221
Views
13
CrossRef citations to date
0
Altmetric
Review

Delivery systems for Leishmania vaccine development

, &
Pages 879-895 | Received 26 Dec 2015, Accepted 17 Feb 2016, Published online: 28 Mar 2016

References

  • Coler RN, Duthie MS, Hofmeyer KA, et al. From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3± GLA-SE. Clin Transl Immunol. 2015;4(4):e35.
  • Guha R, Das S, Ghosh J, et al. Heterologous priming–boosting with DNA and vaccinia virus expressing kinetoplastid membrane protein-11 induces potent cellular immune response and confers protection against infection with antimony resistant and sensitive strains of Leishmania (Leishmania) donovani. Vaccine. 2013;31(15):1905–1915.
  • Vannucci L, Lai M, Chiuppesi F, et al. Viral vectors: a look back and ahead on gene transfer technology. New Microbiol. 2013;36(1):1–22.
  • Kedzierska K, Curtis JM, Valkenburg SA, et al. Induction of protective CD4+ T cell-mediated immunity by a Leishmania peptide delivered in recombinant influenza viruses. PLoS One. 2012;7(3):e33161.
  • Miura R, Kooriyama T, Yoneda M, et al. Efficacy of recombinant canine distemper virus expressing Leishmania antigen against Leishmania challenge in dogs. PLoS Negl Trop Dis. 2015;9(7):e0003914.
  • Hugentobler F, Di Roberto RB, Gillard J, et al. Oral immunization using live Lactococcus lactis co-expressing LACK and IL-12 protects BALB/c mice against Leishmania major infection. Vaccine. 2012;30(39):5726–5732.
  • Hugentobler F, Yam KK, Gillard J, et al. Immunization against Leishmania major infection using LACK-and IL-12-expressing Lactococcus lactis induces delay in footpad swelling. PLoS One. 2012;7(2):e30945.
  • Yam KK, Hugentobler F, Pouliot P, et al. Generation and evaluation of A2-expressing Lactococcus lactis live vaccines against Leishmania donovani in BALB/c mice. J Med Microbiol. 2011;60(9):1248–1260.
  • Abdallah DSA, Bitar AP, Oliveira F, et al. A Listeria monocytogenes-based vaccine that secretes sand fly salivary protein LJM11 confers long-term protection against vector-transmitted Leishmania major. Infect Immun. 2014;82(7):2736–2745.
  • Roland KL, Brenneman KE. Salmonella as a vaccine delivery vehicle. Expert Rev Vaccines. 2013;12(9):1033–1045.
  • Schroeder J, Brown N, Kaye P, et al. Single dose novel Salmonella vaccine enhances resistance against visceralizing L. major and L. donovani infection in susceptible BALB/c mice. PLoS Negl Trop Dis. 2011;5(12):e1406.
  • Weintraub J, Weinbaum FI. The effect of BCG on experimental cutaneous leishmaniasis in mice. J Immunol. 1977;118(6):2288–2290.
  • Connell ND, Medina-Acosta E, McMaster WR, et al. Effective immunization against cutaneous leishmaniasis with recombinant bacille Calmette-Guerin expressing the Leishmania surface proteinase gp63. Proc Natl Acad Sci. 1993;90(24):11473–11477.
  • Abdelhak S, Louzir H, Timm J, et al. Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against Leishmania major infection in BALB/c mice. Microbiology. 1995;141(7):1585–1592.
  • Streit JA, Recker TJ, Donelson JE, et al. BCG expressing LCR1 of Leishmania chagasi induces protective immunity in susceptible mice. Exp Parasitol. 2000;94(1):33–41.
  • Khamesipour A, Dowlati Y, Asilian A, et al. Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine. 2005;23(28):3642–3648.
  • Kumar R, Engwerda C. Vaccines to prevent leishmaniasis. Clin Transl Immunology. 2014;3(3):e13.
