207
Views
23
CrossRef citations to date
0
Altmetric
Review

Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease

, , &

References

  • Andrade ZA. Pathogenesis of Chagas’ disease. Res Immunol 1991;142(2):126-9
  • Rassi AJr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375(9723):1388-402
  • Bestetti RB, Muccillo G. Clinical course of Chagas’ heart disease: a comparison with dilated cardiomyopathy. Int J Cardiol 1997;60(2):187-93
  • Rassi AJr, Rassi A, Little CW. Chagas’ heart disease. Clin Cardiol 2000;23(12):883-9
  • Castro JA, de Mecca MM, Bartel CL. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol 2006;25(8):471-9
  • Jackson Y, Alirol E, Getaz L, et al. Tolerance and safety of nifurtimox in patients with chronic Chagas disease. Clin Infect Dis 2010;51(10):e69-75
  • Bern C. Antitrypanosomal therapy for chronic Chagas’ disease. N Engl J Med 2011;364(26):2527-34
  • BENEFIT: evaluation of the use of antiparasital drug (Benznidazole) in the treatment of chronic Chagas’ disease. Clinicaltrials.gov: a service of the U.S. National Institutes of Health. Available from: http:/clinicaltrials.gov/show/NCT00123916 [Last accessed 20 August 2014]
  • Viotti R, Alarcón de Noya B, Araujo-Jorge T, et al. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother 2014;58(2):635-9
  • de Souza W, Rodrigues CJ. Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip Perspect Infect Dis 2009;2009:642502
  • Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 2010;115(1-2):55-68
  • Vandeberg J. Chagas Drug Discovery Consortium Meeting. Available from: https://sites.google.com/site/chagasddc/ [Last accessed 20 August 2014]
  • Molina I. Chagas Drug Discovery Consortium Meeting. International Congress of Tropical Medicine. 2012. Available from: http://ictmm2012.ioc.fiocruz.br/program_25_sept.html [Last accessed 30 January 2014]
  • Bustamante JM, Tarleton LR. Potential new clinical therapies for Chagas disease. Expert Rev Clin Pharmacol 2014;7(3):317-25
  • Lee BY, Bacon KM, Wateska AR, et al. Modeling the economic value of a Chagas’ disease therapeutic vaccine. Hum Vaccin Immunother 2012;8(9):1293-301
  • Dumonteil E, Bottazzi ME, Zhan B, et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines 2012;11(9):1043-55
  • Hotez PJ, Bottazzi ME, Franco-Paredes C, et al. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2008;2(9):e300
  • Dias JC, Silveira CA, Schofield JC. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 2002;97(5):603-12
  • Schofield CJ, Jannin J, Salvatella R. The future of Chagas disease control. Trends Parasitol 2006;22(12):583-8
  • Gurtler RE. Sustainability of vector control strategies in the Gran Chaco Region: current challenges and possible approaches. Mem Inst Oswaldo Cruz 2009;104(Suppl 1):52-9
  • Kierszenbaum F. Chagas’ disease and the autoimmunity hypothesis. Clin Microbiol Rev 1999;210-23
  • Tarleton RL, Zhang L. Chagas disease etiology: autoimmunity or parasite persistence? Parasitol Today 1999;15(3):94-9
  • Benvenuti LA, Roggério A, Freitas HF, et al. Chronic American trypanosomiasis: parasite persistence in endomyocardial biopsies is associated with high-grade myocarditis. Ann Trop Med Parasitol 2008;102(6):481-7
  • Schijman AG, Vigliano CA, Viotti RJ, et al. Trypanosoma cruzi DNA in cardiac lesions of Argentinean patients with end-stage chronic Chagas heart disease. Am J Trop Med Hyg 2004;70(2):210-20
  • Vago AR, Andrade LO, Leite AA, et al. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol 2000;156(5):1805-9
  • Kalil J, Cunha-Neto E. Autoimmunity in Chagas disease cardiomyopathy: fulfilling the criteria at last? Parasitol Today 1996;12(10):396-9
  • Marin-Neto JA, Cunha-Neto E, Maciel BC, et al. Pathogenesis of chronic Chagas heart disease. Circulation 2007;115(9):1109-23
  • Perez-Fuentes R, Guégan JF, Barnabé C, et al. Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol 2003;33(3):293-9
