73
Views
17
CrossRef citations to date
0
Altmetric
Review

Lipid core peptide technology and group A streptococcal vaccine delivery

, &
Pages 43-58 | Published online: 09 Jan 2014

References

  • Cunningham MW Pathogenesis of group A streptococcal infections. Clinical Microbial Rev. 13, 470–511(2000).
  • Bisno AL Group A streptococcal infections and acute rheumatic fever. N Eng. J. Med. 325, 783–793 (1994).
  • Kotb M, Teglund-Norrby A, McGreer A et al. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat. Med. 8, 1349–1350 (2002).
  • Stollerman GH. Rheumatic fever. Lancet 349, 935–942 (1997).
  • Dale JB. Group A streptococcal vaccines. Infect. Dis. Clin. North. Am. 13, 227–243, viii (1999).
  • Martin DR, Sriprakash KS. Epidemiology of group A streptococcal disease in Australia and New Zealand. Recent Adv. Microbial 4, 1–40 (1996).
  • Kumar RK, Rammohan R, Narula J, Kaplan EL. Epidemiology of streptococcal pharyngitis, rheumatic fever, and rheumatic heart disease. In: Rheumatic Fever. Thomas D (Ed.), American Registry of Pathology Armed Forces Institute of Pathology, DC, USA, 41–46 (1999).
  • Vijakumar M, Narula J, Reddy KS, Kaplan EL. Incidence of rheumatic fever and prevalence of rheumatic heart disease in India. Int. J. Cardiol 43, 221–228 (1994).
  • Michaud C, Trejo-Gutierrez J, Cruz C, Pearson T. Rheumatic heart disease. In: Disease Control Priorities in Developing Countries: a Summaiy. Jamieson DT (Ed.), DC, USA, 221–232 (1993).
  • The World Health Report, 1998. Office of World Health Reporting, World Health Organization, Geneva.
  • Kavey RE, Kaplan EL Resurgence of acute rheumatic fever. Pediatrics 84, 585–586 (1989).
  • Bronze MS, Dale JB. The re-emergence of serious group A streptococcal infections and acute rheumatic fever. Am. J. Med. Sci. 311, 41–54 (1996).
  • •Highlights the seriousness of GAS infections in developed countries worldwide.
  • Steer AC, Carapetis JR, Nolan TM, Shann E Systematic review of rheumatic heart disease prevalence in children in developing countries: the role of environmental factors. J. Paediatr. Child Health 38, 229 (2002).
  • Carapetis JR, Wolff DR, Currie BJ. Acute rheumatic fever and rheumatic heart disease in the top end of Australia's Northern Territory. Med. Aust. 164, 146–149 (1996).
  • ••Demostrates the particularly high rates ofdisease in Australian Aborigines.
  • Neilson G, Streatlield RW, West M, Johnson S, Glavin W Baird, S. Rheumatic fever and chronic rheumatic heart disease in Yarrabah aboriginal community, North Queensland. Med J. lust. 158, 316–318 (1993).
  • Carapetis JR, Currie BJ. Mortality due to acute rheumatic fever and rheumatic heart disease in the Northern Territory: a preventable cause of death in aboriginal people. Au-t. 1VZ J. Public Health 23, 159 (1999).
  • Wannamaker LW Rammelkamp CH, Denny DennyF, Brink WR, Houser HouserH, Hahn EO. Prophylaxis of acute rheumatic fever by treatment of the preceeding streptococcal infection with depot penicillin. Am.j Med 10, 673–695 (1951).
  • Fischetti V Streptococcal M protein. Sci. Am. 264, 32–39 (1991).
  • Robinson JH, Kehoe MA. Group A streptococcal M protein: virulence factors and protective antigens. Immunot Today 13, 362–367 (1992).
  • Fischetti VA. Streptococcal M protein: molecular design and biological behavior. Clin. Microbial Rev. 2, 285–314 (1989).
  • Tomai M, Kotab M, Majumdar G, Beachey EM. Superantigenicity of streptococcal M protein. J. E. Med 172, 359–362(1990).
  • Beachey EH, Stollerman GH, Chiang EY et al. Purification and properties of M protein extracted from group A streptococci with pepsin: covalent structure of the amino terminal region of type 24 M antigen. J. Exp. Med. 145, 1469–1481 (1977).
