55
Views
11
CrossRef citations to date
0
Altmetric
Review

Noncanonical peptides in complex with MHC class I

&
Pages 151-162 | Published online: 09 Jan 2014

References

  • Apostolopoulos V, Haurum JS, McKenzie IF. MUC1 peptide epitopes associated with five different H-2 class I molecules. Fur. J. Immunol 27(10), 2579–2587 (1997).
  • •Identification of low-affinity, noncanonical tumor-associated peptides.
  • Apostolopoulos V, Karanikas V, Haurum JS, McKenzie IF. Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J. Immunol 159(11), 5211–5218 (1997).
  • Apostolopoulos V, Chelvanayagam G, Xing PX, McKenzie IF. Anti-MUC1 antibodies react directly with MUC1 peptides resented by class I H2 and HLA molecules. J. Immunol 161(2), 767–775 (1998).
  • Daser A, Urlaub H, Henklein P. HLA-B27 binding peptides derived from the 57 kD heat shock protein of Chlamydia trachomatis: novel insights into the peptide binding rules. Mal Immunol 31(5), 331–336 (1994).
  • Gao L, Walter J, Travers P, Stauss H, Chain BM. Tumor-associated E6 protein of human papillomavirus Type 16 contains an unusual H-2Kb-restricted cytotoxic T-cell epitope. J. Immunol 155(12), 5519–5526 (1995).
  • Mandelboim 0, Bar-Haim E, Vadai E, Fridkin M, Eisenbach L. Identification of shared tumor-associated antigen peptides between two spontaneous lung carcinomas. J. Immunol 159(12), 6030–6036 (1997).
  • Apostolopoulos V, Yu M, Corper AL et al. Crystal structure of a noncanonical high affinity peptide complexed with MHC class I: a novel use of alternative anchors. J. Mal Biol. 318(5), 1307–1316 (2002).
  • •First crystal structure of a noncanonicalpeptide in complex with MHC class I. First demonstration of use of new anchor pockets.
  • Apostolopoulos V, Yu M, Corper AL et al. Crystal structure of a noncanonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design. J. Mol. Biol. 318(5), 1293–1305 (2002). First crystal structure of a low-affinity noncanonical tumor-associated peptide in complex with MHC class I.
  • Apostolopoulos V, McKenzie IF, Wilson IA. Getting into the groove: unusual features of peptide binding to MHC class I molecules and implications in vaccine design. Front. Biosci. 1311–1320 (2001).
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Studies of MUC1 peptides. In: Peptide-Based Cancer Vaccines. Kast M (Ed.), Landes Bioscience, Chapman and Hall, USA, 106–120 (2000).
  • Apostolopoulos V, Yu M, McKenzie IF, Wilson IA. Structural implications for the design of molecular vaccines. Curr. Opin. Mal Then: 2(1), 29–36 (2000).
  • Apostolopoulos V, Pietersz GA, McKenzie IF. MUC1 and breast cancer. Curr. Opin. Mal The?: 1(1), 98–103 (1999).
  • Zinkernagel RM, Doherty PC. Restriction of in vitro T-cell-mediated cytotmdcity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248(450), 701–702 (1974).
  • Kindred B, Shreffler DC. H-2 dependence of co-operation between T- and B-cells in vivo. J Immund 109(5), 940–943 (1972).
  • Lipsky PE, Rosenthal AS. Macrophage—lymphocyte interaction. Characteristics of the antigen-independent-binding of guinea-pig thymocytes and lymphocytes to syngeneic macrophages. J. Exp. Med. 138(4), 900–924 (1973).
  • Rosenthal AS, Shevach EM. Function of macrophages in antigen recognition by guinea-pig T-lymphocytes. Requirement for histocompatible macrophages and lymphocytes. J. Exp. Med. 138(5), 1194–1212 (1973).
  • Shevach EM, Rosenthal AS. Function of macrophages in antigen recognition by guinea-pig T-lymphocytes. Role of the macrophage in the regulation of genetic control of the immune response. J Ex p Med. 138(5), 1213–1229 (1973).
  • Zinkernagel RM, Doherty PC. MHC-restricted cytotoxic T-cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function and responsiveness. Adv. Immunol 27, 51–177 (1979).