  • Tarleton RL, Zhang L, Downs OM. Autoimmune rejection of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. Proc Natl Acad Sci USA 1997;94(8):3932-7
  • Corrales M, Cardozo R, Segura MA, et al. Comparative efficacies of TAK-187, a long-lasting ergosterol biosynthesis inhibitor, and benznidazole in preventing cardiac damage in a murine model of Chagas’ disease. Antimicrob Agents Chemother 2005;49(4):1556-60
  • Garcia S, Ramos CO, Senra JF, et al. Treatment with benznidazole during the chronic phase of experimental Chagas’ disease decreases cardiac alterations. Antimicrob Agents Chemother 2005;49(4):1521-8
  • Garg N, Tarleton LR. Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infect Immun 2002;70(10):5547-55
  • Tarleton RL. Chagas disease: a role for autoimmunity? Trends Parasitol 2003;19(10):447-51
  • Cordova E, Boschi A, Ambrosioni J, et al. Reactivation of Chagas disease with central nervous system involvement in HIV-infected patients in Argentina, 1992-2007. Int J Infect Dis 2008;12(6):587-92
  • Diez M, Favaloro L, Bertolotti A, et al. Usefulness of PCR strategies for early diagnosis of Chagas’ disease reactivation and treatment follow-up in heart transplantation. Am J Transplant 2007;7(6):1633-40
  • Fiorelli AI, Stolf NA, Honorato R, et al. Later evolution after cardiac transplantation in Chagas’ disease. Transplant Proc 2005;37(6):2793-8
  • Schijman AG, Vigliano C, Burgos J, et al. Early diagnosis of recurrence of Trypanosoma cruzi infection by polymerase chain reaction after heart transplantation of a chronic Chagas’ heart disease patient. J Heart Lung Transplant 2000;19(11):1114-17
  • Vaidian AK, Weiss ML, Tanowitz BH. Chagas’ disease and AIDS. Kinetoplastid Biol Dis 2004;3(1):2
  • Hotez PJ, Dumonteil E, Heffernan MJ, et al. Innovation for the ‘bottom 100 million’: eliminating neglected tropical diseases in the Americas. Adv Exp Med Biol 2013;764:1-12
  • WHO, First WHO report on neglected tropical disease. working to overcome the impact of neglected tropical disease. WHO; Geneva: 2010
  • Hotez PJ, Bottazzi ME, Dumonteil E, et al. Texas and Mexico: sharing a legacy of poverty and neglected tropical diseases. PLoS Negl Trop Dis 2012;6(3):e1497
  • Lee BY, Bacon KM, Connor DL, et al. The potential economic value of a Trypanosoma cruzi (Chagas disease) vaccine in Latin America. PLoS Negl Trop Dis 2010;4(12):e916
  • Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 2010;115(1-2):14-21
  • Schmunis G. Status of and cost of Chagas disease worldwide. Lancet Infect Dis 2013;13(4):283-4
  • Hotez P. A handful of ‘antipoverty’ vaccines exist for neglected diseases, but the world’s poorest billion people need more. Health Aff (Millwood) 2011;30(6):1080-7
  • Gravina HD, Antonelli L, Gazzinelli RT, et al. Differential use of TLR2 and TLR9 in the regulation of immune responses during the infection with Trypanosoma cruzi. PLoS One 2013;8(5):e63100
  • Rodrigues MM, Oliveira CA, Bellio M. The Immune Response to Trypanosoma cruzi: role of Toll-Like Receptors and Perspectives for Vaccine Development. J Parasitol Res 2012;2012:507874
  • Pellegrini A, Guiñazu N, Giordanengo L, et al. The role of Toll-like receptors and adaptive immunity in the development of protective or pathological immune response triggered by the Trypanosoma cruzi protozoan. Future Microbiol 2011;6(12):1521-33
  • DosReis GA. Evasion of immune responses by Trypanosoma cruzi, the etiological agent of Chagas disease. Braz J Med Biol Res 2011;44(2):84-90
  • Bafica A, Santiago HC, Goldszmid R, et al. Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection. J Immunol 2006;177(6):3515-19
  • Tarleton RL. Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 2007;19(4):430-4
  • Kurup SP, Tarleton LR. Perpetual expression of PAMPs necessary for optimal immune control and clearance of a persistent pathogen. Nat Commun 2013;4:2616
