974
Views
27
CrossRef citations to date
0
Altmetric
Review

T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity

, , , , , , & show all
Pages 607-617 | Received 04 Sep 2015, Accepted 18 Nov 2015, Published online: 15 Feb 2016

References

  • Ahmed SS, Volkmuth W, Duca J, et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med. 2015;7(294):294ra105.
  • Zhao J, Zhao J, Fett C, et al. IFN-γ- and IL-10-expressing virus epitope-specific Foxp3(+) T reg cells in the central nervous system during encephalomyelitis. J Exp Med. 2011;208(8):1571–1577.
  • Fazilleau N, Bachelez H, Gougeon ML, et al. Cutting edge: size and diversity of CD4+CD25high Foxp3+ regulatory T cell repertoire in humans: evidence for similarities and partial overlapping with CD4+CD25- T cells. J Immunol. 2007;179(6):3412–3416.
  • Pacholczyk R, Ignatowicz H, Kraj P, et al. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity. 2006;25(2):249–259.
  • Wong J, Obst R, Correia-Neves M, et al. Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol. 2007;178(11):7032–7041.
  • Hsieh CS, Zheng Y, Liang Y, et al. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol. 2006;7(4):401–410.
  • Roncarolo MG, Gregori S, Battaglia M, et al. Interleukin-10 secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.
  • Lathrop SK, Bloom SM, Rao SM, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–254.
  • Haribhai D, Williams JB, Jia S, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 2011;35(1):109–122.
  • Huang H, Ma Y, Dawicki W, et al. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen. J Immunol. 2013;191(3):1136–1143.
  • Attridge K, Walker LS. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs. Immunol Rev. 2014;259(1):23–39.
  • Josefowicz SZ, Niec RE, Kim HY, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482(7385):395–399.
  • Ohnmacht C, Park JH, Cording S, et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science. 2015 Aug 28;349(6251):989–993.
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014 27;157(1):121–141.
  • Wang SM, Tsai MH, Lei HY, et al. The regulatory T cells in anti-influenza antibody response post influenza vaccination. Hum Vaccin Immunother. 2012;8(9):1243–1249.
  • Welsh RM, Che JW, Brehm MA, et al. Heterologous immunity between viruses. Immunol Rev. 2010;235(1):244–266.
  • Yarkoni S, Kaminitz A, Sagiv Y, et al. Involvement of IL-2 in homeostasis of regulatory T cells: the IL-2 cycle. Bioessays. 2008;30(9):875–888.
  • De Groot AS, Moise L, McMurry JA, et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood. 2008;112(8):3303–3311.
  • Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol. 2012;42(1):102–111.
  • Ahmed SS, Schur PH, MacDonald NE, et al. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. J Autoimmun. 2014;50:1–11.
  • Larrubia JR, Moreno-Cubero E, Lokhande MU, et al. Adaptive immune response during hepatitis C virus infection. World J Gastroenterol. 2014;20(13):3418–3430.
  • Song H, Pavlicek JW, Cai F, et al. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome. Retrovirology. 2012;9:89.
  • Vider-Shalit T, Sarid R, Maman K, et al. Viruses selectively mutate their CD8 CTL epitopes–a large-scale immunomic analysis. Bioinformatics. 2009;25(12):i39–44.
  • He L, De Groot AS, Gutierrez AH, et al. Integrated assessment of predicted MHC binding and cross-conservation with self reveals patterns of viral camouflage. BMC Bioinformatics. 2014;15(Suppl 4):S1.
  • De Groot AS, Moise L, Liu R, et al. Immune camouflage: relevance to vaccines and human immunology. Hum Vaccin Immunother. 2014;10(12):3570–3575.
  • Moise L, Terry F, Gutierrez AH, et al. Smarter vaccine design will circumvent regulatory T cell-mediated evasion in chronic HIV and HCV infection. Front Microbiol. 2014;6(5):502.
  • Losikoff PT, Mishra S, Terry F, et al. HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. J Hepatol. 2015;62(1):48–55.
  • Liu R, Moise L, Tassone R, et al. H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance. Human Vaccin Immunother. 2015;11(9):2241–2252.
