55
Views
9
CrossRef citations to date
0
Altmetric
Review

APC-targeted immunization for the treatment of HIV-1

, &
Pages S189-S198 | Published online: 09 Jan 2014

References

  • Lederman HM, Williams PL, Wu JW et al. Incomplete immune reconstitution after initiation of highly active antiretroviral therapy in human immunodeficiency virus-infected patients with severe CD4+ cell depletion. J. Infect. Dis. 188(12), 1794–1803 (2003).
  • Imami N, Hardy G, Burton C et al Immune responses and reconstitution in HIV-1 infected individuals: impact of antiretroviral therapy, cytokines and therapeutic vaccination. Immunol Lett.79(1–2), 63–76 (2001).
  • MacGregor RR, Ginsberg R, Ugen KE et al T-cell responses induced in normal volunteers immunized with a DNA-based vaccine containing HIV-1 env and rev. A/DS16(16), 2137–2143 (2002).
  • Wang B, Ugen KE, Srikantan V et al Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc. Nati Acad. Sci. USA 90(9), 4156–4160 (1993).
  • Koup RA, Safrit JT, Cao Y et al Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus Type 1 syndrome. J. Virol. 68(7), 4650–4655 (1994).
  • Borrow P, Lewicki H, Wei X et al Antiviral pressure exerted by HIV-1-specific cytotoxic T-lymphocytes (CTL,$) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Merl 3(2), 205–211 (1997).
  • Gea-Banacloche JC, Migueles SA, Martino L et al. Maintenance of large numbers of virus-specific CD8+ T-cells in HIV-infected progressors and long-term nonprogressors. I Immunol 165(2), 1082–1092 (2000).
  • Betts MR, Yusim K, Koup RA. Optimal antigens for HIV vaccines based on CD8+ T response, protein length and sequence variability. DNA Cell Biol. 21(9), 665–670 (2002).
  • Rowland-Jones SL, Pinheiro S, Kaul R et al. How important is the 'quality' of the cytotoxic T-lymphocyte (CTL) response in protection against HIV infection? Immunol Lett. 79(1-2), 15–20 (2001).
  • Amara RR, Robinson HL. A new generation of HIV vaccines. Wends Mal Med. 8(10), 489–495 (2002).
  • Barouch DH, Santra S, Schmitz JE et al Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290(5491), 486–492 (2000).
  • Lohman BL, McChesney MB, Miller CJ et al. A partially attenuated simian immunodeficiency virus induces host immunity that correlates with resistance to pathogenic virus challenge. j Vim!. 68(11), 7021–7029 (1994).
  • Almond N, Kent K, Cranage M et al Protection by attenuated simian immunodeficiency virus in macaques against challenge with virus-infected cells. Lancet 345(8961), 1342–1344 (1995).
  • Wyand MS, Manson KH, Miller CJ, Neurath AR. Effect of 3-hydroxyphthaloyl-beta-lactoglobulin on vaginal transmission of simian immunodeficiency virus in rhesus monkeys. Antimicrob. Agents Chemother. 43(4), 978–980 (1999).
  • Johnson RP, Lifson JD, Czajak SC et al. Highly attenuated vaccine strains of simian immunodeficiency virus protect against vaginal challenge: inverse relationship of degree of protection with level of attenuation. Viral 73 (6), 4952–4961 (1999).
  • Kumar A, Mukherjee S, Shen J et al Immunization of macaques with live simian human immunodeficiency virus (SHIV) vaccines conferred protection against MDS induced by homologous and heterologous SHIVs and simian immunodeficiency virus. Virology301 (2), 189–205 (2002).
  • Baba TW, Jeong YS, Pennick D, Bronson R, Greene MF, Ruprecht RM. Pathogenicity of live, attenuated SW after mucosal infection of neonatal macaques.Science 267(5205), 1820–1825 (1995).
  • Whitney JB, Ruprecht RM. Live attenuated HIV vaccines: pitfalls and prospects. an: Opin. Infect. Dis. 17(1), 17–26 (2004).
  • Piazza P, Fan Z, Rinaldo CR, Jr. CD8* T- cell immunity to HIV infection. Clin. Lab. Med. 22(3), 773–797 (2002).
  • Moingeon P. Strategies for designing vaccines eliciting Thl responses in humans. Biotechnol 98(2-3), 189–198 (2002).
  • Aichele P, Hengartner H, Zinkernagel Schulz M. Antiviral cytotoxic T-cell response induced by in vivo priming with a free synthetic peptide. I EAp. Med. 171(5), 1815–1820 (1990).
  • Fayolle C, Deriaud E, Leclerc C. In vivo induction of cytotoxic T-cell response by a free synthetic peptide requires CD4+ T-cell help. I Immunol 147(12), 4069–4073 (1991).
  • Sin JI, Kim JJ, Boyer JD et al In vivo modulation of vaccine-induced immune responses toward a Thl phenotype increases potency and vaccine effectiveness in a herpes simplex virus Type 2 mouse model.j Viral 73(1), 501–509 (1999).