  • Rodrigues AA, Saosa JS, da Silva GK, et al. IFN-gamma plays a unique role in protection against low virulent Trypanosoma cruzi strain. PLoS Negl Trop Dis 2012;6(4):e1598
  • Padilla AM, Bustamante MJ, Tarleton LR. CD8+ T cells in Trypanosoma cruzi infection. Curr Opin Immunol 2009;21(4):385-90
  • Basso B. Modulation of immune response in experimental Chagas disease. World J Exp Med 2013;3(1):1-10
  • Kayama H, Takeda K. The innate immune response to Trypanosoma cruzi infection. Microbes Infect 2010;12(7):511-17
  • Golgher D, Gazzinelli TR. Innate and acquired immunity in the pathogenesis of Chagas disease. Autoimmunity 2004;37(5):399-409
  • Teixeira MM, Gazzinelli TR, Silva SJ. Chemokines, inflammation and Trypanosoma cruzi infection. Trends Parasitol 2002;18(6):262-5
  • Parodi C, Padilla MA, Basombrio AM. Protective immunity against Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2009;104(Suppl 1):288-94
  • Junqueira C, et al. The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med 2010;12:e29
  • Cazorla SI, Frank MF, Malchiodi LE. Vaccination approaches against Trypanosoma cruzi infection. Expert Rev Vaccines 2009;8(7):921-35
  • Quijano-Hernandez I, Dumonteil E. Advances and challenges towards a vaccine against Chagas disease. Hum Vaccin 2011;7(11):1184-91
  • Garg N, Bhatia V. Current status and future prospects for a vaccine against American trypanosomiasis. Expert Rev Vaccines 2005;4(6):867-80
  • Pizzi T, Prager R. [Immunity to infection induced by culture of Trypanosoma cruzi of atenuated virulence; preliminary communication]. Bol Inf Parasit Chil 1952;7(2):20-1
  • Menezes H II. The avirulence of the cultivated Y strain of Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 1970;12(2):129-35
  • Lima MT, Jansen AM, Rondinelli E, et al. Trypanosoma cruzi: properties of a clone isolated from CL strain. Parasitol Res 1991;77(1):77-81
  • Basombrio MA, Besuschio S. Trypanosoma cruzi culture used as vaccine to prevent chronic Chagas’ disease in mice. Infect Immun 1982;36(1):351-6
  • Revelli S, Gómez L, Wietzerbin J, et al. Levels of tumor necrosis factor alpha, gamma interferon, and interleukins 4,6, and 10 as determined in mice infected with virulent or attenuated strains of Trypanosoma cruzi. Parasitol Res 1999;85(2):147-50
  • Revelli S, et al. Evaluation of an attenuated Trypanosoma cruzi strain in rats. Analysis of survival, parasitemia and tissue damage. Medicina (B Aires) 1993;53(1):39-43
  • Basombrio MA, Besusdio S, Cossio P. Side effects of immunization with live-attenuated Trypanosoma cruzi in mice and rabbits. Infect Immun 1982;36:342-50
  • Gomez LE, Nasser RJ, Basombrio AM. Complete immunization against Trypanosoma cruzi verified in individual mice by complement-mediated lysis. Mem Inst Oswaldo Cruz 1996;91(1):55-61
  • Basombrio MA. Trypanosoma cruzi: partial prevention of the natural infection of guinea pigs with a killed parasite vaccine. Exp Parasitol 1990;71(1):1-8
  • Basombrio MA, Segura AM, Nasser RJ. Relationship between long-term resistance to Trypanosoma cruzi and latent infection, examined by antibody production and polymerase chain reaction in mice. J Parasitol 2002;88(6):1107-12
  • Basombrio MA, Segura MA, Mora MC, et al. Field trial of vaccination against American trypanosomiasis (Chagas’ disease) in dogs. Am J Trop Med Hyg 1993;49(1):143-51
  • Santori FR, Dorta ML, Juliano L, et al. Identification of a domain of Trypanosoma cruzi metacyclic trypomastigote surface molecule gp82 required for attachment and invasion of mammalian cells. Mol Biochem Parasitol 1996;78(1-2):209-16
  • Taibi A, Plumas-Marty B, Guevara-Espinoza A, et al. Trypanosoma cruzi: immunity-induced in mice and rats by trypomastigote excretory-secretory antigens and identification of a peptide sequence containing a T cell epitope with protective activity. J Immunol 1993;151(5):2676-89