  • Fleischer B, Schmidt KH, Gerlach D, Kohler W Separation of T cell-stimulating activity from streptococcal M protein. Infect. Immun. 60, 1767–1770 (1992). binding proteins expressed by Streptococcus pyogenes isolates are predictive of invasive potential./ Infect. Dis. 173, 888–895 (1996).
  • Wang B, Schlievert PM, Gaber AO, Kotb M. Localization of an immunologically functional region of the streptococcal superantigen pepsin-extracted fragment of type 5 M protein. J Immunol 151, 1419–1429 (1993).
  • Horstmann RD, Sieversten HJ, Knobloch J, Fischetti VA. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc. Nad Acad Sci. USA 85, 1657–1661 (1988).
  • Whitnack E, Beachey EH. Actiopsonic activity of fibrinogen bound to M protein on the surface of group A streptococci. Clin. Invest. 69, 1042–1045 (1982).
  • Pruksakorn S, Currie B, Brandt E et al. Towards a vaccine for rheumatic fever: identification of a conserved target epitope on M protein of group A streptococci. Lancet 344, 639–642 (1994).
  • Pruksakorn S, Galbraith A, Houghten RA, Good ME Conserved T and B cell epitopes on the M protein of group A streptococci: induction of bactericidal antibodies. J Immunol 149, 2729–2735 (1992).
  • Brandt ER, Sriprakash KS, Hobb RI et al. New multideterminant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population. Nat. Med. 6, 455–459 (2000).
  • Bessen DE, Carapetis JR, Beall B et al. Contrasting molecular epidemiology of group A streptococci causing tropical and nontropical infections of the skin and throat.' Infect. Dis. 182, 1109–1116 (2000).
  • Carapetis JR, Currie BJ, Kaplan EL Epidemiology and prevention of group A streptococcal infections: acute respiratory tract infections, skin infections, and their sequelae at the dose of the twentieth century. Clin. Infect. Dis. 28, 205–210 (1999).
  • Carapetis JR, Currie BJ. Group A streptococcus, pyoderma, and rheumatic fever. Lancet 347, 1271 (1996).
  • Martin DR, Voss LM, Walker SJ, Lennon D. 1994. Acute rheumatic fever in Auckland, New Zealand: spectrum of associated group A streptococci different from expected. Pediatr. Infect. Dis. j 13, 264 (1994).
  • Gardiner DL, Sriprakash KS. Molecular epidemiology of impetiginous group A streptococcal infections in Aboriginal communities of Northern Australia.' Clin. Microbial 34, 1448–1452 (1996).
  • Bessen DE, Carapetis JR, Beall B et al. Contrasting molecular epidemiology of group A streptococci causing tropical and nontropical infections of the skin and throat.' Infect. Dis. 182, 1109 (2000).
  • Kaplan EL, Wotton JT, Johnson DR Dynamic epidemiology of group A streptococcal serotypes associated with pharyngitis. Lancet 358, 1334 (2001).
  • Pruksakorn S, Sittisombut N, Phornphutkul C et al. Epidemiological analysis of non-M-typeable group A Streptococcus isolates from a Thai population in northern Thailand. J Microbial 38, 1250 (2000). Lancefield R Current knowledge of type-specific M antigens of group A streptococci. Immunol 89, 307–313 (1962). Bingen E, Denarnur E, Lambert-Zechovsky N et al. Mother-to-infant vertical transmission and cross-colonization of Streptococcus pyogenes confirmed by DNA restriction fragment length polymorphism analysis.' Infect. Dis. 165, 147–150 (1992).
  • Perea-Mejia LM, Inzunza-Montiel AE, A Cravioto. Molecular characterization of group A streptococcus strains isolated during a scarlet fever outbreak. J Microbial 40, 278–280 (2002).
  • Kaufhold A, Podbielski A, Johnson DR, Kaplan EL, Lutticken R M protein gene typing of Streptococcus pyogenes by nonradioactively labeled oligonucleotide probes.' Clin. Microbial 30, 2391–2397 (1992).
  • Vitali LA, Zampaloni C, Prenna M, Ripa S. PCR M typing: a new method for rapid typing of group A streptococci. j Gun. Microbial 40, 679–681 (2002).
  • Saunders NA, Hallas G, Gaworzewska ET et al. PCR-enzyme-linked immunosorbent assay and sequencing as an alternative to serology for M-antigen typing of Streptococcus pyogenes.1 Clin. Microbial 35, 2689–2691 (1997).