  • Sin JI, Kim JJ, Zhang D, Weiner DB. Modulation of cellular responses by plasmid CD4OL: CD4OL plasmid vectors enhance antigen-specific helper T-cell Type 1 CD4* T-cell-mediated protective immunity against herpes simplex virus Type 2 in vivo. Hum. Gene firer. 12(9),1091-1102 (2001).
  • Kim JJ, Ayyavoo V, Bagarazzi ML et al In viva engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. Immunol 158(2), 816–826 (1997).
  • Kim JJ, Bagarazzi ML, Trivedi N et al Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nature Biotechnol 15(7), 641–646 (1997).
  • Kim JJ, Simbiri IKA, Sin JI et al Cytokine molecular adjuvants modulate immune responses induced by DNA vaccine constructs for HIV-1 and SW. .1. Interferon Cytokine Res. 19(1), 77–84 (1999).
  • Agadjanyan MG, Kim JJ, Trivedi N et al CD86 (B7-2) can function to drive MHC-restricted antigen-specific CTL responses in vivo. Immunol 162 (6), 3417–3427 (1999).
  • Donaghy H, Stebbing J, Patterson S. Antigen presentation and the role of dendritic cells in HIV. CLI17: Opin. Infect. Dis. 17(1), 1–6 (2004).
  • Steinman RM. The dendritic cell system and its role in immunogenicity. Ann. Rev Immunol 9,271–296 (1991).
  • Richards J, Le Naour F, Hanash S, Beretta L. Integrated genomic and proteomic analysis of signaling pathways in dendritic cell differentiation and maturation. Ann. NY Acad. Li. 975,91–100 (2002).
  • Bauer S, Kirschning CJ, Hacker H et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Nail Acad. Sci. USA 98(16), 9237–9242 (2001).
  • Ito T, Amakawa R, Fukuhara S. Roles of Toll-like receptors in natural interferon-producing cells as sensors in immune surveillance. Hum. Iminunol. 63(12), 1120–1125 (2002).
  • Jenkins MK, Khoruts A, Ingulli E et al. In viva activation of antigen-specific CD4 T-eens. Ann. Rev Immunol 19,23–45 (2001).
  • Akira S, Takeda K, Kaisho T Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol 2(8), 675–680 (2001).
  • Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nature Rev Iminunol. 2(4), 251–262 (2002).
  • •Review of the immunological implications for vaccines.
  • Lanzavecchia A, Sallusto E Dynamics of T- lymphocyte responses: intermediates, effectors and memory cells. Science 290(5489), 92–97 (2000).
  • Parham P. In: The Immune System. Parham P (Ed.), Elsevier Science, USA, 164–166 (2000).
  • Sallusto F, Lanzavecchia A. Exploring pathways for memory T-cell generation. Clin. Invest. 108(6), 805–806 (2001).
  • Lieberman J, Manjunath N, Shankar Avoiding the kiss of death: how HIV and other chronic viruses survive. Cum Opin. Immunol 14(4), 478–486 (2002).
  • Weng NP, Liu K, Catalfamo M, Li Y, Henkart PA. IL-15 is a growth factor and an activator of CD8 memory T-cells. Ann. NY Acad. Sci. 975,46-56 (2002).
  • Puaux AL, Michel ML. New gene-based approaches for an AIDS vaccine. Comp. Immunol Microbial Infect. Dis. 26(5–6), 357–372 (2003).
  • Shiver JW, Fu TM, Chen L et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415(6869), 331–335 (2002).
  • Barnett BG, Crews CJ, Douglas JT. Targeted adenoviral vectors. Biochim. Biophys. Acta 1575(1–3), 1–14 (2002).
  • Peachman KIK, Rao M, Alving CR. Immunization with DNA through the skin. Methods 31(3), 232–242 (2003).
  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med 137(5), 1142–1162 (1973).
  • ••Landmark article, the identification of dendritic cells (DCs).
  • Inaba K, Metlay JP, Crowley MT Witmer- Pack M, Steinman RM. Dendritic cells as antigen-presenting cells in vivo. Int. Rev Immunol 6(2–3), 197–206 (1990).
  • Nestle FO. Vaccines and melanoma. Clin. Exp. Dermatol 27(7), 597–601 (2002).
  • Lisziewicz J, Bakare N, Lori E Therapeutic vaccination for future management of HIV/AIDS. Vaccine 21(7-8), 620–623 (2003).
  • Lori F, Lisziewicz J. Structured treatment interruptions for the management of HIV infection. JAMA 286 (23), 2981–2987. (2001).
  • Lori F, Lewis MG, Xu J et al Control of SW rebound through structured treatment interruptions during early infection. Science 290(5496), 1591–1593 (2000).
  • •Demonstration of the autovaccination concept.
  • Lisziewicz J, Rosenberg E, Lieberman J et al Control of HIV despite the discontinuation of antiretroviral therapy. N. Engl. J. Med. 340(21), 1683–1684 (1999).
  • Rosenberg ES, Altfeld M, Poon SH et al. Immune control of HIV-1 after early treatment of acute infection. Nature 407(6803), 523–526 (2000).