  • Morell M, Thomas MC, Caballero T, et al. The genetic immunization with paraflagellar rod protein-2 fused to the HSP70 confers protection against late Trypanosoma cruzi infection. Vaccine 2006;24(49-50):7046-55
  • Maranon C, Thomas MC, Planelles L, et al. The immunization of A2/K(b) transgenic mice with the KMP11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: identification of A2-restricted epitopes. Mol Immunol 2001;38(4):279-87
  • Yoshida N, Araya JE, da Silveira JF, et al. Trypanosoma cruzi: antibody production and T cell response induced by stage-specific surface glycoproteins purified from metacyclic trypomastigotes. Exp Parasitol 1993;77(4):405-13
  • Araujo AF, de Alencar BC, Vasconcelos JR, et al. CD8+-T-cell-dependent control of Trypanosoma cruzi infection in a highly susceptible mouse strain after immunization with recombinant proteins based on amastigote surface protein 2. Infect Immun 2005;73(9):6017-25
  • Giddings OK, Eickhoff CS, Sullivan NL, et al. Intranasal vaccinations with the trans-sialidase antigen plus CpG Adjuvant induce mucosal immunity protective against conjunctival Trypanosoma cruzi challenges. Infect Immun 2010;78(3):1333-8
  • Hoft DF, Eickhoff CS, Giddings OK, et al. Trans-sialidase recombinant protein mixed with CpG motif-containing oligodeoxynucleotide induces protective mucosal and systemic trypanosoma cruzi immunity involving CD8+ CTL and B cell-mediated cross-priming. J Immunol 2007;179(10):6889-900
  • Guinazu N, Pellegrini A, Carrera-Silva EA, et al. Immunisation with a major Trypanosoma cruzi antigen promotes pro-inflammatory cytokines, nitric oxide production and increases TLR2 expression. Int J Parasitol 2007;37(11):1243-54
  • Cazorla SI, Frank FM, Becker PD, et al. Prime-boost immunization with cruzipain co-administered with MALP-2 triggers a protective immune response able to decrease parasite burden and tissue injury in an experimental Trypanosoma cruzi infection model. Vaccine 2008;26(16):1999-2009
  • Fontanella GH, De Vusser K, Laroy W, et al. Immunization with an engineered mutant trans-sialidase highly protects mice from experimental Trypanosoma cruzi infection: a vaccine candidate. Vaccine 2008;26(19):2322-34
  • Eickhoff CS, Vasconcelos JR, Sullivan NL, et al. Co-administration of a plasmid DNA encoding IL-15 improves long-term protection of a genetic vaccine against Trypanosoma cruzi. PLoS Negl Trop Dis 2011;5(3):e983
  • Rigato PO, de Alencar BC, de Vasconcelos JR, et al. Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8(+) T effector memory cells specific for a human parasite, Trypanosoma cruzi. Infect Immun 2011;79(5):2120-30
  • Cazorla SI, Becker PD, Frank FM, et al. Oral vaccination with Salmonella enterica as a cruzipain-DNA delivery system confers protective immunity against Trypanosoma cruzi. Infect Immun 2008;76(1):324-33
  • Matos MN, Cazorla SI, Bivona AE, et al. Tc52 Amino Terminal Domain DNA Carried by Attenuated Salmonella Induce Protection against a Trypanosoma cruzi Lethal Challenge. Infect Immun 2014;82(10):4265-75
  • Quijano-Hernandez IA, Castro-Barcena A, Vázquez-Chagoyán JC, et al. Preventive and therapeutic DNA vaccination partially protect dogs against an infectious challenge with Trypanosoma cruzi. Vaccine 2013;31(18):2246-52
  • Gupta S, Garg JN. Prophylactic efficacy of TcVac2 against Trypanosoma cruzi in mice. PLoS Negl Trop Dis 2010;4(8):e797
  • Gupta S, Garg JN. TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. PLoS One 2013;8(3):e59434
  • Cazorla SI, et al. Oral Multicomponent DNA Vaccine Delivered by Attenuated Salmonella Elicited Immunoprotection Against American Trypanosomiasis. J Infect Dis 2014. [Epub ahead of print]
  • Foulds KE, Wu YC, Seder AR. Th1 memory: implications for vaccine development. Immunol Rev 2006;211:58-66
