Guzzi C, Sutkeviciute I, et al. Structure of a glycomimetic ligand in the carbohydrate recognition domain of C-type lectin DC-SIGN. Structural requirements for selectivity and ligand design. J Am Chem Soc 2013;135(7):2518-29
  • Varga N, Sutkeviciute I, Ribeiro-Viana R, et al. A multivalent inhibitor of the DC-SIGN dependent uptake of HIV-1 and Dengue virus. Biomaterials 2014;35(13):4175-84
  • Andreini M, Doknic D, Sutkeviciute I, et al. Second generation of fucose-based DC-SIGN ligands: affinity improvement and specificity versus Langerin. Org Biomol Chem 2011;9(16):5778-86
  • Garber KC, Wangkanont K, Carlson EE, Kiessling LL. A general glycomimetic strategy yields non-carbohydrate inhibitors of DC-SIGN. Chem Commun (Camb) 2010;46(36):6747-9
  • Grim JC, Garber KC, Kiessling LL. Glycomimetic building blocks: a divergent synthesis of epimers of shikimic acid. Org Lett 2011;13(15):3790-3
  • Mangold SL, Prost LR, Kiessling LL. Quinoxalinone Inhibitors of the Lectin DC-SIGN. Chem Sci 2012;3(3):772-7
  • Srinivas R, Karmali PP, Pramanik D, et al. Cationic amphiphile with shikimic acid headgroup shows more systemic promise than its mannosyl analogue as DNA vaccine carrier in dendritic cell based genetic immunization. J Med Chem 2010;53(3):1387-91
  • Srinivas R, Garu A, Moku G, et al. A long-lasting dendritic cell DNA vaccination system using lysinylated amphiphiles with mannose-mimicking head-groups. Biomaterials 2012;33(26):6220-9
  • Delalande A, Kotopoulis S, Postema M, et al. Sonoporation: mechanistic insights and ongoing challenges for gene transfer. Gene 2013;525(2):191-9
  • Dewitte H, Van Lint S, Heirman C, et al. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. J Control Release 2014; Epub ahead of print
  • Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010;7(5):618-30
  • Zhou WZ, Hoon DS, Huang SK, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 1999;10(16):2719-24

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.