  • Apostolopoulos V, Pietersz GA, McKenzie IF. Cell-mediated immune responses to MUC1 fusion protein coupled to mannan. Vaccine 14(9), 930–938 (1996).
  • Apostolopoulos V, Pietersz GA, Loveland BE, Sandrin MS, McKenzie IF. Oxidative/reductive conjugation of mannan to antigen selects for Ti or T2 immune responses. Proc. Nad Acad. Sci. USA 92(22), 10128–10132 (1995).
  • Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Ann. Rev. Immunol 11, 403–450 (1993).
  • Harding CV, Song R. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol 153(11), 4925–4933 (1994).
  • Higgins DE, Shastri N, Portnoy DA. Delivery of protein to the cytosol of macrophages using Escherichia coli K-12. Mal Microbial. 31(6), 1631–1641 (1999).
  • Zwickey HL, Potter TA. Antigen secreted from noncytosolic Listeria monocytogenes is processed by the classical MHC class I processing pathway. J. Immunol 162(11), 6341–6350 (1999).
  • Van Kaer L. Major histocompatibility complex class I-restricted antigen processing and presentation. Tissue Antigens 60(1), 1–9 (2002).
  • Williams DB, Watts TH. Molecular chaperones in antigen presentation. Curr. Opin. Immunol 7(1), 77–84 (1995).
  • Rammensee HG. Chemistry of peptides associated with MHC class I and class II molecules. Curr. Opin. Immunol 7(1), 85–96 (1995).
  • Bjorkman PJ, Saper MA, Samraoui B et al. The foreign antigen binding site and T-cell recognition regions of class I histocompatibility antigens. Nature 329(6139), 512–518 (1987).
  • Bjorkman PJ, Saper MA, Samraoui B et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329(6139), 506–512 (1987).
  • Falk K, Rotzschke 0, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351(6324), 290–296. (1991).
  • Jardetzky TS, Lane WS, Robinson RA, Madden DR, Wiley DC. Identification of self peptides bound to purified HLA-B27. Nature 353(6342), 326–329 (1991).
  • Madden DR, Gorga JC, Strominger JL, Wiley DC. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 353(6342), 321–325 (1991).
  • Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA. Crystal structures of two viral peptides in complex with murine MHC class I H-2K". Science 257(5072), 919–927 (1992).
  • Fremont DH, Stura EA, Matsumura M, Peterson PA, Wilson IA. Crystal structure of an H-2K"-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Nad Acad. Sci. USA 92(7), 2479–2483 (1995).
  • Madden DR, Gorga JC, Strominger JL,Wiley DC. The three-dimensional structure of HLA-B27 at 2.1A resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70(6), 1035–1048 (1992).
  • Garrett TP, Saper MA, Bjorkman PJ, Strominger JL, Wiley DC. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 342(6250), 692–696 (1989).
  • Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics 41(4), 178–228 (1995).
  • •A comprehensive listing of known CTL epitopes and ligands to human and mouse MHC class I molecules.
  • Udaka K, Wiesmuller KH, Kienle S, Jung G, Walden P. Decrypting the structure of major histocompatibility complex class I-restricted cytotoxic T-lymphocyte epitopes with complex peptide libraries. J. E. Med. 181(6), 2097–2108 (1995).
  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogeneti cs 50(3-4), 213–219 (1999).
  • •A database listing of known CTL epitopes and ligands to human and mouse MHC class I/II molecules. Program to predict canonical peptides from a protein sequence.
  • Stauss HJ, Davies H, Sadovnikova E et al Induction of cytotoxic T-lymphocytes with peptides in vitro: identification of candidate T-cell epitopes in human papilloma virus. Proc. Nad Acad. Sci. USA 89(17), 7871–7875 (1992).
  • Mandelboim 0, Vadai E, Fridkin M et al. Regression of established murine carcinoma metastases following vaccination with tumour-associated antigen peptides. Nature Med. 1(11), 1179–1183 (1995).
  • Tirosh B, el-Shami K, Vaisman N et al. Immunogenicity of H-21("-low affinity, high affinity and covalently-bound peptides in antitumor vaccination. Immunol Lett. 70(1), 21–28 (1999).