  • Dey R, Natarajan G, Bhattacharya P, et al. Characterization of cross-protection by genetically modified live-attenuated Leishmania donovani parasites against Leishmania mexicana. J Immunol. 2014;193(7):3513–3527.
  • Fiuza JA, Gannavaram S, Da Costa Santiago H, et al. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum. Vaccine. 2015;33(2):280–288.
  • Selvapandiyan A, Dey R, Nylen S, et al. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol. 2009;183(3):1813–1820.
  • Silva-Almeida M, Pereira B, Ribeiro-Guimarães ML, et al. Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasit Vectors. 2012;5:160.
  • Carrión J, Folgueira C, Soto M, et al. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation. Parasit Vectors. 2011;4(1):150.
  • Anand S, Madhubala R. Genetically engineered ascorbic acid-deficient live mutants of Leishmania donovani induce long lasting protective immunity against visceral Leishmaniasis. Sci Rep. 2015;5:10706.
  • Ghaffarifar F, Jorjani O, Mirshams M, et al. Photodynamic therapy as a new treatment of cutaneous leishmaniasis. East Mediterr Health J. 2006;12(6):902–908.
  • Kumari S, Samant M, Khare P, et al. Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis. Eur J Immunol. 2009;39(1):178–191.
  • Davoudi N, Khamesipour A, Mahboudi F, et al. A dual drug sensitive L. major induces protection without lesion in C57BL/6 mice. PLoS Negl Trop Dis. 2014;8(5):e2785.
  • Breton M, Tremblay MJ, Ouellette M, et al. Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun. 2005;73(10):6372–6382.
  • Mizbani A, Taheri T, Zahedifard F, et al. Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine. 2009;28(1):53–62.
  • Zahedifard F, Gholami E, Taheri T, et al. Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis. 2014;8(3):e2751.
  • Saljoughian N, Taheri T, Zahedifard F, et al. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral Leishmaniasis. PLoS Negl Trop Dis. 2013;7(4):e2174.
  • Shahbazi M, Zahedifard F, Taheri T, et al. Evaluation of live recombinant nonpathogenic Leishmania tarentolae expressing cysteine proteinase and A2 genes as a candidate vaccine against experimental canine visceral Leishmaniasis. PLoS One. 2015;10(7):e0132794.
  • Katebi A, Gholami E, Taheri T, et al. Leishmania tarentolae secreting the sand fly salivary antigen PpSP15 confers protection against Leishmania major infection in a susceptible BALB/c mice model. Mol Immunol. 2015;67(2):501–511.
  • Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014;2(6):159–182.
  • Rao M, Alving CR. Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells. Adv Drug Deliv Rev. 2000;41(2):171–188.
  • Portuondo DLF, Ferreira LS, Urbaczek AC, et al. Adjuvants and delivery systems for antifungal vaccines: current state and future developments. Med Mycol. 2015;53(1):69–89.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
  • Badiee A, Khamesipour A, Samiei A, et al. The role of liposome size on the type of immune response induced in BALB/c mice against leishmaniasis: rgp63 as a model antigen. Exp Parasitol. 2012;132(4):403–409.
  • Afrin F, Rajesh R, Anam K, et al. Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infect Immun. 2002;70(12):6697–6706.
  • Bhowmick S, Ravindran R, Ali N. Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine. 2007;25(35):6544–6556.
  • Badiee A, Jaafari MR, Khamesipour A, et al. The role of liposome charge on immune response generated in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63). Exp Parasitol. 2009;121(4):362–369.
  • Bhowmick S, Mazumdar T, Sinha R, et al. Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J Control Release. 2010;141(2):199–207.
  • McConville MJ, Bacic A, Mitchell GF, et al. Lipophosphoglycan of Leishmania major that vaccinates against cutaneous leishmaniasis contains an alkylglycerophosphoinositol lipid anchor. Proc Natl Acad Sci. 1987;84(24):8941–8945.
  • Gregory G. Liposome technology. New York (NY): CRC Press; 2006.