  • Gardiner D, Hartas J, Currie B, Mathews JD, Kemp DJ, Sriprakash KS. Vir-typing: A long-PCR typing method for group A streptococci. PCR Method. App. 4, 288–293 (1995).
  • Beall B, Facklarn R, Thompson T. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci." Clin. Microbial 34, 953–958 (1996).
  • Guilherme L, Cunha-Neto E, Tanaka AC et al. Heart-directed Autoimmunity: the Case of Rheumatic Fever." Autoimmun. 16, 363–367 (2001).
  • Froude J, Gibofsky A, Buskirk DR, Khanna A, Zabriskie JB. Cross-reactivity between streptococcus and human tissue: a model of molecular mimicry and autoimmunity. Curr. Top. Microbial Immunol 145, 5–26 (1989).
  • Cunningham MW McCormack JM, Fenderson PG et al. Human and rnurine antibodies cross-reactive with streptococcal M protein and myosin recognize the sequence gly—lys—ser—lys—gin in M protein. Immunol 143, 2677–2683 (1989).
  • Cunningham MW Antone SM, Smart Liu, M. Kosanke, R. S. Molecular analysis of human cardiac myosin-cross reactive B- and T-cell epitopes of the group A streptococcal M5 protein. Infect. Immun. 65, 3913–3923 (1997).
  • Dale JB, Beachey EH. Multiple cross reactive epitopes of streptococcal M proteins.' Exp. Med 161, 113–122 (1985).
  • Pruksakorn S, Currie B, Brandt E et al. Identification of T cell autoepitopes that cross-react with the C-terminal segment of the M protein of group A streptococci. Int. Immunol 6, 1235–1244 (1994).
  • El-Demellawy M, El-Ridi R, Guirguis NI et al. Preferential recognition of human myocardial antigens by T lymphocytes from rheumatic heart disease patients Infect. Immun. 65, 2197–2205 (1997).
  • Guilherme L, Cunha-Neto E, Coelho V et al. Human heart-infiltrating T-cell clones from rheumatic heart disease patients recognize both streptococcal and cardiac proteins. Circulation 92, 415–420 (1995).
  • ••The authors show the presence ofautoreactive T-cells in RHD lesions.
  • Guilherme L, Oshiro SE, Fae KC et al. T- cell reactivity against streptococcal antigens in the periphery mirrors reactivity of heart-infiltrating T lymphocytes in rheumatic heart disease patients. Infect. Immun. 69, 5345–5351 (2001).
  • Quinn A, Kosanke S, Fischetti VA, Factor SM, Cunningham MW Induction of Autoimrnune valvular heart disease by recombinant streptococcal M protein. Infect. Immun. 69, 4072–4078 (2001).
  • Huber SA, Cunningham MW Streptococcal M protein peptide with similarity to myosin induces CD4. T cell-dependent myocarditis in MRIJ++ mice and induces partial tolerance against coxsackieviral myocarditis. j Immunol 156, 3528–3534 (1996).
  • Galvin JE, Hemric ME, Kosanke SD et al Induction of myocarditis and valvulitis in Lewis rats by different epitopes of cardiac myosin and its implications in rheumatic carditis. Am.j Pathol 160, 297–306 (2002).
  • Hasty DL, Ofek I, Courtney HS, Doyle RJ. Multiple adhesins of streptococci. Infect. Immun. 60, 2147–2152 (1992).
  • Schulze K, Medina E, Talay SR, Towers RJ, Chhatwal GS, Guzman CA. Characterization of the domain of fibronectin-binding protein I of Streptococcus pyogenes responsible for elicitation of a protective immune response. Infect. Immun. 69, 622–625 (2001).
  • Guzman CA, Talay SR, Molinarai G, Medina E, Chhatwal GS. Protective immune response against Streptococcus pyogenes in mice after intranasal vaccination with the fibronectin-binding protein SfbI. J. Infect. Dis. 179, 901–906 (1999).
  • Kawabata S, Kunitomo E, Terao Y et al. Systemic and mucosal immunizations with fibronectin-binding protein FBP54 induce protective immune responses against Streptococcus pyogenes challenge in mice. Infect. Immun. 69, 924–930 (2001).