  • Ostrov DA, Roden MM, Shi Wet al. How H13 histocompatibility peptides differing by a single methyl group and lacking conventional MHC binding anchor motifs determine self—nonself discrimination. J. Immunol 168(1), 283–289 (2002).
  • •Crystal structure of a nonanchor peptide in complex with MHC class I.
  • Yague J, Marina A, Vazquez J, Lopez De Castro JA. Major histocompatibility complex class I molecules bind natural peptide ligands lacking the amino-terminal binding residue in vivo. J. Biol. Chem. 276(47), 43699–43707 (2001).
  • Liu X, Dai S, Crawford F et al. Alternate interactions define the binding of peptides to the MHC molecule IA(b). Proc. Nad Acad. Sci. USA 99(13), 8820–8825 (2002).
  • Molano A, Erdjument-Bromage H, Fremont DH et al. Peptide selection by an MHC H-2Kb class I molecule devoid of the central anchor (`C') pocket. J. Immund. 160(6), 2815–2823. (1998).
  • •Demonstration that E pocket can be used as an anchor-pocket when the C pocket is absent.
  • Momburg F, Roelse J, Howard JC et al. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367(6464), 648–651 (1994).
  • Androlewicz MJ, Cresswell P. How selective is the transporter associated with antigen processing? Immunity 5(1), 1–5 (1996).
  • Schumacher TN, Kantesaria DV, Heemels MT et al. Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J. Exp. Med. 179(2), 533–540 (1994).
  • Roelse J, Gromme M, Momburg F, Hammerling G, Neefjes J. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J. E. Med 180(5), 1591–1597 (1994).
  • Momburg F, Roelse J, Hammerling GJ, Neefjes JJ. Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J. Exp. Med. 179(5), 1613–1623 (1994).
  • Bouvier M, Wiley DC. Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules. Science 265(5170), 398–402 (1994).
  • Zhang W, Young AC, Imarai M, Nathenson SG, Sacchettini JC. Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition. Proc. Nad Acad. Sci. USA 89(17), 8403–8407 (1992).
  • Collins EJ, Garboczi DN, Wiley DC. 3D structure of a peptide extending from one end of a class I MHC binding site. Nature 371(6498), 626–629 (1994).
  • Chen Y, Sidney J, Southwood S et aL Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. J. Immund 152(6), 2874–2881 (1994).
  • Matsumura M, Saito Y, Jackson MR, Song ES, Peterson PA. In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells. J. Biol. Chem. 267(33), 23589–23595 (1992).
  • Matsumura M, Fremont DH, Peterson PA,Wilson IA. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257(5072), 927–934 (1992).
  • Honig H, Young AC, Papadopoulos NJ, DiLorenzo TP, Nathenson SG. Binding of longer peptides to the H-2Kb heterodimer is restricted to peptides extended at their C terminus: refinement of the inherent MHC class I peptide binding criteria. J. Immund 163(8), 4434–4441 (1999).
  • •Demonstration that long' peptides can bind to MHC.
  • Olsen AC, Pedersen LO, Hansen AS et aL A quantitative assay to measure the interaction between immunogenic peptides and purified class I major histocompatibility complex molecules. Eur. J. Immund 24(2), 385–392 (1994).
  • •Demonstration that long' peptides can bind to MHC.
  • Stryhn A, Pedersen LO, Holm A, Buus S. Longer peptide can be accommodated in the MHC class I binding site by a protrusion mechanism. Eur. J. Immund 30(11), 3089–3099 (2000).
  • •Demonstration that long' peptides can bind to MHC.
  • Stevens J, Wiesmuller KH, Walden P, Joly E. Peptide length preferences for rat and mouse MHC class I molecules using random peptide libraries. Eur. J. Immund 28(4), 1272–1279 (1998).
  • Speir JA, Stevens J, Joly E, Butcher GW, Wilson IA. Two different, highly exposed, bulged structures for an unusually long peptide bound to rat MHC class I RT1-Aa. Immunity 14(1), 81–92 (2001).
  • ••Crystal structure of a 13-mer rat peptidein complex with rat MHC class I. The structures shows a large 'bulge' in the center of the peptide.