  • Badiee A, Jaafari MR, Khamesipour A, et al. Enhancement of immune response and protection in BALB/c mice immunized with liposomal recombinant major surface glycoprotein of Leishmania (rgp63): the role of bilayer composition. Colloids Surf B Biointerfaces. 2009;74(1):37–44.
  • Mazumdar T, Anam K, Ali N. A mixed Th1/Th2 response elicited by a liposomal formulation of Leishmania vaccine instructs Th1 responses and resistance to Leishmania donovani in susceptible BALB/c mice. Vaccine. 2004;22(9):1162–1171.
  • Shimizu Y, Yamakami K, Gomi T, et al. Protection against Leishmania major infection by oligomannose-coated liposomes. Bioorg Med Chem. 2003;11(7):1191–1195.
  • Shimizu Y, Takagi H, Nakayama T, et al. Intraperitoneal immunization with oligomannose‐coated liposome‐entrapped soluble leishmanial antigen induces antigen‐specific T‐helper type immune response in BALB/c mice through uptake by peritoneal macrophages. Parasite Immunol. 2007;29(5):229–239.
  • Chavoshian O, Biari N, Badiee A, et al. Sphingomyelin liposomes containing soluble Leishmania major antigens induced strong Th2 immune response in BALB/c mice. Iran J Basic Med Sci. 2013;16(9):965.
  • Sharma SK, Dube A, Nadeem A, et al. Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine. 2006;24(11):1800–1810.
  • Jaafari MR, Ghafarian A, Farrokh-Gisour A, et al. Immune response and protection assay of recombinant major surface glycoprotein of Leishmania (rgp63) reconstituted with liposomes in BALB/c mice. Vaccine. 2006;24(29):5708–5717.
  • Jaafari MR, Badiee A, Khamesipour A, et al. The role of CpG ODN in enhancement of immune response and protection in BALB/c mice immunized with recombinant major surface glycoprotein of Leishmania (rgp63) encapsulated in cationic liposome. Vaccine. 2007;25(32):6107–6117.
  • Russell DG, Alexander J. Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. J Immunol. 1988;140(4):1274–1279.
  • Shargh VH, Jaafari MR, Khamesipour A, et al. Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. Parasitol Res. 2012;111(1):105–114.
  • Badiee A, Jaafari MR, Khamesipour A. Leishmania major: immune response in BALB/c mice immunized with stress-inducible protein 1 encapsulated in liposomes. Exp Parasitol. 2007;115(2):127–134.
  • Badiee A, Jaafari MR, Samiei A, et al. Coencapsulation of CpG oligodeoxynucleotides with recombinant Leishmania major stress-inducible protein 1 in liposome enhances immune response and protection against leishmaniasis in immunized BALB/c mice. Clin Vaccine Immunol. 2008;15(4):668–674.
  • Afrin F, Ali N. Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes. Infect Immun. 1997;65(6):2371–2377.
  • Mazumdar T, Anam K, Ali N. Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens. J Parasitol. 2005;91(2):269–274.
  • Ravindran R, Bhowmick S, Das A, et al. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis. BMC Microbiol. 2010;10(1):181.
  • Afrin F, Anam K, Ali N. Induction of partial protection against Leishmania donovani by promastigote antigens in negatively charged liposomes. J Parasitol. 2000;86(4):730–735.
  • Mazumder S, Ravindran R, Banerjee A, et al. Non-coding pDNA bearing immunostimulatory sequences co-entrapped with leishmanial antigens in cationic liposomes elicits almost complete protection against experimental visceral leishmaniasis in BALB/c mice. Vaccine. 2007;25(52):8771–8781.
  • Bhowmick S, Ravindran R, Ali N. gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect Immun. 2008;76(3):1003–1015.
  • Didier E, Bhowmick S, Ali N. Identification of novel Leishmania donovani antigens that help define correlates of vaccine-mediated protection in visceral leishmaniasis. PLoS One. 2009;4(6):Article ID e5820, 5810 pages.