  • Constant S, Pfeiffer C, Woodard A, et al. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J Exp Med 1995;182(5):1591-6
  • Metz DP, Bottomly K. Function and regulation of memory CD4 T cells. Immunol Res 1999;19(2-3):127-41
  • Leguizamon MS, Campetella OE, Orn A, et al. Reversion of culture-induced virulence-attenuation in Trypanosoma cruzi. Mem Inst Oswaldo Cruz 1993;88(1):161-2
  • Kelly JM. Genetic transformation of parasitic protozoa. Adv Parasitol 1997;39:227-70
  • Clayton CE. Genetic manipulation of kinetoplastida. Parasitol Today 1999;15(9):372-8
  • Coburn CM, Otteman KM, McNeely T, et al. Stable DNA transfection of a wide range of trypanosomatids. Mol Biochem Parasitol 1991;46(1):169-79
  • DaRocha WD, Otsu K, Teixeira SM, et al. Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Mol Biochem Parasitol 2004;133(2):175-86
  • Saljoughian N, Taheri T, Rafati S. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol 2014;5:134
  • Khan SM, Janse CJ, Kappe SH, et al. Genetic engineering of attenuated malaria parasites for vaccination. Curr Opin Biotechnol 2012;23(6):908-16
  • Gannavaram S, Dey R, Avishek K, et al. Biomarkers of safety and immune protection for genetically modified live attenuated leishmania vaccines against visceral leishmaniasis - discovery and implications. Front Immunol 2014;5:241
  • Selvapandiyan A, Dey R, Gannavaram S, et al. Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis. Vaccine 2014;32(31):3895-901
  • Chhajer R, Ali N. Genetically modified organisms and visceral leishmaniasis. Front Immunol 2014;5:213
  • VanBuskirk KM, O’Neill MT, De La Vega P, et al. Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design. Proc Natl Acad Sci USA 2009;106(31):13004-9
  • Spring M, Murphy J, Nielsen R, et al. First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine 2013;31(43):4975-83
  • Selvapandiyan A, Debrabant A, Duncan R, et al. Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. J Biol Chem 2004;279(24):25703-10
  • Fiuza JA, Santiago Hda C, Selvapandiyan A, et al. Induction of immunogenicity by live attenuated Leishmania donovani centrin deleted parasites in dogs. Vaccine 2013;31(14):1785-92
  • Dey R, Dagur PK, Selvapandiyan A, et al. Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J Immunol 2013;190(5):2138-49
  • Gannavaram S, Connelly PS, Daniels MP, et al. Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of beta-oxidation of fatty acids and blocks cell division in the amastigote stage. Mol Microbiol 2012;86(1):187-98
  • Gannavaram S, Davey S, Lakhal-Naouar I, et al. Deletion of ubiquitin fold modifier protein Ufm1 processing peptidase Ufsp in L. donovani abolishes Ufm1 processing and alters pathogenesis. PLoS Negl Trop Dis 2014;8(2):e2707
  • Ajioka J, Swindle J. The calmodulin-ubiquitin (CUB) genes of Trypanosoma cruzi are essential for parasite viability. Mol Biochem Parasitol 1996;78(1-2):217-25
  • Annoura T, Nara T, Makiuchi T, et al. The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions. J Mol Evol 2005;60(1):113-27
  • Caler EV, Vaena de Avalos S, Haynes PA, et al. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J 1998;17(17):4975-86
  • Collins MH, Craft JM, Bustamante JM, et al. Oral exposure to Trypanosoma cruzi elicits a systemic CD8(+) T cell response and protection against heterotopic challenge. Infect Immun 2011;79(8):3397-406
  • Cooper R, de Jesus AR, Cross AG. Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion. J Cell Biol 1993;122(1):149-56
  • de Souza FS, Rampazzo Rde C, Manhaes L, et al. Knockout of the gene encoding the kinetoplast-associated protein 3 (KAP3) in Trypanosoma cruzi: effect on kinetoplast organization, cell proliferation and differentiation. Mol Biochem Parasitol 2010;172(2):90-8
  • Gluenz E, Taylor CM, Kelly MJ. The Trypanosoma cruzi metacyclic-specific protein Met-III associates with the nucleolus and contains independent amino and carboxyl terminal targeting elements. Int J Parasitol 2007;37(6):617-25