  • Probst-Kepper M, Stroobant V, Kridel R et aL An alternative open reading frame of the human macrophage colony-stimulating factor gene is independently translated and codes for an antigenic peptide of 14 amino acids recognized by tumor-infiltrating CD8 T-lymphocytes. J. Exp. Med. 193(10), 1189–1198 (2001).
  • •Identification of a 'long 14-mei peptide presented by MHC class I.
  • Eisen HN, Sykulev Y, Tsomides TJ. Antigen-specific T-cell receptors and their reactions with complexes formed by peptides with major histocompatibility complex proteins. Adv. Protein Chem. 49, 1–56 (1996).
  • Gillanders WE, Hanson HL, Rubocki RJ, Hansen TH, Connolly JM. Class I-restricted cytotoxic T-cell recognition of split peptide ligands. Int. Immund 9(1), 81–89 (1997).
  • Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T-lymphocytes. Nature 337(6208), 651–653 (1989).
  • Sette A, Vitiello A, Reherman B et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T-cell epitopes. J. Immund 153(12), 5586–5592 (1994).
  • Cibotti R, Kanellopoulos JM, Cabaniols JP et al. Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants. Proc. Nad Acad. Sci. USA 89(1), 416–420 (1992).
  • Vierboom MP, Nijman HW, Offringa R et al. Tumor eradication by wild type p53-specific cytotoxic T-lymphocytes. J. Exp. Med. 186(5), 695–704 (1997).
  • Theobald M, Biggs J, Hernandez J et al. Tolerance to p53 by A2.1-restricted cytotoxic T-lymphocytes. J. Exp. Med. 185(5), 833–841 (1997).
  • Andersen ML, Ruhwald M, Nissen MH, Buus S, Claesson MH. Self-peptides with intermediate capacity to bind and stabilize MHC class I molecules may be immunogenic. Scand J. Immund 57(1), 21–27 (2003).
  • Sette A, Vitiello A, Reherman B et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T-cell epitopes. J. Immund 153(12), 5586–5592 (1994).
  • van der Burg SH, Visseren MJ, Brandt RM, Kast WM, Melief CJ. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. immune/. 156(9), 3308–3314 (1996).
  • Apostolopoulos V, Yuriev E, Ramsland PA et al. A glycopeptide in complex with MHC class I uses the GalNAc residue as an anchor. Proc. Nad Acad. Sci. USA 100(25), 15029–15034 (2003).
  • ••Demonstration that GalNAc can act as ananchoring residue.
  • Ma H, Kapp JA. Peptide affinity for MHC influences the phenotype of CD8(±) T-cells primed in vivo. Cell Immund 214(1), 89–96 (2001).
  • Tourdot S, Scardino A, Saloustrou E et aL A general strategy to enhance immunogenicity of low-affinity HLA-A2.1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J. Immund 30(12), 3411-3421(2000).
  • Gad M, Jensen T, Gagne R et aL MUC1- derived glycopeptide libraries withimproved MHC anchors are strong antigens and prime mouse T-cells for proliferative responses to lysates of human breast cancer tissue. Eur. J. Immunol 33(6), 1624–1632 (2003).
  • Haurum JS, Hoier TB, Arsequell G et al Presentation of cytosolic glycosylated peptides by human class I major histocompatibility complex molecules in vivo. J. E. Med 190(1), 145–150 (1999).
  • •Evidence that glycopeptides are processed and presented by MHC class I in vivo.
  • Haurum JS, Arsequell G, Lellouch AC et al Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotmdc T-lymphocytes. J. Exp. Med. 180(2), 739–744 (1994).
  • Kastrup TB, Stevanovic S, Arsequell G et al Lectin purified human class I MHC-derived peptides: evidence for presentation of glycopeptides in vivo. Tissue Antigens 56(2), 129–135 (2000).
  • Abdel-Motal UM, Berg L, Rosen A et al. Immunization with glycosylated Kb-binding peptides generates carbohydrate-specific, unrestricted cytotoxic T-cells. Eur. J. Immunol. 26(3), 544–551 (1996).
  • Speir JA, Abdel-Motal UM, Jondal M, Wilson IA. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. Immunity 10(0,51–61 (1999).
  • ••First crystal structure of a glycopeptide incomplex with MHC class I H-2K1'.