  • Bhowmick S, Mazumdar T, Ali N. Vaccination route that induces transforming growth factor β production fails to elicit protective immunity against Leishmania donovani infection. Infect Immun. 2009;77(4):1514–1523.
  • Nagill R, Kaur S. Enhanced efficacy and immunogenicity of 78kDa antigen formulated in various adjuvants against murine visceral leishmaniasis. Vaccine. 2010;28(23):4002–4012.
  • Das A, Ali N. Combining cationic liposomal delivery with MPL-TDM for cysteine protease cocktail vaccination against Leishmania donovani: evidence for antigen synergy and protection. PLoS Negl Trop Dis. 2014;8(8):e3091.
  • Mazumder S, Maji M, Ali N. Potentiating effects of MPL on DSPC bearing cationic liposomes promote recombinant GP63 vaccine efficacy: high immunogenicity and protection. PLoS Negl Trop Dis. 2011;5(12):e1429.
  • Alavizadeh SH, Badiee A, Khamesipour A, et al. The role of liposome–protamine–DNA nanoparticles containing CpG oligodeoxynucleotides in the course of infection induced by Leishmania major in BALB/c mice. Exp Parasitol. 2012;132(3):313–319.
  • Firouzmand H, Badiee A, Khamesipour A, et al. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Trop. 2013;128(3):528–535.
  • Doroud D, Zahedifard F, Vatanara A, et al. Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. J Control Release. 2011;153(2):154–162.
  • Doroud D, Zahedifard F, Vatanara A, et al. Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice. Parasite Immunol. 2011;33(6):335–348.
  • Doroud D, Zahedifard F, Vatanara A, et al. C-terminal domain deletion enhances the protective activity of cpa/cpb loaded solid lipid nanoparticles against Leishmania major in BALB/c mice. PLoS Negl Trop Dis. 2011;5(7):e1236.
  • Saljoughian N, Zahedifard F, Doroud D, et al. Cationic solid–lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. Parasite Immunol. 2013;35(12):397–408.
  • Shahbazi M, Zahedifard F, Saljoughian N, et al. Immunological comparison of DNA vaccination using two delivery systems against canine leishmaniasis. Vet Parasitol. 2015;212(3):130–139.
  • LezamaDávila CM. Vaccination of C57BL/10 mice against cutaneous leishmaniasis. Use of purified gp63 encapsulated into niosomes surfactants vesicles: a novel approach. Mem Inst Oswaldo Cruz. 1999;94(1):67–70.
  • Pardakhty A, Shakibaie M, Daneshvar H, et al. Preparation and evaluation of niosomes containing autoclaved Leishmania major: a preliminary study. J Microencapsul. 2012;29(3):219–224.
  • Liu X, Siegrist S, Amacker M, et al. Enhancement of the immunogenicity of synthetic carbohydrates by conjugation to virosomes: a leishmaniasis vaccine candidate. ACS Chem Biol. 2006;1(3):161–164.
  • Tafaghodi M, Eskandari M, Khamesipour A, et al. Alginate microspheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN induced partial protection and enhanced immune response against murine model of leishmaniasis. Exp Parasitol. 2011;129(2):107–114.
  • Zarrati S, Maleki F, Mahdavi M, et al. Humoral immune responses in DNA vaccine formulated with poly (methyl methacrylate) against Leishmania major. J Entomol Zool Stud. 2014;2(5):201–206.
  • Tafaghodi M, Khamesipour A, Jaafari M. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental Autoclaved Leishmania major (ALM) and Quillajasaponins. Trop Biomed. 2010;27(3):639–650.
  • Tafaghodi M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol Res. 2011;108(5):1265–1273.
  • Santos DM, Carneiro MW, De Moura TR, et al. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomed. 2012;7:2115.
  • Sjölander A, Baldwin TM, Curtis JM, et al. Induction of a Th1 immune response and simultaneous lack of activation of a Th2 response are required for generation of immunity to leishmaniasis. J Immunol. 1998;160(8):3949–3957.