  • Dale JB, Baird RW, Courtney HS, Hasty DL, Bronze MS. Passive protection of mice against group A streptococcal pharyngeal infection by lipoteichoic acid. J. Infect. Dis. 169. 319–323 (1994).
  • Ji Y, Carlson B, Kondagunta A, Cleary PP. Intranasal immunization with C5a peptidase prevents nasopharyngeal colonization of mice by the group A Streptococcus. Infect. Immun. 65, 2080–2087 (1997).
  • Roggiani M, Stoehr JA, Olmsted SB et al. Toxoids of streptococcal pyrogenic exotoxin A are protective in rabbit models of streptococcal toxic shock syndrome. Infect. Immun. 68, 5011–5017 (2000).
  • McCormick JK, Tripp TJ, Olmsted SB et al. Development of streptococcal pyrogenic exotoxin C vaccine toxoids that are protective in the rabbit model of toxic shock syndrome.' Immunot 165, 2306–2312 (2000).
  • Bessen D, Fischetti VA. Passive acquired mucosal immunity to group A streptococci by secretory immunoglobulin A. J. Ex p. Med. 167, 1945–50 (1988).
  • Dale JB, Chiang EY, Lederer W Recombinant tetravalent group A streptococcal M protein vaccine. J. Immunot 151, 2188–2194 (1993).
  • Dale JB, Simmons M, Chiang EC, Chiang EY. Recombinant, octavalent group A streptococcal M protein vaccine. Vaccine 14, 914 948 (1996).
  • Hu MC, Walls MA, Stroop SD, Reddish MA, Beaull B, Dale JB. Immunogenicity of a 26-valent group A streptococcal vaccine. Infect. Immun. 70, 2171–2177 (2002).
  • Bronze MS, Courtney HS, Dale JB. Epitopes of group A streptococcal M protein that evoke cross-protective local immune responses. J. Immunot 148, 888–893 (1992).
  • Bessen D, Fischetti VA. Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect. Immun. 56, 2666–2672 (1988).
  • Bessen D, Fischetti VA. Synthetic peptide vaccine against mucosal colonization by group A streptococci. I. Protection against a heterologous M serotype with shared C repeat region epitopes. I Immunot 145, 1251–1256 (1990).
  • Batzloff MR, Hayman WA, Davies MR et al. Protection against group A streptococcus by immunization with J8-diptheria toxoid: contribution ofJ8- and diptheria toxoid-specific antibodies to protection.' Infict Dis. 187, 1598–1608 (2003).
  • Olive C, Batzloff MR, Horvath A et al. Immunisation of mice with a lipid core peptide construct containing a conserved region determinant of group A streptococcal M protein elicits heterologous opsonic antibodies in the absence of adjuvant. Infict. Immun. 70, 2734–2738 (2002).
  • Olive C, Clair T, Yarwood P, Good ME Protection of mice from group A streptococcal infection by intranasal immunization with a peptide that contains a conserved M protein B-cell epitope and lacks a T-cell autoepitope. Vaccine 20, 2816–2825(2002).
  • Good MF, Cleary PJ, Dale J et al. Development of a vaccine to prevent infection with group A streptococci and rheumatic fever. In: New Generation Vaccines. Levine MM, Kaper JB, Rappuoli R, Liu M, Good ME (Eds.), (3rd. Ed.), Marcel Dekker, Inc., NY, USA, (2002).
  • Fischetti VA, Hodges -WM, Hruby DE. Protection against streptococcal pharyngeal colonization with a vaccinia: M protein recombinant. Science 244, 1487–1490 (1989).
  • Jackson DC, O'Brien-Simpson N, Ede NJ, Brown LE. Free radical induced polymerization of synthetic peptides into polymeric immunogens. Vaccine 15, 1697–705 (1997).
  • Olive C, Batzloff MR, Horvath A et al. The potential of lipid core peptide technology as a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens. Infection Immun. 71, 2373–2383 (2003).
  • ••Demonstrates the use of LCP technologyas a multi-antigen vaccine delivery system.
  • Brandt ER Hayman WA, Currie B et al. Opsonic human antibodies from an endemic population specific for a conserved epitope on the M protein of group A streptococci. immundogy 89, 331–337(1996).
  • Brandt ER, Hayman WA, Currie B, Pruksakom S, Good ME Human antibodies to the conserved region of the M protein: opsonization of heterologous strains of group A streptococci. Vaccine 15, 1805–1812 (1997).