  • Glithero A, Tormo J, Haurum JS et al. Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. Immunity 10(1), 63–74 (1999).
  • ••First crystal structure of a glycopeptide incomplex with MHC class I H-2D1'.
  • Haurum JS, Tan L, Arsequell G et al. Peptide anchor residue glycosylation: effect on class I major histocompatibility complex binding and cytotmdc T-lymphocyte recognition. Eur. J. Immunol 25(12), 3270–3276 (1995).
  • Vlad AM, Muller S, Cudic M et al. Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T-cells. J. Exp. Med. 196(11), 1435–1446 (2002).
  • Mouritsen S, Meldal M, Christiansen-Brams I, Elsner H, Werdelin 0. Attachment of oligosaccharides to peptide antigen profoundly affects binding to major histocompatibility complex class II molecules and peptide immunogenicity. Eur .J. Immunol 24(5), 1066–1072 (1994).
  • Saito NG, Paterson Y. Contribution of peptide backbone atoms to binding of an antigenic peptide to class I major histocompatibility complex molecule. Mal Immunol 34(16-17), 1133–1145 (1997).
  • Wilson IA, Fremont DH. Structural analysis of MHC class I molecules with bound peptide antigens. Semin. Immunol 5(2), 75–80 (1993).
  • Nair DT, Kaur KJ, Singh K et aL Mimicry of native peptide antigens by the corresponding retro-inverso analogs is dependent on their intrinsic structure and interaction propensities. J Immunol 170(3), 1362–1373 (2003).
  • Guichard G, Connan F, Graff R et al Partially modified retro-inverso pseudopeptides as non-natural ligands for the human class I histocompatibility molecule HLA-A2. J. Med Chem. 39(10), 2030–2039 (1996).
  • Herve M, Maillere B, Mourier G et al. On the immunogenic properties of retro-inverso peptides. Total retro-inversion of T-cell epitopes causes a loss of binding to MHC II molecules. Mal Immunol 34(2), 157–163 (1997).
  • Bhasin M, Singh H, Raghava GP. MHCBN: a comprehensive database of MHC binding and nonbinding peptides. Bioinfirmatics 19(5), 665–666 (2003).
  • Bhasin M,Raghava GP. Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22(4), 229–234 (2003).
  • Andersen MH, Tan L, Sondergaard I et al. Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. Tissue Antigens 55(6), 519–531 (2000).
  • Borras E, Martin R, Judkowski V et al. Findings on T-cell specificity revealed by synthetic combinatorial libraries. J. Immuna Methods 267(1), 79–97 (2002).
  • Stevens J, Wiesmuller KH, Barker PJ et al. Efficient generation of major histocompatibility complex class I-peptide complexes using synthetic peptide libraries. J. Biol. Chem. 273 (5), 2874–2884 (1998).
  • Ding YH, Smith KJ, Garboczi DN et al Two human T-cell receptors bind in a similar diagonal mode to the HLA-A/Tax peptide complex using different TCR amino acids. Immunity 8(4), 403–411(1998).
  • Hausmann S, Biddison WE, Smith KJ et al. Peptide recognition by two HLA-A2/Taxl 1-19-specific T-cell clones in relationship to their MHC/peptide/TCR crystal structure. J. Immunol 162(9), 5389–5397 (1999).
  • Speir JA, Garcia KC, Brunmark A et al. Strucural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8(5), 553–562 (1998).

Websites

  • Website of the National Institute of Health's Bioinformatics and Molecular Analysis Section. www.bimas.dcrt.nih.gov/molbio/hla_bind Accessed March, 2004.
  • Website of the SYFPEITHI database of MHC ligands and peptide motifs. www.syfpeithi.bmi-heidelberg.com/scripts/ MHCServer.d11/home.htm Accessed March, 2004.
  • Website of the Walter and Eliza Hall Institute of Medical Research www.wehih.wehi.edu.au/mhcpep/ Accessed March, 2004.
  • Vaccinome website www.vaccinome.com Accessed March, 2004.
  • Website of the Institute of Microbial Technology www.imtech.res.in/raghava/mmbpred/ Accessed March, 2004.
  • Website of the Institute of Microbial Technology www. imtech. res. in/raghava/propredl/index Accessed March, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.