  • Sharma S, Thomas PG. The two faces of heterologous immunity: protection or immunopathology. J Leukoc Biol. 2014;95(3):405–416.
  • Weber CA, Mehta PJ, Ardito M, et al. T cell epitope: friend or foe? Immunogenicity of biologics in context. Adv Drug Deliv Rev. 2009;61(11):965–976.
  • Page KR, Scott AL, Manabe YC. The expanding realm of heterologous immunity: friend or foe? Cell Microbiol. 2006;8(2):185–196.
  • Che JW, Selin LK, Welsh RM. Evaluation of non-reciprocal heterologous immunity between unrelated viruses. Virology. 2015;482:89–97.
  • Shen ZT, Nguyen TT, Daniels KA, et al. Disparate epitopes mediating protective heterologous immunity to unrelated viruses share peptide-MHC structural features recognized by cross-reactive T cells. J Immunol. 2013;191(10):5139–5152.
  • Moise L, Gutierrez AH, Bailey-Kellogg C, et al. The two-faced T cell epitope: examining the host-microbe interface with JanusMatrix. Hum Vaccin Immunother. 2013;9(7):1577–1586.
  • Moise L, Gutierrez A, Kibria F, et al. iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum Vaccin Immunother. 2015;11(9):2312–2321.
  • Birnbaum ME, Mendoza JL, Sethi DK, et al. Deconstructing the peptide-MHC specificity of T cell recognition. Cell. 2014;157(5):1073–1087.
  • Van Herwijnen MJ, Wieten L, Van Der Zee R, et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci USA. 2012;109(35):14134–14139.
  • De Jong H, Koffeman EC, Meerding JM, et al. T cell recognition of naturally presented epitopes of self-heat shock protein 70. Cell Stress Chaperones. 2014;19(4):569–578.
  • Shoda H, Fujio K, Sakurai K, et al. Autoantigen BiP-derived HLA-DR4 epitopes differentially recognized by effector and regulatory T cells in rheumatoid arthritis. Arthritis Rheumatol. 2015;67(5):1171–1181.
  • Wieten L, Van Der Zee R, Spiering R, et al. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 2010;62(4):1026–1035.
  • Van Eden W, Van Der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005;5(4):318–330.
  • Adamopoulou E, Tenzer S, Hillen N, et al. Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nat Commun. 2013;4:2039.
  • Espinosa G, Collado JA, Scholz E, et al. Peptides presented by HLA class I molecules in the human thymus. J Proteomics. 2013;94:23–36.
  • Clement CC, Cannizzo ES, Nastke M-D, et al. An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS One. 2010;5(3):e9863.
  • Nascimento EJ, Mailliard RB, Khan AM, et al. Identification of conserved and HLA promiscuous DENV3 T-cell epitopes. PLoS Negl Trop Dis. 2013;7(10):e2497.
  • Zhang S, Desrosiers J, Aponte-Pieras JR, et al. Human immune responses to H. pylori HLA Class II epitopes identified by immunoinformatic methods. PLoS One. 2014;9(4):e94974.
  • Moise L, McMurry JA, Pappo J, et al. Identification of genome-derived vaccine candidates conserved between human and mouse-adapted strains of H. Pylori. Hum Vaccin. 2008;4(3):219–223.
  • Sthoeger Z, Zinger H, Sharabi A, et al. The tolerogenic peptide, hCDR1, down-regulates the expression of interferon-α in murine and human systemic lupus erythematosus. PLoS One. 2013;8(3):e60394.
  • Zanin-Zhorov A, Cahalon L, Tal G, et al. Heat shock protein 60 enhances CD4+ CD25+ regulatory T cell function via innate TLR2 signaling. J Clin Invest. 2006;116(7):2022–2032.
  • Kamphuis S, Kuis W, De Jager W, et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet. 2005;366(9479):50–56.
  • Huurman VA, Van Der Meide PE, Duinkerken G, et al. Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol. 2008;152(3):488–497.