  • Lisziewicz J, Gabrilovich DI, Varga G et al. Induction of Potent Human Immunodeficiency Virus Type 1-Specific T-Cell-Restricted Immunity by Genetically Modified Dendritic Cells.' Viral 75(16), 7621–7628 (2001).
  • Lu W, Wu X, Lu Y, Guo W, Andrieu JM. Therapeutic dendritic-cell vaccine for simian AIDS. Nature Merl 9(1), 27–32 (2003).
  • •Demonstration of efficacy of ex vivo DC-based immunization.
  • Rossio JL, Esser MT, Suryanarayana K et al Inactivation of human immunodeficiency virus Type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Viral 72(10), 7992–8001 (1998).
  • Bhardwaj N, Walker BD. Immunotherapy for AIDS virus infections: cautious optimism for cell-based vaccine. Nature Med. 9(1), 13–14 (2003).
  • Lapenta C, Santini SM, Logozzi M et al Potent immune response against HIV-1 and protection from virus challenge in hu-PBL-SCID mice immunized with inactivated virus-pulsed dendritic cells generated in the presence of IFN-a. J Exp. Med. 198(2), 361–367 (2003).
  • Garcia F, Lejeune M, Climent N et al Final results of a Phase I study of a therapeutic vaccine using autologous dendritic cells primed with autologous virus in patients with chronic HIV infection and CD4 T-cells above 400/mm3. 11th Conference on Retro viruses and Opportunistic Infections. San Francisco, CA, USA (Abstract 518) (2004).
  • Barouch DH, Kunstman J, Kuroda MJ et al Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T-lymphocytes. Nature 415(6869), 335–339 (2002).
  • Cara A, Guarnaccia F, Reitz MS, Gallo RC, Lori E Self-limiting, cell type-dependent replication of an integrase-defective human immunodeficiency virus Type 1 in human primary macrophages but not T-lymphocytes. Virology 208 (1), 242–248 (1995).
  • Lisziewicz J et al Novel Dendritic cell- based topical DNA vaccination combined with STI-HAART induced immune control in macaques with AIDS. The XIV International AIDS Conference, Barcelona, Spain (Abstract ThPpA2128) (2003).
  • Lisziewicz J, Jianqing X, Lewis M et al Safety, immunogenicity and antiviral efficacy of a new topical DNA vaccine in macaques with chronic infection and AIDS. The XIV International AIDS Conference, Barcelona, Spain. (Abstract LbOR11) (2003).
  • Ameisen JC, Capron A. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immurrol Today 12(4), 102–105 (1991).
  • Meyaard L, Otto SA, Jonker RR et al Programmed death of T-cells in HIV-1 infection. Science 257 (5067), 217–219 (1992).
  • Finkel TH, Tudor-Williams G, Banda NK et al Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SW-infected lymph nodes. Nature Med. 1(2), 129–134 (1995).
  • Gougeon ML, Lecoeur H, Dulioust A et al. Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T-cells correlates with lymphocyte activation and with disease progression. J Immunol 156(9), 509–3520 (1996).
  • Zinkernagel RM. Immunology taught by viruses. Science 271 (5246), 173–178 (1996).
  • Hellerstein MK, Hoh RA, Hanley MB et Subpopulations of long-lived and short-lived T-cells in advanced HIV-1 infection. J Clin. Invest. 112 (6), 956–966 (2003).
  • Giorgi JV, Hultin LE, McKeating JA et al. Shorter survival in advanced human immunodeficiency virus Type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 179(4), 859–870 (1999).
  • •New insights to HIV pathogenesis.
  • Sousa AE, Carneiro J, Meier- Schellersheim M, Grossman Z, Victorino RM. CD4 T-cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 169(6), 3400–3406 (2002).
  • Sopper S, Nierwetberg D, Halbach A et al. Impact of simian immunodeficiency virus (SIV) infection on lymphocyte numbers and T-cell turnover in different organs of rhesus monkeys. Blood 101 (4), 1213–1219 (2003).
  • Soumelis V, Scott I, Liu YJ, Levy J. Natural Type 1 interferon producing cells in HIV infection. Hum. Immunol 63(12), 1206–1212 (2002).
  • Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182(2), 389–400 (1995).
  • Engering AJ, Cella M, Fluitsma D et al The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur. Immunol 27(9), 2417–2425 (1997).
  • Engering AJ, Cella M, Fluitsma DM et Mannose receptor mediated antigen uptake and presentation in human dendritic cells. Adv. Exp. Med. Biol. 417,183–187 (1997).
  • Takahashi K, Donovan MJ, Rogers RA, Ezekowitz RA. Distribution of murine mannose receptor expression from early embryogenesis through to adulthood. Cell Tissue Res. 292(2), 311–323 (1998).
  • Boussif O, Lezoualc'h F, Zanta MA et al A versatile vector for gene and oligonucleotide transfer into cells in culture and in viva. polyethylenimine. Proc. Natl Acad. Sc]. USA 92(16), 7297–7301 (1995).
  • Chemin I, Moradpour D, Wieland S et al. Liver-directed gene transfer: a linear polyethlenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in viva J. Viral Hepat. 5(6), 369–375 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.