  • Hayman WA, Brandt ER, Relf WA, Cooper J, Saul A, Good ME Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus. Int. Immunot 9, 1723–1733 (1997).
  • Relf WA, Cooper J, Brandt ER et al. Mapping a conserved conformational epitope from the M protein of group A streptococci. Pept. Res. 9, 12–20 (1996).
  • Singh M, O'Hagan DT. Recent advances in vaccine adjuvants. Pharm. Res. 6, 715–728 (2002).
  • Olive C, Toth I, Jackson D. Technological advances in antigen delivery and vaccine developmental strategies. Mini-Reviews Med Chem. 1, 429–438 (2001).
  • Toth I, Danton M, Flinn N, Gibbons WA. A Combined adjuvant and carrier system for enhancing synthetic peptides immunogenicity utilising lipidic amino acids. Tetrahedron Lett. 34, 3925–3928 (1993).
  • Schnölzer M, Alewood P, Jones A, Alewood D, Kent SBH. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int. Pept. Protein Res. 40, 180–193 (1992).
  • Horvath A, Olive C, Wong A et al. Lipoamino acid based adjuvant carrier system: Enhanced immunogenicity of group A streptococcal peptide epitopes. Med Chem. 45, 1387–1390 (2002).
  • Tam JP. Synthetic peptide vaccine design: synthesis and properties of a high—density multiple antigenic peptide system. Proc. Natl. Acad Sci. USA 85, 5409–5413 (1988).
  • Wiesmuller KH, Bessler W, Jung G. Synthesis of the mitogenic S—[2,3—bis(palmitoyloxy)propy1]—N—palmi toylpentapeptide from Escherichia coli lipoprotein. Hoppe Seylers Z Physiol. Chem. 364, 593–606 (1983).
  • Deres K, Schild H, Wiesmuller KH, Jung G, Rammensee HG. In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 342, 561–564 (1989).
  • Mora AL, Tam JP. Controlled lipidation and encapsulation of peptides as a useful approach to mucosal immunizations. Immunol 161,3616–3623 (1998).
  • Nardelli B, Haser PB, Tam JP. Oral administration of an antigenic synthetic lipopeptide (MAP—P3C) evokes salivary antibodies and systemic humoral and cellular responses. Vaccine 12, 1335–1339 (1994).
  • Zeng W, Jackson DC, Murray J, Rose K, Brown LE. Totally synthetic lipid-containing polyoxime peptide constructs are potent immunogens. Vaccine 18, 1031–1039 (2000).
  • BenMohamed L, Gras-Masse H, Tartar A et al. Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees. Eur. Immunot 27,1242-1253 (1997). 97Zong G, Toth I, Reid R, Brunham RC. Immunogenicity evaluation of a lipidic amino acid based synthetic peptide vaccine for Chlamydia trachomatis. j Immunot 151,3728–3736 (1993).
  • Toth I, Flinn N, Gibbons WA, Good M, Hayman W, Brown F. Immunological evaluation of the Lipid-Core-Peptide (LCP) adjuvant/canier system, p. 810–811. In: Peptides: chemistry struaure and biology. Pravin T, Kaumaya R Hodges RS (Ed.), Mayflower Scientific Ltd., Kingswinford, UK (1996).
  • Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl Acad. Sci. USA 98, 4107–4112(2001).
  • Dale JB, Chiang EY, Hasty DL, Courtney HS. Antibodies against a synthetic peptide of SagA neutralize the cytolytic activity of streptolysin S from group A streptococci. Infect. Immun. 70, 2166–2170 (2002).
  • Dale JB, Chiang EY, Liu S, Courtney HS, Hasty DL. New protective antigen of group A streptococci.j Chn. Invest. 103, 1261–1268 (1999).
  • Courtney HS, Hasty DL, Dale JB. Serum opacity factor (SOF) of Streptococcus pyogenes evokes antibodies that opsonize homologous and heterologous SOF—positive serotypes of group A streptococci. Infect. Immun. 71, 5097–5103 (2003).

Websites

  • ID Biomedical. www.idbiomed.com Accessed 20th December, 2003.
  • Rockefeller University laboratory of bacterial pathogenesis. www.rockefeller.edu/vaf Accessed 20th December, 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.