  • De Groot AS, Ardito M, Terry F, et al. Low immunogenicity predicted for emerging avian-origin H7N9: implication for influenza vaccine design. Hum Vaccin Immunother. 2013;9:950–956.
  • Petrovic D, Dempsey E, Doherty DG, et al. Hepatitis C virus–T-cell responses and viral escape mutations. Eur J Immunol. 2012;42(1):17–26.
  • Norris PJ, Stone JD, Anikeeva N, et al. Antagonism of HIV-specific CD4+ T cells by C-terminal truncation of a minimum epitope. Mol Immunol. 2006;43(9):1349–1357.
  • Harcourt GC, Garrard S, Davenport MP, et al. HIV-1 variation diminishes CD4 T lymphocyte recognition. J Exp Med. 1998;188(10):1785–1793.
  • Atassi H, Atassi MZ. HIV envelope protein is recognized as an alloantigen by human DR-specific alloreactive T cells. Hum Immunol. 1992;34(1):31–38.
  • Sanjuán R, Nebot MR, Peris JB, et al. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1. PLoS Biol. 2013;11(4):e1001523.
  • Wachstein J, Tischer S, Figueiredo C, et al. HSP70 enhances immunosuppressive function of CD4(+)CD25(+)FoxP3(+) T regulatory cells and cytotoxicity in CD4(+)CD25(-) T cells. PLoS One. 2012;7(12):e51747.
  • Rist MJ, Hibbert KM, Croft NP, et al. T cell cross-reactivity between a highly immunogenic EBV epitope and a self-peptide naturally presented by HLA-B*18:01+ cells. J Immunol. 2015;194(10):4668–4675.
  • Vaarala O, Vuorela A, Partinen M, et al. Antigenic differences between AS03 adjuvanted influenza A (H1N1) pandemic vaccines: implications for Pandemrix-associated narcolepsy risk. PLoS One. 2014;9(12):e114361.
  • Oliveira AC, Maria Henrique Da Mota L, Dos Santos-Neto LL, et al. Occurrence of autoimmune diseases related to the vaccine against yellow fever. Autoimmune Dis. 2014;2014:473170.
  • McGarvey PB, Suzek BE, Baraniuk JN, et al. In silico analysis of autoimmune diseases and genetic relationships to vaccination against infectious diseases. BMC Immunol. 2014;15:61.
  • Greidinger EL, Zang YJ, Jaimes K, et al. CD4+ T cells target epitopes residing within the RNA-binding domain of the U1-70-kDa small nuclear ribonucleoprotein autoantigen and have restricted TCR diversity in an HLA-DR4-transgenic murine model of mixed connective tissue disease. J Immunol. 2008;180(12):8444–8454.
  • Veeraraghavan S, Renzoni EA, Jeal H, et al. Mapping of the immunodominant T cell epitopes of the protein topoisomerase I. Ann Rheum Dis. 2004;63(8):982–987.
  • Danke NA, Koelle DM, Yee C, et al. Autoreactive T cells in healthy individuals. J Immunol. 2004;172(10):5967–5972.
  • Wucherpfennig KW, Yu B, Bhol K, et al. Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci U S A. 1995;92(25):11935–11939.
  • Hadden RD, Karch H, Hartung HP, et al. Preceding infections, immune factors, and outcome in Guillain-Barré syndrome. Neurology. 2001;56(6):758–765.
  • Yu RK, Usuki S, Ariga T. Ganglioside molecular mimicry and its pathological roles in Guillain-Barré syndrome and related diseases. Infect Immun. 2006;74(12):6517–6527.
  • Marks JS, Halpin TJ. Guillain-Barré syndrome in recipients of A/New Jersey influenza vaccine. Jama. 1980;243(24):2490–2494.
  • Polakowski LL, Sandhu SK, Martin DB, et al. Chart-confirmed Guillain-Barré syndrome after 2009 H1N1 influenza vaccination among the Medicare population, 2009-2010. Am J Epidemiol. 2013;178(6):962–973.
  • Romio S, Weibel D, Dieleman JP, et al. Guillain-Barré syndrome and adjuvanted pandemic influenza A (H1N1) 2009 vaccines: a multinational self-controlled case series in Europe. PLoS One. 2014;9(1):e82222.