  • MacRae JI, Obado SO, Turnock DC, et al. The suppression of galactose metabolism in Trypanosoma cruzi epimastigotes causes changes in cell surface molecular architecture and cell morphology. Mol Biochem Parasitol 2006;147(1):126-36
  • Manning-Cela R, Cortés A, González-Rey E, et al. LYT1 protein is required for efficient in vitro infection by Trypanosoma cruzi. Infect Immun 2001;69(6):3916-23
  • Perez Brandan C, Padilla AM, Xu D, et al. Knockout of the dhfr-ts gene in Trypanosoma cruzi generates attenuated parasites able to confer protection against a virulent challenge. PLoS Negl Trop Dis 2011;5(12):e1418
  • Sánchez Valdéz F, Pérez Brandán C, Zago MP, et al. Trypanosoma cruzi Carrying a Monoallelic Deletion of the Calreticulin (TcCRT) gene are Susceptible to Complement Mediated Killing and Defective in their Metacyclogenesis. Mol Immunol 2013;53(3):198-205
  • Wilkinson SR, Taylor MC, Horn D, et al. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA 2008;105(13):5022-7
  • Allaoui A, François C, Zemzoumi K, et al. Intracellular growth and metacyclogenesis defects in Trypanosoma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele. Mol Microbiol 1999;32(6):1273-86
  • de Jesus AR, Cooper R, Espinosa M, et al. Gene deletion suggests a role for Trypanosoma cruzi surface glycoprotein GP72 in the insect and mammalian stages of the life cycle. J Cell Sci 1993;106(Pt 4):1023-33
  • Nozaki T, Cross AG. Functional complementation of glycoprotein 72 in a Trypanosoma cruzi glycoprotein 72 null mutant. Mol Biochem Parasitol 1994;67(1):91-102
  • Basombrio MA, Gómez L, Padilla AM, et al. Targeted deletion of the gp72 gene decreases the infectivity of Trypanosoma cruzi for mice and insect vectors. J Parasitol 2002;88(3):489-93
  • Barrio AB, Van Voorhis WC, Basombrio MA. Trypanosoma cruzi: attenuation of virulence and protective immunogenicity after monoallelic disruption of the cub gene. Exp Parasitol 2007;117(4):382-9
  • Zago MP, Barrio AB, Cardozo RM, et al. Impairment of infectivity and immunoprotective effect of a LYT1 null mutant of Trypanosoma cruzi. Infect Immun 2008;76(1):443-51
  • Atwood JA3rd, Weatherly DB, Minning TA, et al. The Trypanosoma cruzi proteome. Science 2005;309(5733):473-6
  • Xu D, Brandán CP, Basombrío MA, et al. Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi. BMC Microbiol 2009;9:90
  • Canavaci AM, Bustamante JM, Padilla AM, et al. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis 2010;4(7):e740
  • Cruz A, Coburn MC, Beverley MS. Double targeted gene replacement for creating null mutants. Proc Natl Acad Sci USA 1991;88(16):7170-4
  • Pérez brandán C, Basombrío AM. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool. Bioengineered 2012;3(4):240-4
  • Rosenberg CS, Martin LD, Tarleton LR. CD8+ T cells specific for immunodominant trans-sialidase epitopes contribute to control of Trypanosoma cruzi infection but are not required for resistance. J Immunol 2010;185(1):560-8
  • Labriola C, Cazzulo JJ, Parodi JA. Trypanosoma cruzi calreticulin is a lectin that binds monoglucosylated oligosaccharides but not protein moieties of glycoproteins. Mol Biol Cell 1999;10(5):1381-94
  • Ferreira V, Valck C, Sánchez G, et al. The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosomacruzi. J Immunol 2004;172:3042-50
  • Sosoniuk E, Vallejos G, Kenawy H, et al. Trypanosoma cruzi calreticulin inhibits the complement lectin pathway activation by direct interaction with L-Ficolin. Mol Immunol 2014;60(1):80-5
  • Valck C, Ramírez G, López N, et al. Molecular mechanisms involved in the inactivation of the first component of human complement by Trypanosoma cruzi calreticulin. Mol Immunol 2010;47(7-8):1516-21
  • Ferreira V, Molina MC, Valck C, et al. Role of calreticulin from parasites in its interaction with vertebrate hosts. Mol Immunol 2004;40(17):1279-91