  • Sjölander A, Baldwin TM, Curtis JM, et al. Vaccination with recombinant parasite surface antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine. 1998;16(20):2077–2084.
  • Papadopoulou G, Karagouni E, Dotsika E. ISCOMs vaccine against experimental leishmaniasis. Vaccine. 1998;16(9):885–892.
  • Mehravaran A, Jaafari MR, Jalali SA, et al. The role of surface charge of ISCOMATRIX nanoparticles on the type of immune response generated against Leishmaniasis in BALB/c mice. Nanomedicine J. 2015;2(4):249–260.
  • Coler RN, Hudson T, Hughes S, et al. Vaccination produces CD4 T cells with a novel CD154–CD40-dependent cytolytic mechanism. J Immunol. 2015;195(7):3190–3197.
  • Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605.
  • Peters NC, Bertholet S, Lawyer PG, et al. Evaluation of recombinant Leishmania poly-protein plus GLA-SE vaccines against sand fly-transmitted Leishmania major in C57Bl/6 mice. J Immunol. 2012;189(10):4832–4841.
  • Ravindran R, Maji M, Ali N. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid–trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. Mol Pharm. 2012;9(1):59–70.
  • Hejazi H, Tasbihi M, Jaafari M, et al. The role of liposomal CpG ODN on the course of L. major infection in BALB/C mice. Iran J Parasitol. 2010;5(1):47.
  • Sohrabi Y, Jaafari MR, Mohammadi A, et al. Evaluation of immune response against leishmaniasis in resistance C57 BL-6 mice immunized with liposomes containing autoclaved Leishmania major with BCG. Cell Mol Biol Lett. 2005;10:S98.
  • Maheshwari C, Pandey R, Chaurasiya A, et al. Non-ionic surfactant vesicles mediated transcutaneous immunization against hepatitis B. Int Immunopharmacol. 2011;11(10):1516–1522.
  • Bolhassani A, Shirbaghaee Z, Agi E, et al. VLP production in Leishmania tarentolae: a novel expression system for purification and assembly of HPV16 L1. Protein Expr Purif. 2015;116:7–11.
  • Gamvrellis A, Leong D, Hanley JC, et al. Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol. 2004;82(5):506–516.
  • Zhou G, Ma Y, Jia P, et al. Enhancement of IL-10 bioactivity using an IL-10 peptide-based vaccine exacerbates Leishmania major infection and improves airway inflammation in mice. Vaccine. 2010;28(7):1838–1846.
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2):165–196.
  • Doroud D, Vatanara A, Zahedifard F, et al. Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J Pharm Pharm Sci. 2010;13(3):320–335.
  • Seeballuck F, Lawless E, Ashford MB, et al. Stimulation of triglyceride-rich lipoprotein secretion by polysorbate 80: in vitro and in vivo correlation using Caco-2 cells and a cannulated rat intestinal lymphatic model. Pharm Res. 2004;21(12):2320–2326.
  • Tafaghodi M, Tabassi SAS, Jaafari MR. Induction of systemic and mucosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN. Int J Pharm. 2006;319(1):37–43.
  • Tafaghodi M, Sajadi Tabasi SA, Payan M. Alginate microsphere as a delivery system and adjuvant for autoclaved Leishmania major and Quillaja saponin: preparation and characterization. Iranian J Pharm Sci. 2007;3(2):61–68.
  • Lou P-J, Cheng W-F, Chung Y-C, et al. PMMA particle‐mediated DNA vaccine for cervical cancer. J Biomed Mater Res A. 2009;88(4):849–857.
  • Sharma R, Agrawal U, Mody N, et al. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv. 2015;33(1):64–79.
  • Shen H, Ackerman AL, Cody V, et al. Enhanced and prolonged cross‐presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology. 2006;117(1):78–88.
  • Costa Lima SA, Resende M, Silvestre R, et al. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine. 2012;7(12):1839–1849.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.