  • Stowe J, Andrews N, Wise L, et al. Investigation of the temporal association of Guillain-Barre syndrome with influenza vaccine and influenza-like illness using the United Kingdom general practice research database. Am J Epidemiol. 2009;169:382–388.
  • Verity C, Stellitano L, Winstone AM, et al. Guillain-Barre syndrome and H1N1 influenza vaccine in UK children. Lancet. 2011;378:1545–1546.
  • Wang DJ, Boltz DA, McElhaney J, et al. No evidence of a link between influenza vaccines and Guillain-Barre syndrome-associated anti-ganglioside antibodies. Influenza Other Respir Viruses. 2012;6(3):159–166.
  • Li S, Jin T, Zhang HL, et al. Circulating Th17, Th22, and Th1 cells are elevated in the Guillain-Barré syndrome and downregulated by IVIg treatments. Mediators Inflamm. 2014;2014:740947.
  • Bowes T, Wagner ER, Boffey J, et al. Tolerance to self gangliosides is the major factor restricting the antibody response to lipopolysaccharide core oligosaccharides in Campylobacter jejuni strains associated with Guillain-Barré syndrome. Infect Immun. 2002;70(9):5008–5018.
  • Savvidou A, Knudsen S, Olsson-engman M, et al. Hypocretin deficiency develops during onset of human narcolepsy with cataplexy. Sleep. 2013;36(1):147–148.
  • Mignot E, Hayduk R, Black J, et al. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 1997;20(11):1012–1020.
  • Watson NF, Ton TG, Koepsell TD, et al. Does narcolepsy symptom severity vary according to HLA-DQB1*0602 allele status? Sleep. 2010;33(1):29–35.
  • Aran A, Lin L, Nevsimalova S, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32(8):979–983.
  • Wijnans L, Lecomte C, De Vries C, et al. The incidence of narcolepsy in Europe: before, during, and after the influenza A(H1N1)pdm09 pandemic and vaccination campaigns. Vaccine. 2013;31(8):1246–1254.
  • Nohynek H, Jokinen J, Partinen M, et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One. 2012;7(3):e33536.
  • Han F, Lin L, Warby SC, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann Neurol. 2011;70(3):410–417.
  • Saariaho AH, Vuorela A, Freitag TL, et al. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J Autoimmun. 2015;63:68–75.
  • Lecendreux M, Libri V, Jaussent I, et al. Impact of cytokine in type 1 narcolepsy: role of pandemic H1N1 vaccination? J Autoimmun. 2015;60:20–31.
  • Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177(1):566–573.
  • Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004;199(7):971–979.
  • Elyaman W, Khoury SJ, Scott DW, et al. Potential application of Tregitopes as immunomodulating agents in multiple sclerosis. Neurol Res Int. 2011;2011:256460.
  • Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80:695–705.
  • Tejada-Simon MV, Zang YC, Hong J, et al., Cross-reactivity with myelin basic protein and human herpesvirus-6 in multiple sclerosis. Ann Neurol. 2003;53:189–197.
  • Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–541.
  • Zhang X, Tang Y, Sujkowska D, et al. Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis. Eur J Immunol. 2008;38(5):1297–1309.
  • Reynolds CJ, Sim MJ, Quigley KJ, et al. Autoantigen cross-reactive environmental antigen can trigger multiple sclerosis-like disease. J Neuroinflammation. 2015;12:91.
  • Croxford JL, Olson JK, Anger HA, et al. Initiation and exacerbation of autoimmune demyelination of the central nervous system via virus-induced molecular mimicry: implications for the pathogenesis of multiple sclerosis. J Virol. 2005;79:8581–8590.
  • Ng SC, Benjamin JL, McCarthy NE, et al. Relationship between human intestinal dendritic cells, gut microbiota, and disease activity in Crohn’s disease. Inflamm Bowel Dis. 2011;17(10):2027–2037.
  • Kawamoto S, Maruya M, Kato LM, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41(1):152–165.
  • Moya-Pérez A, Neef A, Sanz Y, et al. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLoS One. 2015;10(7):e0126976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.