  • Ramirez G, Valck C, Molina MC, et al. Trypanosoma cruzi calreticulin: a novel virulence factor that binds complement C1 on the parasite surface and promotes infectivity. Immunobiology 2010;216:265-73
  • Ragone PG, Pérez Brandán C, Padilla AM, et al. Biological behavior of different Trypanosoma cruzi isolates circulating in an endemic area for Chagas disease in the Gran Chaco region of Argentina. Acta Trop 2012;123(3):196-201
  • Sanchez-Valdez FJ, Pérez Brandán C, Ramírez G, et al. A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge. PLoS Negl Trop Dis 2014;8(2):e2696
  • Pena-Diaz J, Montalvetti A, Flores CL, et al. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae. Mol Biol Cell 2004;15(3):1356-63
  • Bastos CJ, Aras R, Mota G, et al. Clinical outcomes of thirteen patients with acute Chagas disease acquired through oral transmission from two urban outbreaks in northeastern Brazil. PLoS Negl Trop Dis 2010;4(6):e711
  • Nobrega AA, Garcia MH, Tatto E, et al. Oral transmission of Chagas disease by consumption of acai palm fruit, Brazil. Emerg Infect Dis 2009;15(4):653-5
  • Kuehn CC, Oliveira LG, Miranda MA, et al. Distinctive histopathology and modulation of cytokine production during oral and intraperitoneal Trypanosoma cruzi Y strain infection. Parasitology 2014;141(7):904-13
  • Robinson HL, Amara RR. T cell vaccines for microbial infections. Nat Med 2005;11(4 Suppl):S25-32
  • Vuola JM, Keating S, Webster DP, et al. Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J Immunol 2005;174(1):449-55
  • Basombrio MA, Arredes HR, Rossi R, et al. Histopathological and parasitological evidence of immunization of mice against challenge with 17 wild isolates of Trypanosoma cruzi. Int J Parasitol 1986;16(4):375-80
  • Cruz AK, Titus R, Beverley MS. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proc Natl Acad Sci USA 1993;90(4):1599-603
  • Martinez-Calvillo S, Stuart K, Myler JP. Ploidy changes associated with disruption of two adjacent genes on Leishmania major chromosome 1. Int J Parasitol 2005;35(4):419-29
  • Mukherjee A, Langston DL, Ouellette M. Intrachromosomal tandem duplication and repeat expansion during attempts to inactivate the subtelomeric essential gene GSH1 in Leishmania. Nucleic Acids Res 2011;39(17):7499-511
  • Cohen JE, Gurtler ER. Modeling household transmission of American trypanosomiasis. Science 2001;293(5530):694-8
  • Estrada-Franco JG, Bhatia V, Diaz-Albiter H, et al. Human Trypanosoma cruzi infection and seropositivity in dogs, Mexico. Emerg Infect Dis 2006;12(4):624-30
  • Gurtler RE, Cecere MC, Lauricella MA, et al. Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology 2007;134(Pt 1):69-82
  • Meeusen EN, Walker J, Peters A, et al. Current status of veterinary vaccines. Clin Microbiol Rev 2007;20(3):489-510. table of contents
  • Duncan R, Dey R, Tomioka K, et al. Biomarkers of attenuation in the leishmania donovani centrin gene deleted cell line-requirements for safety in a live vaccine candidate. Open Parasitol J 2009;3:14-23
  • Davoudi N, Tate CA, Warburton C, et al. Development of a recombinant Leishmania major strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine 2005;23(9):1170-7
  • Davoudi N, Khamesipour A, Mahboudi F, et al. A dual drug sensitive L. major induces protection without lesion in C57BL/6 mice. PLoS Negl Trop Dis 2014;8(5):e2785
  • Bouvier LA, Cámara Mde L, Canepa GE, et al. Plasmid vectors and molecular building blocks for the development of genetic manipulation tools for Trypanosoma cruzi. PLoS One 2013;8(10):e80217
  • Curto Mde L, Lorenzi HA, Moraes Barros RR, et al. Cloning and expression of transgenes using linear vectors in Trypanosoma cruzi. Int J Parasitol 2014;44(7):447-56
  • Hsu PD, Lander SE, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157(6):1262-78

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.